商用车驾驶室悬置系统隔振特性与优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,国内商用车发展迅速,产量和销量逐年增加。与此同时,市场对商用车的性能尤其是舒适性也有了更高的要求。由于商用车行驶工况复杂,长途运输中驾驶时间长,驾驶员容易疲劳,会对其健康产生不良的影响,甚至可能由疲劳引发交通事故。因此提高商用车的舒适性已成为国内外汽车行业研究的一个热点问题。国内对商用隔振性能的研究大部分集中在悬架系统和动力总成悬置系统,而对驾驶室悬置系统的研究却不多。由于驾驶室悬置系统能够同时衰减动力总成和路面产生的激励,因此对驾驶室悬置系统进行优化匹配能够有效降低驾驶室内的振动。
     本文围绕驾驶室悬置系统的振动模态、振动传递特性和隔振能力展开研究。通过ADAMS软件建立了驾驶室悬置系统模型和整车多体动力学模型。采用有限元和多体动力学结合的方法,分析了驾驶室悬置系统的振动模态,振动响应特性,整车环境下驾驶室的振动响应和驾驶室悬置系统的隔振特性,以及参数变化对驾驶室内振动响应的影响。以提升驾驶室悬置元件的隔振性能为目标,对驾驶室悬置系统进行了优化设计,获得了良好的效果。
     模态是影响驾驶室悬置系统隔振特性的关键因素。如果驾驶室悬置系统模态频率和振型分布不合理,会影响驾驶室悬置系统的隔振效果,甚至会增加驾驶室内的振动。本文通过ADAMS软件建立驾驶室悬置系统模型并对其模态进行研究。为了便于研究,在建模过程中将驾驶室简化为刚体。由于驾驶室体积较大,转动惯量参数难以获取,本文采用频响函数法对其转动惯量进行测量,并通过方箱转动惯量测量试验验证了该方法的有效性。在建模过程中考虑了橡胶衬套的影响,通过有限元方法计算了衬套的静刚度并应用于模型。为了保证驾驶室悬置系统模态分析的准确性,对驾驶室悬置系统整体刚度进行了仿真,并通过整体刚度试验进行了验证。在此基础上,对驾驶室悬置系统有阻尼模态和无阻尼模态进行了分析,并通过试验验证了分析结果的正确性。采用了复模态理论分析了驾驶室悬置系统有阻尼和模态频率与无阻尼模态频率不一致的现象。通过动态分析方法研究了驾驶室悬置系统激振力和阻尼变化对复模态频率的影响。
     为了研究驾驶室悬置系统在中低频激励下的响应特性,建立了驾驶室悬置系统刚弹耦合模型。采用有限元法建立了白车身模型,分析了其弹性体模态并与试验结果对比,验证了模型的准确性。将有限元模型导入ADAMS中替换原有刚体驾驶室,形成驾驶室悬置系统刚弹耦合模型。采用猝发随机方式对驾驶室悬置系统进行激励,研究驾驶室悬置系统的振动响应特性。分析了响应点加速度功率谱密度曲线峰值频率与模态频率的关系,并进行了试验验证。通过试验设计的方法,研究了驾驶室悬置系统参数对振动响应的灵敏度,研究结果表明驾驶室悬置系统的阻尼和刚度是影响驾驶室内振动响应的主要因素。
     驾驶室的振动与整车振动密不可分,建立整车多体动力学模型,可以分析路面和动力总成激励对驾驶室振动的影响,还可以分析整车工况下驾驶室悬置系统的隔振能力。因此在驾驶室悬置系统模型的基础上建立了整车多体动力学模型。模型主要包括驾驶室悬置系统、动力总成及其悬置系统、车架、悬架、车桥、转向系统和轮胎等。在建模过程中,分析了六缸发动机激励特点及动力总成悬置系统模态;建立了车架有限元模型,分析了车架弹性体模态;研究了钢板弹簧建模方法,采用铁木辛柯梁方法建立了悬架的多片钢板弹簧模型,并通过虚拟吊耳方法解决平衡悬架中车桥与板簧接触问题。
     在稳定车速工况和定置定转速工况下,通过整车模型对驾驶室悬置系统进行振动仿真分析。根据国家标准《机械振动道路路面谱测量数据报告》(GB/T 7031? 2005)建立了标准B级路面模型。采用多种车速在该路面上进行仿真,分析了不同车速下车桥、动力总成悬置、驾驶员座椅和座椅滑轨位置加速度均方根值变化规律,通过对比试验结果,验证了模型的正确性;对滑轨位置加速度振动响应进行频域分析,分析了响应峰值频率与模态频率间的关系;对驾驶室悬置系统隔振能力与车速的关系进行了分析,结果表明驾驶室悬置隔振能力随车速的增加而增强。在定置定转速工况中,分析了不同发动机转速下,动力总成悬置和座椅滑轨位置的加速度均方根值的变化规律,并与试验结果进行了对比验证;对滑轨位置加速度功率谱密度曲线进行了分析,结果表明该工况下驾驶室内激励主要由发动机3阶激励引起;对定置定转速工况下驾驶室悬置系统隔振能力分析表明,驾驶室悬置系统的隔振能力随发动机转速的增加而增强。为了研究参数变化对驾驶室内振动的影响,分别在稳定车速和定置定转速两种工况下,改变悬架刚度、前悬架阻尼、驾驶室悬置刚度及阻尼、动力总成悬置刚度,分析各参数变化对座椅滑轨位置加速度均方根值变化的影响规律。结果表明,悬架刚度、驾驶室悬置刚度及阻尼、动力总成悬置刚度的增加会增大驾驶室内振动,悬架阻尼的增加会减小驾驶室内的振动,并通过试验设计方法定量的分析了各参数变化对驾驶室内振动的影响程度。
     整车分析结果表明,优化驾驶室悬置系统刚度和阻尼参数是提高驾驶室舒适性的有效方法。因此在对驾驶室悬置系统优化时,以驾驶室悬置系统的刚度、阻尼和元件安装位置为优化变量,以驾驶室悬置系统各向振动传递率加权求和为优化目标,采用遗传算法进行优化。针对螺旋弹簧式悬置系统优化效果有限这一问题,提出了将螺旋弹簧替换为空气弹簧以及增加横向阻尼器的改进方案。采用了分段函数法对空气弹簧的特性曲线进行设计,这种方法能够较为直观的反映空气弹簧在各工作区间内的刚度特性,便于针对各工作段特点进行设计和优化。同时对驾驶室悬置系统阻尼特性曲线也进行了设计。通过优化分析,驾驶室悬置系统的隔振能力有了较大的提升,座椅滑轨位置垂向和横向振动有了较大幅度的下降。平顺性分析结果表明,各车速下驾驶室内加权加速度均方根值降低了29.18%~34.87%,证明了改进措施的有效性。
Recently, the domestic commercial vehicle went through a very fast development accompanied by the yearly increasing production and sales record. Meanwhile, there are more requirements on the performances of the commercial vehicles especially on the comfortableness. Because of the complicated traffic environments and the long driving time, drives are more easily to have fatigue, which is very bad for their health and even worse directly cause the traffic accident. Therefore, how to enhance the comfortableness of the commercial vehicles has become a hot issue to the automotive industry. The vibration on commercial vehicles mainly comes from road and the power train, as a result of which, most of the current research lies on the improvement and design optimization of the suspension and power train, while less effort has been put on the study of cab suspension system. Cab suspension system can effectively absorb the vibration generated from the road and power train, thus it is a better way to downsize the vibration in the cab if properly improved and optimized.
     This paper starts with study on the vibration modal, transfer characteristics, and the vibration isolation of the cab suspension. Vibration models of cab suspension and whole vehicle were built through ADAMS. Finite element and multi-body dynamics were collaborated into the analysis of the vibration modal and transfer characteristics of the cab suspension system, the response and the isolation feature of cab suspension based on the whole vehicle, and the influence of variable parameters to the vibration response. To increase the isolation ability of the suspension, improvements and optimization design were proposed and an encouraging result was obtained.
     The modal of the cab suspension system is the key point in the vibration. Unsuitable distribution of the modal frequencies and modal shapes will result a bad isolation or even worse could strengthen the vibration on the cab. This paper studied the vibration modal though the ADAMS model of the suspension system. The cab was assumed to be a rigid body for simplification. Because of the bulky volume, it is hard to measure the moment of inertia of the cab using traditional method. Thus, a method of frequency recognition was used in the measurement, which was verified its validity by square box modal test afterward. During modeling, the influence of rubber bushing was taken into account through obtaining the static stiffness of the bushing by finite element method. The overall stiffness of the suspension system was also simulated and tested through the whole stiffness of cab suspension test, for the accuracy of the modal analysis of the suspension system. The undamped and damped model of the suspension were analyzed and verified by modal analyzing and bench test respectively. Using complex modal analysis, the inconsistency of frequency for damped and undamped system was studied. Dynamic analysis was implemented in the analysis of the impacts from excitation and damping to the complex vibration mode.
     In order to study the response under medium and low frequency excitation, the cab suspension rigid-elastic coupling model was established. Based on the finite element method, the BIW(body-in-white) model was built. The vibration modal of the flexible bodies was analyzed and the results were compared with those from the test-rig for its accuracy. The finite element model was finally introduced into ADAMS and to replace the former built rigid body model. Therefore, a rigid-elastic coupling cab suspension system model was built. Burst random method was implemented to excite the cab suspension system to study the its vibration response. The relationship between the acceleration power spectral density curve peak frequency and modal on the response points were analyzed and verified by the associated bench test. Through the design of experiments method, the sensitivity of vibration response to the parameters of the cab suspension system was analyzed. The results show that the damping and stiffness are the two main factors for the vibration response.
     The vibration of the cab and the whole vehicle are closely related. The cab suspension system model based on the whole vehicle will help analyzing the vibration of the cab excited from the road and power train and the isolating ability of the cab suspension system. The multi-body dynamic model of the vehicle was built based on the cab suspension system. This model includes the cab and its suspension, the power train and its mount, the frame, the suspension, the vehicle-bridge, the steering system and the tires, etc. During modeling, the excitation characteristics of the 6-cylinder engine and the vibration modal of the power train mount were analyzed. Finite element model of the frame was built to analysis its modal. The modeling method of leaf spring was studied. Timoshenko beam method was used to build up the model of a multi-leaf spring. Virtual shackle was used to solve the contact problems between the leaf spring and the vehicle-bridge of the tandem Suspension
     Under stable speed and stable engine revolution, the vibration analysis was carried out on the vehicle-based cab suspension system. According to the national standard (GB/T7031-2005), standard B level road model was built. Simulations were carried out fro this road based on different vehicle speed. The changing pattern of the acceleration RMS(Root Mean Square)value for the vehicle-bridge, power train mount, the driver’s seat, and the seat slide were analyzed under different vehicle speed. The acceleration RMS values were also compared with the number from the test to verify the validity of the model. The frequency response of the acceleration on the seat slide was studied to analyze the relationship between the peak frequency and the vibration modal. The relation of the vibration isolation ability of the cab suspension and the vehicle speed was also analyzed, in which the result shows the vibration isolation ability increases as the vehicle speed. Under stable engine revolution, the changing pattern of the acceleration RMS value of the acceleration for the suspension of the power train and the seat slide were analyzed under different engine revolution. Still the acceleration RMS values were compared with the number from the test. The study of the acceleration power spectral density curve shows that the excitation of the cab comes from the third order of the engine excitations. To study the impacts of the vehicle parameter to the cab vibration, the stiffness and damping of the suspension, stiffness and damping of the cab suspension, and the stiffness of the power train mount were changed according to these two working conditions, to find the changing pattern of the acceleration RMS value of the seat slide in terms of the changing of above parameters. The result shows that, the increasing of the stiffness of suspension, the stiffness and damping of cab suspension and the stiffness of the power train will enhance the vibration of the cab, while the increasing of the damping of the suspension will reduce the vibration of the cab. Design of experiments method was taken to quantitatively analyze the impacts of changing these parameters.
     According to the vibration analyzing results of the vehicle, improving the stiffness and damping of cab suspension is an effective way of enhance the comfortableness. Therefore, when doing the optimization of the cab suspension system, the stiffness and damping of the cab suspension as well as the position were taken as the optimization variables, while the sum of cab suspension vibration transmissibility was the optimization target. The genetic algorithm was used as the optimization method. The optimization results show that there only limited effectiveness on coil spring. So the improvement plans were proposed to replace the coil spring with an air spring and setting transverse damper. According to the plans, the original cab suspension was modified. The piecewise function method was used in fitting the characteristic of the air spring. This method can intuitionally reflect the stiffness characteristic of the air spring within its working area, thus is good for the design and optimization toward different working stage. Meanwhile, the damping characteristic curve of the cab suspension was also designed. Based on the optimization of the modified suspension, there was a great enhancement on the vibration isolation. The lateral and vertical vibration of the seat sliding decreased a lot. Though the ride comfort analysis, the weighted acceleration RMS value inside the cab was reduced to 29.18%~34.87%. The result shows the optimization and the modification were effective and correct.
引文
[1]陈敏.中国商用车产业发展模式研究[D].武汉:武汉理工大学经济学院,2010.
    [2]林逸,马天飞,姚为民,张建伟.汽车NVH特性研究综述[J].汽车工程, 2002,24(3): 177-186.
    [3]司康.日新月异的国际商用车技术[J].汽车与配件, 2006, 48: 18-21.
    [4] Darris L. White. Parametric Study of Leveling System Characteristics on Roll Stability of Trailing Arm Air Suspension for Heavy Trucks[C]. SAE Paper, 2000-01-3480.
    [5] Jemei Chang. The Application of Weibull Regression Techniques to Liteflex? Composite Leaf Springs[C]. SAE Paper, 901037.
    [6] I. Rajendran, S. Vijayarangan. Optimal design of a composite leaf spring using genetic algorithms[J]. Computers & Structures, 2001, 79(11): 1121-1129.
    [7] Mahmood M. Shokrieh, Davood Rezaei. Analysis and optimization of a composite leaf spring[J]. Composite Structures, 2003, 60(3): 317-325.
    [8] G. Thilagavathi, E. Pradeep, T. Kannaian, L. Sasikala. Development of natural fiber nonwovens for application as car interiors for noise control[J]. Journal of Industrial Textiles, 2010, 39(3): 267-278.
    [9] Rayya Hassan, Kerry McManus. Heavy Vehicle Ride and Driver Comfort[C]. SAE Paper, 2001-01-0386.
    [10]张义民,陈塑寰,刘巧伶.奥迪100轿车后螺旋弹簧的可靠性设计[J].汽车工程, 1995, 17(3): 164-168.
    [11]杨峰.汽车悬架螺旋弹簧的优化设计及CAE研究[D].成都:西南交通大学机械电子工程学院, 2009.
    [12]朱德库,刘晓杰,马平.空气弹簧及其控制系统[M].济南:山东科学技术出版社, 1989.
    [13]周永清,朱思洪.带附加空气室空气弹簧动刚度试验研究[J].机械强度, 2006, 28 1: 13-15.
    [14]张建振.空气弹簧活塞形状对悬架特性的影响[D].长春:吉林大学汽车工程学院,2005.
    [15]李仲兴,李美,牛光,周孔亢.半主动悬架空气弹簧的动态特性研究[J].汽车工程,2010 , 32 (3): 244-247.
    [16]郑明军,王海花,王渊.空气弹簧弹性特性理论分析与试验研究[J].噪声与振动控制, 2009, 3: 43-46.
    [17]盛英,赵建文,仇原鹰.空气弹簧参数对减振性能的影响[J]. 2006, 3: 22-25.
    [18]李伟伟.某商用车发动机橡胶悬置有限元分析与研究[D].长春:吉林大学汽车工程学院,2011.
    [19]张继伟.液压悬置橡胶主簧动特性有限元分析[D].长春:吉林大学汽车工程学院,2007.
    [20] .M Clark. Hydraulic engine mount isolation[C]. SAE Paper, 851650.
    [21] Masaru Sugino, Eiichi Abe. Optimum application for hydroelastic engine mount[C]. SAE Paper, 861412.
    [22]范让林,吕振华,冯振东,张建文.惯性通道-解耦膜式液压悬置动特性分析[J].汽车工程, 1997, 19(4): 226-233.
    [23]范让林,吕振华,刘立,朱茂桃.液阻悬置节流盘的作用机理[J].工程力学, 2009, 26(3): 229-233.
    [24] A. G. Thompson, CE.M.Pearce. Performance index for a preview active suspension applied to a quarter-car model[J]. Vehicle System Dynamics, 2001, 35(1): 55-66.
    [25] I .Youn, A .Hac. Semi-active suspension with adaptive capability[J]. Journal of sound and vibration, 1995, 180(3): 475-492.
    [26] David J. Code. Fundermental issues in suspension design for heavy road vehicles[J]. Vehicle System Dynamics, 2001, 35(4-5):319-360.
    [27] M. B. A. Abdelhady. Aerodynamic Effects on Ride Comfort and Road Holding of Actively Suspended Vehicles[C]. SAE paper, 2002-01-2205.
    [28] C. Trangsrud, E. H. Law, I. Janajreh. Ride Dynamics and Pavement Loading of Tractor Semi-Trailers on Randomly Rough Roads[C]. SAE paper, 2004-01-2622.
    [29]徐中明,张志飞,贺岩松,藤冈健彦.重型卡车驾驶室乘坐舒适性研究[J].中国机械工程, 2004, 15(7): 1584-1586.
    [30]金银花.装有平衡悬架的三轴重型车振动性能及对路面损伤的研究[D].长春:吉林大学汽车工程学院, 2009.
    [31] Daniel E.Williams, Wassim M.Haddad. Active suspension control to improve vehicle ride and handling[J]. Vehicle System Dynamics, 1997, 28(1): 1-24.
    [32]秦玉英.汽车行驶平顺性建模与仿真的新方法研究及应用[D].长春:吉林大学汽车工程学院, 2009.
    [33]张越今,宋健,张云清,任卫群.多体系统动力学分析的两大软件—ADAMS和DADS[J].汽车技术, 1997, (3): 16-20.
    [34] Andrew S. Elliott, Gregory Wheeler. Validation of ADAMS? Models of Two USMC Heavy Logistic Vehicle Design Variants[C]. SAE Paper, 2001-01-2734.
    [35] Dave Anderson, Greg Schade, Stacey Hamill, Patrick O’Heron. Development of a Multi-Body Dynamic Model of a Tractor-Semitrailer for Ride Quality Prediction[C]. SAE Paper, 2001-01-2764.
    [36] Pardeshi Mahesh, Shashikant Wali, Sushil Kale. Dynamic Analysis of Cabin Tilting System of Heavy Trucks Using ADAMS-View for Development of a Software Interface for Optimization[C]. SAE Paper, 2008-01-2683.
    [37]赵礼东.重型汽车多轴平衡悬架运动分析及仿真[D].武汉:武汉理工大学汽车工程学院, 2004.
    [38]任卫群,杨勇,蒋鸣,丁小苏,何力.采用多体系统动力学的平衡悬架牵引车平顺性研究[J].汽车工程, 2004, 26(3): 331-335.
    [39]周水清.基于虚拟样机的汽车驾驶室悬置系统仿真分析[D].武汉:武汉理工大学汽车工程学院,2005.
    [40]吴碧磊,秦民,李幼德,程超,王新宇.载货汽车驾驶室乘坐舒适性研究[J].汽车工程, 2006, 28(12): 1057-1061.
    [41]李瑾宁.参数匹配及优化对某半挂牵引车平顺性的影响[D].上海:上海交通大学机械与动力工程学院, 2007.
    [42]吴碧磊.重型汽车动力学性能仿真研究与优化设计[D].长春:吉林大学汽车工程学院, 2008.
    [43] William J. Hicks, Thomas, A. McKenzie, Richard L. Conaway.A New Generation of Vibration Isolation for the Conventional Truck Cab[C]. SAE Paper, 2000-01-3515.
    [44] Alexander Gross, Roy Van Wynsberghe. Development of a 4-point-Air Cab Suspension System for Conventional Heavy Trucks[C]. SAE Paper, 2001-01-2708.
    [45] Marcio Moreno Mota, Antonio D. Juliano, Ricardo Guerra. Cab Suspensions for Trucks: Development Process and Available Tools [C]. SAE Paper, 2001-01-2765.
    [46] C. H. Ward. The Application of a New Cab Mounting to Address Cab Shake on the 2003 Chevrolet Kodiak and GMC TopKick[C]. SAE Paper, 2002-01-3102.
    [47] Glen Prater, Jr., Ali M. Shahhosseini, Matthew B. State,Vickie T. Furman, Musa Azzouz. Use of FEA Concept Models to Develop Light-Truck Cab Architectures with Reduced Weight and Enhanced NVH Characteristics [C]. SAE Paper, 2002-01-0369.
    [48] Paras Jain. Design and Analysis of a Tractor-Trailer Cabin Suspension[C]. SAE Paper, 2007-26-047.
    [49] Pavan S. Sindgikar, Narayan D. Jadhav, K. Gopalakrishna. Design Of Cabin Suspension Characteristics Of Heavy Commercial Vehicle[C]. SAE Paper, 2008-01-0265.
    [50] A. M. A. Soliman. Improvement of the Truck Ride Comfort Via Cab Suspension[C]. SAE Paper, 2008-01-0265.
    [51] Alaor J. Vieira Neto, Claudio G. Fernandes, Rafael Pedroso, Eduardo Vianna. Trucks Ride Simulation-Tuning Optimization [C]. SAE Paper, 2010-36-0264.
    [52]王有智,王仕达,殷承良,吴兰.悬置姿态对驾驶室振动的影响[J].二汽科技,1992, 2: 1-5.
    [53]王有智,王仕达,艾维全.载重汽车驾驶室悬置设计[J].汽车科技, 1993, 5: 6-10.
    [54]刘方文.某重型卡车驾驶室悬置匹配分析[D].长春:吉林大学汽车工程学院, 2005.
    [55]周水清.基于虚拟样机的汽车驾驶室悬置系统仿真分析[D].武汉:武汉理工大学汽车工程学院, 2005.
    [56]王新宇.重型卡车驾驶室悬置仿真分析与优化[D].长春:吉林大学汽车工程学院, 2011.
    [57]殷政.重型货车驾驶室半主动悬置模糊控制的仿真研究[D].武汉:武汉理工大学汽车工程学院, 2008.
    [58]薛辉辉.商用车驾驶室空气悬置系统仿真分析与试验研究[D].长春:吉林大学汽车工程学院, 2009.
    [59]朱祝英,马力,张宇龙,李媛.考虑整车的刚柔多体全浮式驾驶室悬置系统参数优化设计[J].噪声与振动控制, 2009, 4: 91-95.
    [60]张志伟.商用车驾驶室悬置系统动力学仿真分析与试验研究[D].长春:吉林大学汽车工程学院,2011.
    [61]张英会.弹簧手册[M].北京:机械工业出版社, 1997.
    [62] Toshio Hamano, Takahiro Nakamura, Hideto Enomoto, Naoshi Sato, Shinichi Nishizawa, Maiko Ikeda. Development of L-Shape Coil Spring to Reduce a Friction on the McPherson Strut Suspension System[C]. SAE Paper, 2001-01-0497.
    [63]雷镭,左曙光,杨宪武,吴旭东,王纪瑞.汽车悬架中凸形螺旋弹簧刚度计算与试验研究[J].机械设计, 2011,28(5):15-17.
    [64]姚伟,于学华,雷雨成.车用变刚度圆柱螺旋弹簧的逆向设计和刚度有限元分析[J].汽车科技, 2004, 6: 16-18.
    [65] Thanh Quoc Truong, Kyoung Kwan Ahn. A new type of semi-active hydraulic engine mount using controllable area of inertia track[J]. Journal of Sound and Vibration, 2009, 329(3): 247-260.
    [66] Raymond L. Straw. The Development of Isolation Mounts[C]. SAE Paper, 840781.
    [67] K.Adomatsu. Hydraulic Mount for Shock Isolation at Acceleration on FWD Cars[C]. SAE Paper, 891138.
    [68] Robert H. Marjoram. Pressurized Hydraulic Mounts for Improved Isolation of Vehicle Cabs[C]. SAE Paper, 852349.
    [69] Wallace C. Flower. Understanding Hydraulic Mounts for Improved Vehicle Noise[C]. SAE Paper, 850975.
    [70]熊云亮.全顺轻型客车动力总成液压悬置动特性研究[D].长春:吉林工业大学, 2000.
    [71] D.C.卡诺普,R.C.罗森堡.系统动力学-应用键合图方法[M].北京:机械工业出版社, 1985.
    [72]马辉.发动机电流变液悬置的隔振特性研究[D].长春:吉林大学汽车工程学院, 2008.
    [73]闵海涛.汽车动力总成悬置系统的动特性仿真与主动控制理论研究[D].长春:吉林大学汽车工程学院, 2004.
    [74] Michael Müller, Hans-Gerd Eckel, Markus Leibach,Wolfgang Bors. Reduction of Noise and Vibration in Vehicles by an Appropriate Engine Mount System and Active Absorbers[C]. SAE Paper, 960185.
    [75] M. S. Foumani, A. Khajepour, M. Durali. Application of Shape Memory Alloys to a New Adaptive Hydraulic Mount [C]. SAE Paper, 2002-01-2163.
    [76]王利荣,吕振华.汽车动力总成液阻型橡胶隔振器的研究发展[J].汽车工程, 2001, 23(5): 323-328.
    [77]王利荣,吕振华.橡胶隔振器有限元建模技术及静态弹性特性分析[J].汽车工程, 2002, 24(6): 480-485.
    [78]张艳国.轻型车驾驶室液压悬置的流固耦合有限元分析[D].长春:吉林大学汽车工程学院, 2011.
    [79]陈志勇.轻型车驾驶室液压悬置性能匹配研究[D].长春:吉林大学汽车工程学院, 2011.
    [80] John Lewis. Car spring[P].US Patent:No.4965, 1847-02-10.
    [81] William R Fee. Pneumatic spring[P]. US Patent: No. 19764,1858-03-30.
    [82] Alsop Gorge M. Carriage spring [P]. US Patent: No. 24184,1859-05-31.
    [83] Hoagland IW. Carriage spring [P]. US Patent: No. 32848,1861-07-16.
    [84] Gieck Hack. Ride on air:A history of air suspension[M]. Newyork: SAE Inc, 1999.
    [85] B.K. Chance. 1984 Continental Mark VII/Lincoln Continental Electronically -Controlled Air Suspension (EAS) System[C]. SAE Paper, 840342.
    [86] Bell Benjamin. Pneumatic spring[P]. US patent:No. 971583.
    [87] Katsuya Toyofuku, Chuuji Yamada, Toshiharu Kagawa, Toshinori Fujita. Study on dynamic characteristic analysis of air spring with auxiliary chamber[J]. JSAE Review, 1999, 20: 349-355.
    [88] Jon Bunne, Roger Jable. Air Suspension Factors in Driveline[C]. SAE Paper, 962207.
    [89] John Woodrootfe. Heavy Truck Suspension Dynamics: Methods for Evaluating Suspension Road Friendliness and Ride Quality[C]. SAE Paper, 962152.
    [90] Theo Meller. Self-Energizing Leveling Systems Their Progress in Development and Application [C]. SAE Paper, 1999-01-0042.
    [91] Takuya Yuasa, Tetsuya Sakai, Haruyuki Hosoya, Tatsuo Sakamoto, Mitsuji Matsui, Toshio Ohara. The Application of CAE in the Development of Air Suspension Beam [C]. SAE Paper, 973232.
    [92]郭孔辉.空气弹簧特性理论的初步研究(上)[J].汽车与拖拉机, 1959, 22: 6-11.
    [93]郭孔辉.空气弹簧特性理论的初步研究(中)[J].汽车与拖拉机, 1959, 23: 7-14.
    [94]郭孔辉.空气弹簧特性理论的初步研究(下)[J].汽车与拖拉机, 1959, 24:14-17.
    [95]长春汽车研究所悬架组.大客车的空气悬架[J].汽车技术, 1980, 6:12-24.
    [96]刘宏伟,庄德军,陈燕虹,林逸.空气弹簧非线性弹性特性有限元分析[J].农业机械学报, 2004, 35(5): 201-204.
    [97]周永清,朱思洪.带附加空气室空气弹簧动刚度试验研究[J].机械强度, 2006,1: 13-15.
    [98]姜莞,黄颖.帘线层参数对空气弹簧性能的灵敏度分析[J].机械强度,2011,33(1): 131-136.
    [99] LMS Test Lab. Rigid Body Modes Theory Documents, 2005.
    [100]严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社, 1985.
    [101]庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社, 2009.
    [102] C.H. Menq, B.D. Yang. Non-linear spring resistance and friction damping of frictional constraint having two-dimensional motion[J]. Journal of Sound and Vibration, 1998, 144(1): 127-143.
    [103]成大先.机械设计手册[M].北京:化学工业出版社, 2008.
    [104]倪金福,张阿舟.关于复模态理论的几个问题[J].振动与冲击, 1984, 1: 17-23.
    [105]吕振华,冯振东,方传流.粘性阻尼线性振动系统的复模态特征值问题的一种新的矩阵摄动分析解法[J].应用数学和力学, 1991, 12(8):719-728.
    [106]陆秋海,李德葆.模态理论的进展[J].力学进展, 1996, 26(4):464-472.
    [107]王海霞,汤文成. CJ6121GCHK型客车车身骨架有限元建模及结果分析方法研究[J].汽车工程, 2001, 23: 33-36.
    [108]刘文平.重型商用车驾驶室的模态分析与试验研究[D].长春:吉林大学汽车工程学院, 2007.
    [109] Sang Bum Hong, Nickolas Vlahopoulos. Application of a Hybrid Finite Element Formulation for Analyzing the Structure-Borne Noise in a Body-In-White[C]. SAE Paper, 2005-01-2421.
    [110]邬晴晖.车身点焊结构的有限元分析方法研究[J].机电工程技术, 2005, 34 (3): 60-62.
    [111]任露泉.试验设计及其优化[M].北京:科学出版社, 2009.
    [112]姚明.汽车发动机悬置系统设计[D].武汉:武汉理工大学汽车工程学院, 2007.
    [113]周昌水.汽车发动机悬置优化技术研究[D].重庆:重庆大学机械工程学院, 2006.
    [114] Carlos Cosme, Amir Ghasemi, Jimmy Gandevia. Application of Computer Aided Engineering in the Design of Heavy-Duty Truck Frames. SAE Paper, 1999-01-3760.
    [115] A. Costa Neto, L. C. Ferraro, V. L. Veissid, C. A. M.Freitas, M .A. Argentino, O. T. Perseguim, R. R. Ripoli. Comfort Study of a Medium Sized Truck Considering Frame Flexibility with the Use of ADAMS[C]. SAE Paper, 1999-01-3734.
    [116] Pengbo Wang, Chongliang Zhang, Yongquan Liu. Simulation and Design of Leaf Spring Characteristics[C]. SAE Paper, 2009-01-2897.
    [117]唐应时,柴天,和进军,苏嘉理,李恩报.基于接触摩擦的少片变截面钢板弹簧的刚度分析[J].中南大学学报(自然科学版), 2009, 40(3): 694-698.
    [118] P. Jayakumar, J. Alanoly, R. Johnson. Three-Link Leaf-Spring Model for Road Loads[C]. SAE Paper, 2005-01-0625.
    [119]赵礼东.重型汽车多轴平衡悬架运动分析及仿真[D].武汉:武汉理工大学汽车工程学院, 2007.
    [120]张越今,宋健,管迪华.滑板式钢板弹簧悬架变刚度计算方法的研究[J].汽车技术, 1997, 12: 1-4.
    [121]秦民,林逸,马铁利,朱启昕.应用ADAMS软件研究整车平顺性中几个问题的探讨[J].中国机械工程, 1997, 14(5):430-433.
    [122]陈军. MSC. ADAMS技术与工程分析实例[M].北京:中国水利水电出版社, 2008.
    [123] GB/T7031-2005.机械振动道路路面谱测量数据报告[S].中华人民共和国国家标准.
    [124]徐延海.随机路面谱的计算机模拟[J].农业机械学报, 2007, 38(1): 33-36.
    [125]陈龙,孙广田,江浩斌.基于AR模型的路面不平度激励模拟[J].农机化研究, 2007, 12: 27-29.
    [126]彭佳,何杰,李旭宏,陈一锴,丛颖.路面不平度随机激励时域模型的仿真比较与评价[J].解放军理工大学学报(自然科学版), 2009, 10(1): 77-82.
    [127] GB/T4970-2009.汽车平顺性试验方法[S].中华人民共和国国家标准.
    [128]黄平.最优化理论与方法[M].北京:清华大学出版社, 2009.
    [129]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社, 2002.
    [130]董学锋.膜片空气弹簧的设计计算[J].汽车技术1990, 3: 4-9.
    [131]姜立标.载货汽车电控空气悬架的匹配设计与控制研究[D].长春:吉林大学汽车工程学院, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700