无角位移减振装置机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无角位移减振装置是动基座光电侦察稳定平台用来保证像质稳定,获取良好成像信号不可或缺的关键环节。航空侦察具有时效性强、准确度高、侦察范围宽广深远、机动灵活、针对性强的特点,既可克服地面侦察受地球曲率和地形障碍物对视线的限制和强烈干扰,又可弥补由于卫星距离地面远而造成的侦察细节和时效上的不足,所以目前它仍是获取战术情报的基本和有效手段。
     航空侦察要靠动基座光电侦察平台来实现。平台搭载的光电装置内部以各种光电传感器为主,如可见光与红外侦察相机、激光测距仪和激光目标照射器等。上述各种功能的光电装置统称为光电载荷。光电载荷是实现光学成像,获取目标信息,完成侦察任务的必要条件。但是由于航空侦察的特殊振动力学环境,光电载荷功能的充分实现还要依赖于其稳定系统。在动基座光电装置工作时,有各种各样的内部和外部振源,将会导致目标相对于光轴发生相对运动,进而在像面上产生像移。因此,必须对动载体光电成像装置采取振动控制技术。无角位移减振装置就是动基座光电侦察稳定平台用来保证像质稳定,以及良好成像质量不可或缺的关键环节。
     在振动所引起的像质变化中,角位移振动远大于线位移振动。所以在设计无角位移减振装置时,应当保证对光电载荷的角振动进行充分抑制同时减小线振动。本文在对各种振动控制技术进行分析的基础上,最终选定了简单可靠、经济性好的被动隔振技术。根据无角位移原理,设计了动基座无角位移减振装置的三维模型,建立了ADAMS虚拟样机。
     利用ADAMS/Vibration振动分析模块,对建立的虚拟样机进行运动仿真分析,分析其减振性能。分别采用随机信号和正弦信号作为外界振动的激励源,进行了随机振动试验和正弦扫频试验。进而得到了系统的六个自由度方向输出的位移、速度、加速度响应。利用ADAMS的自动优化功能,研究了隔振系统的性能参数,通过比较不同的阻尼和刚度情况下的系统传递函数,得到了系统参数即阻尼和刚度的最优值。仿真分析的结果表明,所设计的动基座无角位移减振装置很好的抑制了角位移,并减小了线位移,实现了预期目标。
     通过分析影响无角位移减振装置精度的主要因素,有针对性的讨论了无角位移减振装置机构精度分析方法,以及对诸多误差因素的简化策略,建立了无角位移减振装置的误差模型,进行了误差模型的matlab仿真分析和原理样机的实验分析。通过对两种试验分析的结果对比,分析出影响机构误差的主要原因,并提出了提高机构精度的具体方法。
Aviation reconnaissance has strong real-timing, high accuracy, wide reconnaissance range, good maneuverability and pertinence, while ground reconnaissance is dangerous and limited by earth curvature, topography and obstacles, making up for the lack of real timing and details of satellite reconnaissance. So aviation reconnaissance is still the basic and effective means to collect tactic information.
     Aviation reconnaissance is realized by airborne opto-electric reconnaissance platform. It is a complex Opto-Mechatronics system for the aircraft to observe the circumstances surrounding it, to obtain image information, to indicate and aim at targets. Inside the platform are mainly kinds of opto-electronic sensors. Such as visible and infrared cameras, laser rangefinder, target laser illuminators. These airborne integrated sensors are mounted to the platform which can rotate free to realize various functions. The opto-electric devices are called the opto-electronic payloads. Opto-electronic payload is the necessary and sufficient condition to realize optical imaging, collect target information. Because of the special mechanical environment of aviation reconnaissance, the functioning of opto-electronic payloads relies on the stabilization system.
     While the airborne opto-electronic reconnaissance devices are working, there are various inner and outer vibration sources. They are the vibration caused by focusing, zooming and dimming mechanisms, the vibration caused by the unset of the center of gravity of camera and vacillating of the support frame, the vibration caused by the working engines of the aircraft and rapid change of speed, direction, height and attitude. In the complex vibration environment, there will be a relative movement between the target and the optic axis, leading to image motion and image blur. So vibration isolation techniques must be taken for airborne opto-electronic reconnaissance devices. Irrotational displacement isolator is the indispensable key link to ensure the image quality of airborne photoelectric reconnaissance platform.
     Known from analysis, angular vibration plays a much bigger part in the image motion than line vibration. The angular vibration should be suppressed and line vibration should be reduced while designing. On the base of comparing various vibration control techniques, passive vibration isolation is chosen because of its simplicity, reliability and economical efficiency. By use of non-angular theory, the three dimensional model of airborne vibration isolation platform is built, and so is the ADAMS virtual prototype of it.
     By use of the ADAMS/vibration analysis module, the established virtual prototype is analyzed and tested. Random vibration test and swept sine test are performed as the random signal and sine signal being the vibration driving source signal. Displacement response, speed response and acceleration response separately in the six direction of freedom are obtained. By use of the auto optimizing function of ADAMS, the optimum value of damping and stiffness are gotten. The results indicate that, the vibration isolation platform suppressed the angular vibration and reduced the line vibration.
     The error of the damping mechanism of the vibration isolation platform affects directly on the damping effect. By analyzing the main factors that affecting the error, the error analysis methods and the error reductionistic strategy have been discussed. I established the error model of the vibration isolation mechanism, and performed simulation analysis by MATLAB on the model. The prototype of the mechanism has also been tested. By contrastively analyzing the test results, the main factors affecting the error have been found out, and the methods for improving precision of the mechanism have been brought forward.
引文
[1]张葆.动载体成像振动主动控制技术的研究[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2003
    [2]贾平,张葆.航空光电侦察平台关键技术及其发展[J].光学精密工程.2003,11(1):82-88
    [3]黄猛,张葆,丁亚林.国外机载光电平台的发展[J].航空制造技术.2008,9:70-71
    [4]安源,许晖,金光.动载体光电平台角振动隔振设计[J].半导体光电.2006,27(5):614-617
    [5]张葆,贾平,黄猛,田素林.动载体成像系统底座无角位移减振器的设计[J].光学技术.2003,29(4):464-466
    [6]周静淑,刘朝晖,许峰.车载状态下光电经纬仪的减振防护研究[J].光子学报.2007,36:244-248
    [7]黄一,吕俊芳,卢广山.机载光电跟瞄平台稳定与跟踪控制方法研究[J].飞机设计.2003,3:38-42
    [8]毕永利,刘洵,葛文奇.机载光电平台隔振装置特性研究[J].机床与液压.2004,15:76-77
    [9]赵鹏.振动对航空相机成像质量影响的分析[J].激光与红外.2001,31(4):240-242
    [10]张葆,贾平,黄猛.动载体成像模糊的振动被动控制技术[J].光学技术.2003,29(3):281-283
    [11]K. Peter Heiland. Recent advancements in passive and active vibration control systems[J]. SPIE.1619: P22-P33
    [12]Farshad Khorrami, Jahangir Rastegar, R. Scott Erwin. A Three Degrees-of-Freedom Adaptive-Passive Isolator for Launch Vehicle Payloads[J].SPIE.3991:164-175
    [13]朱石坚,楼京俊,何其伟,翁雪涛.振动理论与隔振技术[M].北京:国防工业出版社,2006.6
    [14]安源.光电平台无角位移减振试验装置设计及频谱分析[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2008
    [15]许晖.光电平台无角位移减振机构机理研究及误差分析[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2007
    [16]李军,刑俊文,覃文杰.ADAMS实例教程[M].北京:北京理工大学出版社,2002.7
    [17]丁金伟.无角位移减振器[P].中国:200410010639.4
    [18]陈立平,张云清,任卫群,覃刚等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005
    [19]Getting Started Using ADAMS/Vibration. www.Adams.com
    [20]ADAMS Vibration Training Guide. VERSION 12.0, PART NUMBER 120VIBTR-01. www.Adams.com
    [21]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002
    [22]Unigraphics Solutions Inc. UG运动分析培训教程[M].北京:清华大学出版社,2002
    [23]倪振华.振动力学[M].西安:西安交通大学出版社,2005
    [24]范文慧,熊光楞,曾庆良等.虚拟样机技术的研究[M].北京:清华大学国家CIMS工程技术研究中心,2004
    [25]郑建容.ADAMS——虚拟样机技术入门与提高[M].北京:机械工业出版社,2001
    [26]姚天任,江太辉.数字信号处理[M].武汉:华中科技大学出版社,2001
    [27]成刚,张一军,孙勇等.光电稳瞄平台用减振器[J].应用光学.2002,23(3):38-41
    [28]成刚.光电稳定跟踪的机械结构分析与研究[硕士学位论文].西安:西安电子科技大学,2000
    [29]王连明.机载光电平台的稳定与跟踪伺服控制技术研究[博士学位论文].长春:长春光学精密机械与物理研究所,2002
    [30]孙兴,高虹,尤凤鸣.无角位移减振器静态精度检测方法[J].电子测量与仪器学报.2006,20:152-156
    [31]丁文镜.减振理论[M].北京:清华大学出版社,1998
    [32]严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社,1985
    [33]Eugene I. Rivin Passive vibration isolation [M]. The American Society of Mechanical Engineers,2003
    [34]石则昌,刘深厚.机构精确度[M].北京:高等教育出版社,1995
    [35]D. Wulich, N. S. Kopeika, etc. Image resolution limits resulting from mechanical vibrations [J]. Optical engineering.1987,26(6):529-533
    [36]黄真.空间机构学[M].北京:机械工业出版社,1991
    [37]马履中,尹小琴等.多维减振平台主体机构的分析研究[J].江苏大学学报.2004,25(4):125-129
    [38]马履中,杨启志等.仿橡胶多自由度弹性阻尼减振装置研究[J].机械工程学报.2004,40(1):41-46
    [39]成刚,张一军.光电稳瞄平台用减振器[J].应用光学.2002,23(3):38-41
    [40]赵会光,马兴瑞,冯纪生.整星隔振技术若干问题的探讨[J].航天器工程.2001,10(3):30-37
    [41]赵鹏,杨牧,张葆.航空机载光学设备的振动分析及座架减震器的设计[J].光学精密工程.1997,5(3):58-63
    [42]Steve Hadden, Torey Davis, Paul Buchele, et al. Heavy load vibration isolation system for airborne payloads[J].SPIE.2001,4332:171-182
    [43]张葆.无入机电视侦察系统减振装置的分析与设计[J].光学精密工程.1996,4(1):59-61
    [44]生建友.机载电子设备的防振动抗冲击设计[J].电子机械工程.1999,78(2):44-47
    [45]方同,薛璞.振动理论及应用[M].西安:西北工业大学出版社,2002
    [46]Julian R. Jarosh, Gregory S. Agnes, Gregory G. Karahalis. Adaptive Control for Payload Launch Vibration Isolation [J]. SPIE.2001,4331:162-174
    [47]Conor D. Johnson, Paul S. Wilke. The whole-spacecraft vibration isolation system[C]. In:AIAA Space Technology Conference,1999, Albuquerque:1-11
    [48]王佳民,裴听国.惯性平台减振系统动力学分析及其参数设计[J].战术导弹控制技术.2003,4:13-17
    [49]司俊珊.机载电子设备振动分析[J].电子对抗技术.2000,15(6):33-37
    [50]李强.隔振系统的参数优化设计[硕士学位论文].南京:南京航空航天大学,2005
    [51]檀润华,陈鹰.路面随机激励下的汽车振动仿真[J].振动测试与诊断.2000,20(2):119-121
    [52]郑翔,黄一,吕俊芳.机载光电跟瞄平台三轴环架模型的建立[J].飞机设计.2003,4:88-92
    [53]张启先.空间机构的分析与综合(上册)[M].北京:机械工业出版社,1984
    [54]John F.O'Brien, Gregory W. Neat, James W. Melody, Robert J. Calvet. Six-axis vibration isolation technology applied to space borne interferometers. SPIE.1995,2477:9-19
    [55]Zahidul H. Rahman, John T. Spanos and Robert A.Laskin. Multi-axis vibration isolation, suppress and steering system for space observational applications[J]. SPIE.1998,3351:73-81
    [56]Eric Flint, Michael Evert, Eric Anderson, Patrick Flannery. Active/Passive Counter-Force Vibration Control and Isolation Systems[C]. In:Proceedings of the IEEE Aerospace Conference,2000
    [57]Joseph R. Maly, Roger M. Glaese. Damping SOFIA:Passive and Active Damping for the Stratospheric Observatory for Infrared Astronomy[C]. In:Proceedings of SPIE Conference on Smart Structures and Materials,2001
    [57]Richard E. Stamper, Lung-Wen Tsai, Gregory C. Walsh. Optimization of a Three DOF Translational Platform for Well-Conditioned Workspace [J].SPIE.2001,3521:66-71
    [58]Chi Huang Dang. vibration isolator with parallelogram mechanism[P]. United States Patent, US6419203B1,2002.
    [59]John F. Flory, Morristwn. Parallel platform linkages for shock isolation systems[P]. United States Patent, US3419238,1968.
    [60]王庭树.机器人运动学及动力学[M].西安:西安电子科技大学出版社,1990
    [61]焦国太.机器人位姿误差的分析与综合[硕士学位论文].北京:北京工业大学,2002
    [62]Lung-Wen Tsai, Gregory C.Walsh, Richard E. Stamper. Kinematics of a novel three of translational platform[C]. Proceeding of the 1996 IEEEE International conference on robotics and automation,1996:3446-3451
    [63]朱健勇.机载电台隔振系统技术分析[J].电讯技术.2001,1:22-25
    [64]James D Cronkhite. The NASA/INDUSTRY Design Analysis Methods for Vibrations (DAMVIBS) Program-Bell Helicopter Textron Accomplishments[J].AIAA-92-2201-CP,1113-1125
    [65]R.Gabel, P.Lang, D. Reed. The NASA/INDUSTRY Design Analysis Methods for Vibrations (DAMVIBS) Program-Boeing Helicopter Airframe Finite Element Modeling[J]. AIAA-92-2202-CP,1126-1137
    [66]Mostafa Toossi, Richard Weisenburger, Mostafa Hashemi-Kia. The NASA/INDUSTRY Design Analysis Methods for Vibrations (DAMVIBS) Program-McDonnell Douglas Helicopter Company Achievements[J].AIAA-92-2203-CP,1138-1148
    [67]William J. Twomet. The NASA/INDUSTRY Design Analysis Methods for Vibrations (DAMVIBS) Program-Sikosky Aircraft-Advances toward Interacting with the Airframe Design Process[J]. AIAA-92-2204-CP,1149-1158
    [68]王平安,王杰贤,刘跟收.精密仪器工作台的隔振设计[J].西安建筑科技大学学报.1999,31(3):26-33
    [69]管荣根,张瑞宏,顾玲.机械隔振装置的振动特性分析[J].机械设计与制造工程.2002,31(4):61-65
    [70]郭兴旺,邹家祥.对机械振动系统的六种动态响应分析方法的评述[J].振动与冲击.1996,15(2):126-131
    [71]赵会光,马兴瑞,冯纪生.航天器连接结构减振特性的功率流分析[J].宇航学报.2001,22(6):211-216
    [72]Keith B. doyle, Vincent J. Cerrati, Steven E. Forman, John A. Sultana. Optimal Structural Design of the Airborne Infrared Imager. SPIE.1997,2542:11-22
    [73]翟晶.汽车动力总成悬置系统隔振性能分析与优化设计[硕士学位论文].南京:南京航空航天大学,2005
    [74]张景绘,王超.工程随机振动理论[M].西安:西安交通大学出版社,1988
    [75]纽兰[英].随机振动与谱分析概论[M].北京:机械工业出版社,1980
    [76]金斯伯格[美].机械与结构振动一理论与应用[M].北京:中国宇航出版社,2005
    [77]童忠钫,俞可龙.机械振动学(随机振动)[M].杭州:浙江大学出版社,1992
    [78]庄表中,陈乃立.随机振动的理论及实例分析M].北京:地震出版社,1985
    [79]陈立平,张云清,任卫群,覃刚等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005
    [80]T. Tupper Hyde and L. Porter Davis. Optimization of multi-axis passive isolation systems [81] SPIE.2000,3327:399-410
    [82]Kevin C. Poulin, Rimas Vaicaitis. Vibrations of Stiffened Composite Panels with Smart Materials
    [83]Journal of Vibration and Acoustics.2004,126:370-379
    [84]国防科学技术工业委员会.军用设备环境试验方法——振动试验[M].GJB150.16-86,1987.1.1
    [85]方益奇.两自由度闭链机构的运动学动力学分析与机构特性研究[硕士学位论文].西安:西安电子科技大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700