全地形车振动及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全地形车是近几年兴起的集休闲、竞技、娱乐为一体的实用型车辆,且其军用潜力巨大。随着人们生活水平的提高,对全地形车的使用性能要求也越来越高。全地形车的整车振动水平是其重要的性能指标,直接影响乘员舒适、驾驶安全、车架等部件的强度等,是全地形车重要的产品品质因素之一。目前,国产全地形车整车振动水平与国外产品相比还有较大差距。本文针对全地形车振动及其控制的关键技术问题展开深入系统研究,具体包括以下几个方面的工作:
     ①深入分析了ISO2631等相关振动标准,并结合全地形车自身振动特点,在国内首次系统的提出了基于时域法和频域法的全地形车整车振动评价方法及道路试验方法,以手把、坐垫及脚踏处加权加速度振级来评价驾驶员所受振动,以前后货架处加速度振级评价货架或平台处的振动。基于此方法,搭建了硬件测试系统,基于IMC FAMOS平台开发了软件分析系统,并针对多款全地形车进行了实车振动道路试验评价测试与分析。结果表明,时域法和频域法的结果相差很小,都可准确评价全地形车的振动。时域法思路清晰,计算速度更快,本文推荐使用时域法进行评价。
     ②分析了多款全地形车车体结构动态特性,采用解析法和试验法分析了其车架结构动态特性,试验结果验证了所建立的车架有限元模型的正确性;在对车架挂发动机结构动态特性分析时,以有限元分析的基本原理为基础,找出了影响解析法结果的参数;结合简化模拟仿真分析结果,创造性的提出了将发动机简化为相同质心、质量及转动惯量的长方体,进而建立车架挂发动机有限元模型的新方法。试验法和解析法的结果对比表明,所提出的发动机简化方法简便可行,可在产品设计和改型阶段就能了解车架挂发动机结构的动态特性。以此方法改进了两款量产全地形车车体动特性,从车架及车架挂发动机结构动态特性的改进角度出发,分别对其车架的结构进行了改进,改进后的分析结果表明,所提出的改进措施均可行且易实施。
     ③分析了发动机对全地形车振动的影响及其与车架的合理匹配。首先分析了车架挂发动机后发动机对车架的动态特性影响,结果表明,车架挂发动机后,后三阶自由频率振型发生了变化,但关心的前三阶频率均有所提高。进行了发动机在车架上的位置匹配分析,左、右、前、后平动对车架挂发动机动态特性影响分析结果表明,发动机对车架挂发动机的结构动特性有重要影响。
     ④将形状优化方法应用到全地形车结构动态特性分析中。在国内首次采用了形状优化方法,以发动机安装位置和俯仰角度为变量对车架挂发动机的结构动态特性进行优化。优化结果表明,在保障其它几阶频率变化较小的情况下,优化后车架挂发动机的一阶模态频率有大幅的提高,有利于整车振动的控制。
     ⑤建立了全地形车悬置系统刚体动力学模型,分析了其悬置系统固有频率及各个方向能量解耦情况。以各阶模态能量百分比占优方向上的能量解耦率最大为目标函数,四个悬置件的三向刚度为优化变量,采用模拟退火算法对悬置系统进行了能量解耦优化。结果表明,优化后Z向解耦率获得了大幅的提高,非常有利于全地形车整车的振动控制。
     ⑥运用多体动力学软件ADAMS建立了包含柔性车架、前后悬架、转向系、轮胎和人体的全地形车刚柔耦合多体动力学模型。采用谐波叠加法生成了ADAMS/View格式的B级随机路面谱文件,并在ADAMS中施加了发动机激振力和激振力矩,从动力学仿真的角度分析了全地形车整车振动,为后续控制策略研究提供基础。
     ⑦基于第5章建立的全地形车多体动力学模型,利用MATLAB/Simulink建立了包含天棚阻尼控制、模糊控制和模糊PID控制的悬架控制联合仿真系统模型。并在此基础上,分析了三种悬架控制策略效果。结果表明,模糊PID控制效果最佳,而且稳定性好,具有较强的鲁棒性。
     最后,对本文的研究工作进行了总结,并对下一步的研究进行了展望。
All-terrain vehicle (ATV) is a practical mechanical equipment developed in recent years. The vehicle has integrated the functions of entertainment and sport, and has enormous military potential. With the development of the living standard of the people, the requirement for ATV service performance is getting higher and higher. The vibration levels is an important performance indicators and quality factor of ATV which also has a direct bearing on its occupant comfort, driving dafety, the strength of frame and other components and so on. At present, the vibration of domestic ATV and foreign products has bigger difference. This paper carries out research on the key technique of evaluating and controlling the vibration of the entire vehicle. The research work involves several aspects as follows:
     ①Considering the characteristic of ATV vibration, the methods about evaluating the ATV vibration in frequency domain and time domain and road test are proposed through deep analysis of ISO2631. The weighted vibration level at handlebar, cushion and treading is used to evaluate the vibration of the driver, while the vibration level at front and rear luggage carrier is used to evaluate the vibration of the platform. The system's hardware is set up based on this method and the software is developed based on IMC FAMOS. Vibration comfort of two vehicles is tested and analyzed. Analysis results demonstrate that both time-domain method and frequency-domain method are exact to evaluate the vibration of the whole vehicle. The time-domain method is characterized by speedy in computation and simple operation, and is suggested to use.
     ②The dynamic characteristics of ATV frame are analyzed by analytical and experimental methods. The results prove that the finite element model is reliable. The dynamic characteristics of ATV frame with a mounted engine are analyzed by FEM to find out the parameters that affect the result of analytical method. Incorporating analysis of simplified simulation, a simple and common finite-element modeling method is proposed which simplified the engine as a meshed cuboid structure with same centroid, weight and rotary inertia to the engine. The feasibility and validity of the method is verified by comparing the simulation results with experimental results. This simple and common modeling method is useful to know the structural dynamic characteristic of ATV frame elastically connected with engine in the phase of product design and retrofit. Take two ATV vehicles as an example, their frame structure are changed to improve the dynamic characteristics of ATV frame. The analysis showed that improvement actions are available and easy-to-implement.
     ③This paper analyzes the influence of engine on the dynamic characteristics of ATV frame. The results show that when the engine is mounted on the frame, the last three modal shapes changes and the first three modal frequencies improves. The influence of the engine position on the ATV frame has been analyzed, which shows that the engine position have a major influence on the dynamic characteristics of ATV frame with engine.
     ④Shape optimization method is used to improve the dynamic characteristics of ATV frame, taking the position and pitch angle of the engine on the frame as the variables. By means of adjusting the position and pitch angle of the engine according to the optimization result, the first modal frequency of ATV bodywork was increased vastly, while other frequencies change little. It helps to keep the vehicle under control.
     ⑤A vehicle is simplified into a multi-rigid body dynamic model to analyze the natural frequency of mounting system and its energy decoupling. Then, the simulated annealing algorithm is used to decouple the energy of the mounting system. For optimization, the stiffness of four mountings is taken as the variables, and the decoupling of power is taken as the objective. The results show that the energy decoupling rate of direction Z get a large increase which is very conducive to all-terrain-vehicle control.
     ⑥By ADAMS, the multi-bodies dynamics software, a virtual prototype of rigid-flexible coupling model for ATV is built, including flexible frame, front and rear suspension, steering system, tires and human body. The simulated B-class road profile is generated by wave superposition method in Adams/car format. The whole vehicle vibration under the engine excitation force and torque is investigated, which provided the basis for further research.
     ⑦In order to control the vibration, united simulation model of suspension control system, including sky-hook control, fuzzy control and fuzzy PID control, is built by using MATLAB/Simulink. This control system is based on the multi-rigid body dynamic model that was built in Chapter 5, and is used to analyze control effect of the three strategies. The results show that fuzzy PID control has the best effect, and is steady and robust.
     The final part is the conclusion, which introduces the main conclusions and makes some suggestions for future research on the topic under investigation.
引文
[1]郑林.日本最新型四轮摩托车[J].摩托车技术, 1994,第一期, 25-27.
    [2] Gregory B. Rodgers. The characteristics and use patterns of all-terrain vehicle drivers in the United States. Accident Analysis and Prevention 31 (1999) 409-419.
    [3] P.Moroney, M.Doyle, K.Mealy. All-terrain vehicles-unstable, unsafe and unregulated A prospective study of ATV-related trauma in rural Ireland.Injury, Int. J.Care Injured 2003, 34:203–205.
    [4] Farshid A. Forouhar. All-Terrain Vehicles Frequency Domain Response Analysis and Rider Behavior. Proceedings of the 1997 EEE International Conference on Control Applications Hartford, CT October 5-7, 1997,183-188.
    [5] A Trebi-Ollennu, J M Dolan and P K Khosla. Adaptive fuzzy throttle control for an all-terrain vehicle. Proc InstnMech Engrs Vol 215 Part I.
    [6] Jan van der BURG and Pierre BLAZEVIC. Anti-Lock Braking and Traction Control Concept for All-Terrain Robotic Vehicles. Proceedings of the 1997 IEEE International Conference on Robotics and Automation Albuquerque, New Mexico. April 1997.1400-1405.
    [7]李陆山.宗申ZS100ST全地域车特点介绍[J].摩托车技术, 2002, 05:26.
    [8]李陆山.建设推出JS400“悍虎”全地形车[J].摩托车技术, 2005, 05:30.
    [9]余志生.汽车理论(第四版)[M].北京:机械工业出版社.2002.
    [10] International Standard Organization.ISO 2631-1——1985.Evaluation of human exposure to whole-body vibration– Part1: General requirements[S].
    [11] British Standards Institution.BS 6841——1987.Measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock[S].
    [12] International Standard Organization . ISO 2631-1——1997 . Mechanical vibration– Measurement and evaluation of human exposure to hand-transmitted vibration– Part 1: General requirements[S].
    [13] Ronnie Lundstrom,Patrik Holmlund,Lennart Lindberg.Absorption of energy during vertical whole-body vibration exposure [J].Journal of Biomechanics,1998,(31):317-326.
    [14] R. Lundstrom,P. Holmlund.Absorption of energy during whole-body vibration exposure [J]. Journal of Sound and Vibration,1998,215(4):789-799.
    [15] Janeway, R.N.HUMAN VIBRATION TOLERANCE CRITERIA AND APPLICATIONS TO RIDE EVALUATION[C].SAE Preprints,1975.2:24-28
    [16] Setsuo Maeda,Neil J. Mansfield,Nobuyuki Shibata.Evaluation of subjective responses towhole-body vibration exposure: effect of frequency content[J].International Journal of Industrial Ergonomics,2007,(10):1-7.
    [17] N. J. Mansfield,P. Holmlund,R. Lundstrom.Comparison of subjective responses to vibration and shock with standard analysis methods and absorbed power[J].Journal of Sound and Vibration,2000,230(3):477-491.
    [18] P. S. Els.The applicability of ride comfort standards to off-road vehicles[J].Journal of Terramechanics,2005,(42):47-64.
    [19] C. H. Lewis,M. J. Griffin.A comparison of evaluations and assessments obtained using alternative standards for predicting the hazards of whole-body vibration and repeated shocks [J].Journal of Sound and Vibration,1998,215(4):915-926.
    [20] M. J. Griffin.A comparison of standardized methods for predicting the hazards of whole-body vibration and repeated shocks [J].Journal of Sound and Vibration,1998,215(4):883-914.
    [21] G. S. Paddan,M. J. Griffin.Evaluation of whole-body vibration in vehicles [J].Journal of Sound and Vibration,2002,253(1):195-213.
    [22] P. S. Els.The applicability of ride comfort standards to off-road vehicles [J].Journal of Terramechanics,2005,(42):47-64.
    [23] N. J. Mansfield,M. J. Griffin.Effect of magnitude of vertical whole-body vibration on absorbed power for the seated human body [J].Journal of Sound and Vibration,1998,215(4):813-825.
    [24] N. J. Mansfield,P. Holmlund,R. Lundstrom.Comparison of subjective responses to vibration and shock with standard analysis methods and absorbed power [J].Journal of Sound and Vibration,2000,230(3):477-491.
    [25] Setsuo Maeda,Neil J. Mansfield,Nobuyuki Shibata.Evaluation of subjective responses to whole-body vibration exposure: effect of frequency content [J].International Journal of Industrial Ergonomics,2007,(10):1-7.
    [26] Barbara Griefahn,Peter Brode.The significance of lateral whole-body vibrations related to separately and simultaneously applied vertical motions. A validation study of ISO 2631 [J].Applied Ergonomics,1999,(30):505-513.
    [27] Neil J. Mansfield,Michael J. Griffin.Difference thresholds for automobile seat vibration [J].Applied Ergonomics,2000,(31):255-261.
    [28] K.C. Parsons,M. J. Griffin.Whole-body vibration perception thresholds [J].Journal of Sound and vibration,1988,121(2):237-258.
    [29] Naser Nawyseh,Michael J. Griffin.Effect of seat surface angle on forces at the seat surfaceduring whole-body vertical vibration [J].Journal of Sound and vibration,2005,284(3-5):613-634.
    [30] Barbara Griefahn,Peter Brode.The significance of lateral whole-body vibrations related to separately and simultaneously applied vertical motions. A validation study of ISO 2631 [J].Applied Ergonomics,1999,(30):505-513.
    [31] Miyuki Morioka,Michael J. Griffin.Magnitude-dependence of equivalent comfort contours for fore-and-aft, lateral and vertical whole-body vibration [J].Journal of Sound and Vibration,2006,298(3):755-772.
    [32] M. J. Griffin.The evaluation of vehicle vibration and seats [J].Applied Ergonomics,1978,9(1):15-21.
    [33] K.C. Parsons,M. J. Griffin.Whole-body vibration perception thresholds [J].Journal of Sound and vibration,1988,121(2):237-258.
    [34] Neil J. Mansfield,Michael J. Griffin.Difference thresholds for automobile seat vibration [J].Applied Ergonomics,2000,(31):255-261.
    [35] Setsuo Maeda,Neil J. Mansfield,Nobuyuki Shibata.Evaluation of subjective responses to whole-body vibration exposure: effect of frequency content [J].International Journal of Industrial Ergonomics,2007,(10):1-7.
    [36]陈荫三,高利.卧姿人体承受全身振动降低舒适界限的研究[J].汽车工程,1991,13(4):208-213.
    [37]马广发.汽车平顺性的试验研究及评价指标的恶探讨[J].汽车工程,1983,(1):20-27.
    [38]卢士富.关于国际标准ISO2631的认识和修改[J].西安公路学院学报,1993,13(4):58-63.
    [39]卢士富.GB报批稿《客车平顺性评价指标及限值》的实践[J].客车技术与研究,1990,12(3):221-225.
    [40]赵六奇,刘锋.参照国际标准ISO 2631的新草案修订汽车平顺性的评价方法[J].汽车工程,1993,15(6):371-377.
    [41]高树新,宫镇.汽车脉冲输入平顺性评价指标限值的研究[J].汽车技术,1996,(9):1-3,7.
    [42]郑郧.汽车振动舒适性的测量与评价[J].客车技术与研究,2000,22(4):23-26.
    [43]杜子学.基于乘用车型平顺性分析的新指标[J].西南交通大学学报,2000,35(2):152-154.
    [44]王秉刚,张志光,孟祥符.对汽车平顺性物理量评价指标的试验验证及讨论[J].汽车技术,1982,(3):2-7.
    [45]刘建中,铃木近,青木弘行等.汽车乘坐舒适性主观评价模型的构筑[J].汽车技术,1994,(9):11-20.
    [46]张洪欣,林宁,林逸.模糊数学在行驶平顺性评价中应用的初探[J].吉林工业大学学报,1985,(3):45-53.
    [47]王秉刚.应用数学统计方法进行汽车平顺性的感觉评价[J].汽车技术,1984,(1):25-29,54.
    [48]长春汽车研究所.GB 4970——1985.汽车平顺性随机输入行驶试验方法[S].
    [49]长春汽车研究所.GB 5902——1986.汽车平顺性脉冲输入行驶试验方法[S].
    [50]长春汽车研究所.GB 4970——1996.汽车平顺性随机输入行驶试验方法[S].
    [51]长春汽车研究所,西安公路学院,清华大学.QC 474——1999.客车平顺性评价指标及限值[S].
    [52] International Standard Organization.ISO 5349-1——1986.Mechanical vibration–guidelines for the measurement and the assessment of human exposure to hand-transmitted vibration [S].
    [53] International Standard Organization . ISO 5349-1——2001 . Mechanical vibration– Measurement and evaluation of human exposure to hand-transmitted vibration– Part 1: General requirements [S].
    [54] Lage Burtrom,Ronnie Lundstrom,Mats Hagberg et al.Comparison of different measures for hand-arm vibration exposure [J].Safety Science,1998,28(1):3-14.
    [55] R. G. Dong,A. W. Schopper,T. W. McDowell et al.Vibration energy absorption (VEA) in human fingers-hand-arm system [J].Medical Engineering & Physics,2004,26(6):483-492.
    [56] Ren G. Dong,Daniel E. Welcom,Thomas W. McDowell.Frequency weighting derived from power absorption of fingers-hand-arm system uder zh-axis vibration [J] . Journal of Biomechanics,2006,39(12):2311-2324.
    [57] R. G. Dong,J. Z. Wu,T. W. McDowell et al.Distribution of mechanical impedance at the fingers and the palm of the human hand [J].Journal of Biomechanics,2005,38(5):1165-1175.
    [58] Lage Burstrom,Ronnie Lundstrom.Absorption of vibration energy in the human hand and arm [J].Ergonomics,1994,37(5):879-890.
    [59] International Standard Organization.ISO 5349-1-2001.Mechanical vibration– Measurement and evaluation of human exposure to hand-transmitted vibration– Part 1: General requirements.
    [60]吉林省劳动保护科学研究所.GB14790-1993.人体手传振动的测量与评价方法[S].
    [61] International Standard Organization . ISO 5349-1—10—1986 . Mechanical vibration–guidelines for the measurement and the assessment of human exposure to hand-transmitted vibration.
    [62]苏清祖,翁家昌.手承受振动的评价标准.拖拉机,1987,14(6):46-50.
    [63]苏清祖,王锦雯,杨超珍.手把振动新的评价方法和对几种振动机械的评价.江苏工学院学报,1987,8(2):99-101.
    [64]范永法,吴起亚,苏清祖等.手扶拖拉机、拖车组行驶振动分析与行驶平顺性的初步评价.农业机械学报,1983,14(9):21-33.
    [65] Andrew N. Rimell,Luca Notini,Neil J. Mansfield et al.Variation between manufacturers’declared vibration emission values and those measured under simulated workplace conditions for a range of hand-held power tools typically found in the construction industry.International Journal of Industrial Ergonomics,2008,38(9-10):661-675.
    [66]大久保信行.机械模态分析.上海:上海交通大学出版社. 1985.
    [67]傅志方.振动模态分析与参数辨识.北京:机械工业出版社. 1990.
    [68]沃德·海伦,斯蒂芬·拉门兹,波尔·萨斯著.白化同,郭继忠译.模态分析理论与试验.北京:北京理工大学出版社. 2001.
    [69]洛根著.伍义生译.有限元方法基础教程.北京:电子工业出版社. 2003.
    [70]龚培康.汽车拖拉机有限元法基础.北京:机械工业出版社. 1994.
    [71]王勖成.有限单元法.北京:清华大学出版社. 2003.
    [72]张令弥,张春宁,曾庆华.多通道动态测试分析系统研制与应用.振动与冲击, 1995,14(3): 1~4.
    [73]李克强,何渝生.汽车实验模态分析微机系统的开发及应用.汽车工程, 1992, 14(1): 53~59.
    [74]田飞.汽车结构动态特性试验测试分析系统的开发及应用[硕士学位论文].重庆:重庆大学. 1997.12.
    [75] LMS. Theroy and background. LMS International. 2002.
    [76] Peeters Bart, Van Der Auweraer Herman, Leuridan Jan etc. PolyMAX modal parameter estimation: Challenging automotive and aerospace applications. VDI Berichte, 2004, n 1825: 1~13, 572~573.
    [77] LMS. LMS Polymax– A Revolution in Modal Parameter Estimation. LMS International. 2004.
    [78] Peeters Bart, Vecchio Antonio, Van Der Auweraer Herman. PolyMAX modal parameter estimation from operational data. Proceedings of the 2004 International Conference on Noise and Vibration Engineering, ISMA. Proceedings of the 2004 International Conference on Noise and Vibration Engineering, ISMA. Leuven, Belgium. 2004. Leuven: Katholieke Universiteit Leuven, 2004: 1049~1063.
    [79] Mourelatos Z. P. An Efficient Crankshaft Dynamic Analysis Using Substruc-turing with Ritz Vectors[J]. Journal of Sound and Vibration.2000.
    [80] Ishikawa Makoto, Nakamura Yukio. Development of Resin Gear Balance Shaft System for 2AZ-FE Engine[J]. JSAE Review 2002.
    [81] Regis V. S.,Charles J. L. Design of Elastomeric Vibration Isolation Mounting System for Internal Combustion Engine[J]. SAE paper 760431.
    [82] Yu Yunhe, Naganathan Nagi G. A Literature Review of Automotive Vehicle Engine Mounting Systems[J]. Mechanism and Machine Theory . 2001.
    [83] Johnson Stephen. Computer Optimization of Engine Mounting Systems[J]. SAE paper 790974.
    [84] Geck PE, Patton R D. Front Wheel Drive Engine Mount Optimization[J]. SAE paper 840736.
    [85] H.Hata, H.Tanaka. Experimental Method to Derv Optimum Engine Mount System for Idle Shake[J]. SAE paper 870961.
    [86] Demic Miroslav. A Contribution to the Optimization of the Position and the Characteristics of Passenger Car Powertrain Mounts[J]. International Journal of Vehicle Design, 1990, 1.
    [87]徐石安.发动机悬置的设计及其优化[J].汽车工程. 1983, (03): 12-21.
    [88]严济宽,宋孔杰.四端参数法在振动隔离中的应用[J].噪声与振动控制. 1986, (6):3-11.
    [89]严济宽,陈金福.弹性支承任意布置的隔离体的自然频率[J].上海交通大学学报. 1979, (2):85-102.
    [90]严济宽.振动隔离效果的评定[J].噪声与振动控制. 1997, (6):22-30.
    [91]严济宽.具有非刚性基座的机械装备隔振设计[J].上海交通大学学报. 1964, (3):83-94.
    [92]陈继红,严济宽.汽车发动机悬置系统的一些设计问题[J].噪声与振动控制. 1999, (1):5-11.
    [93]喻惠然. CA6102型发动机悬置的研究.汽车技术[J]. 1992, (1): 18-25.
    [94]上官文斌.发动机悬置系统的优化设计[J].汽车工程. 1992, 14 (2):103-110.
    [95]徐石安.汽车发动机弹性支承隔振的解耦方法[J].汽车工程. 1995, 17 (4):198-204.
    [96]阎红玉.发动机悬置系统的能量法解耦及优化设计[J].汽车工程. 1993, 15 (6):321-328.
    [97]史文库等.发动机悬置支承在弹性基础上的隔振特性分析[J].汽车技术. 1998, (7):18-20.
    [98]沈彤,潘双夏,杨礼康.汽车发动机液压悬置研究方法探讨[J].汽车技术. 2004, (04):1-4.
    [99]王利荣,吕振华.汽车动力总成液阻型橡胶隔振器的研究发展[J].汽车工程. 2001, 23 (5):323-328.
    [100]裘新,吕振华,林逸等.轿车动力总成一液压悬置一副车架系统参数的优化设计[J].汽车技术. 1998, (7):1-5.
    [101]李杰.汽车动力总成橡胶悬置系统的固有特性和振动耦合特性分析[J].公路交通科技.1998, 15(4):75-78.
    [102]秦民,林逸,马铁利.汽车液压悬置系统动态特性研究[J].汽车工程. 2001, 23 (6):381-384.
    [103]裘新,吕振华,林逸等.轿车动力总成一液压悬置一副车架系统参数的优化设计[J].汽车技术. 1998, (7):1-5.
    [104] D. J. Ewins. Modal Testing Theory and Practice[M]. England: RESEARCH STUDIES PRESS, 1984.
    [105]许本文,焦群英.机械振动与模态分析基础[M].北京:机械工业出版社, 1998.
    [106] LMS. Theroy and background. LMS International [Z]. 2002.
    [107]孙求理,张洪欣.主动悬架的发展和技术现状[J].世界汽车. 1996, (5):4-6.
    [108] Karnopp D, Crosby M.J,Harwood R A. VIBRATION CONTROL USING SEMI-ACTIVE FORCE GENERATORS[J].American Society of Mechanical Engineers, 1974, 96(2):619-626.
    [109]韩文涛,李磊,朱彤.基于线性最优控制理论的汽车主动悬架控制方法研究[J].机械科学与技术.2003,(22):55-59.
    [110]许昭,宋晓琳,殷智宏.基于SIMULINK的车辆主动悬架LQG控制仿真研究[J].专用汽车.2007,(5):21-23.
    [111]李治国,金达锋,赵六奇等.基于预测控制和频率成型性能指标的主动悬架控制策略研究[J].汽车工程.2002,(5):426-429.
    [112]武云鹏,管继富,顾亮.车辆半主动悬架自适应预测控制[J].兵工学报.2011,(2):242-246.
    [113]喻凡,郭孔辉.车辆悬架的最优自适应与自校正控制[J].汽车工程.1998,(4):193-200.
    [114]汪若尘,陈龙,江浩斌.模糊控制半主动悬架的试验研究[J].兰州理工大学学报.2005,(4):49-51.
    [115]雷海蓉.电控空气悬架模糊控制系统的开发,吉林大学硕士论文,2004,吉林大学.
    [116]郭大蕾.车辆悬架振动的神经网络半主动控制,南京航空航天大学博士论文,2002,南京航空航天大学.
    [117]汪若尘,陈龙,江浩斌等.半主动悬架模糊动态建模与神经网络控制[J].江苏大学学报(自然科学版).2009,(1):23-26.
    [118]汪若尘,陈龙,江浩斌.时滞半主动悬架模糊神经网络控制[J].江苏大学学报(自然科学版).2007,38(7):10-12.
    [119]管继富,顾亮,侯朝桢.车辆半主动悬架自适应LQG控制[J].系统仿真学报.2004,(10):2340-2343.
    [120]方敏,王峻,陈无畏.汽车半主动悬架的自适应LQG控制[J].汽车工程.1997,(4):200-205.
    [121]崔晓利,陈龙;李德超.基于神经网络的半主动悬架自适应模糊控制研究[J].中国机械工程.2004,(2):178-180.
    [122]王昊.整车悬架振动智能半主动控制研究,南京航空航天大学博士论文,2006,南京航空航天大学.
    [123]丁科,侯朝桢,罗莉.车辆主动悬架的神经网络模糊控制[J].汽车工程.2001,(5):340-343.
    [124]李以农,郑玲.汽车非线性半主动悬架的模糊神经网络控制[J].汽车工程.2004,(5):600-604.
    [125]金新灿,孙守光,陈光雄.基于实验频响函数刚体特性参数的计算及其应用[J].机械工程学报,2005,41(3):206—210.
    [126] R. A. B. Almeida, A. P. V. Urgueira and N. M. M. Maia. Identification of rigid body properties from vibration measurements. Journal of Sound and Vibration. 2007, 299: 884-899.
    [127]张志飞.摩托车及全地域车行驶动力学研究[D].重庆:重庆大学,2008,12.
    [128]洪嘉振.多体系统动力学理论、计算方法和应用[M].上海交通大学出版社. 1992.
    [129]李智锋.汽车整车多体系统动力学仿真[D].同济大学, 2000.
    [130]李军,刑俊文. ADAMS实例教程[M].北京:北京理工大学出版社. 2002.
    [131] MSC, Inc: ADAMS/View help, 2007.
    [132]范群.摩托车人—机系统刚柔耦合动态特性研究重庆:重庆大学,2006,5.
    [133]林逸,陈欣.轿车悬架系统空间多体弹性系运动学研究.中国公路学报,2000,13(3):120一122
    [134]骆涛.轿车悬架运动学及整车平顺性仿真[D].安徽:合肥工业大学,2008.04
    [135] Thomas E. Renner&Andrew J. Barber. Accurate Tire Models for Vehicle Handling Using the Empirical Dynamics Method. International ADAMS User conference. 2000
    [136] GB10000-88《中国成年人人体尺寸》[S].
    [137] GB/T17245-2004《成年人人体惯性参数》[S].
    [138]张永林.用谐波叠加法重构随机道路不平顺高程的时域模型[J].农业工程学报, 2003,19(6):32-35.
    [139]常志权,罗虹,褚志刚等.谐波叠加路面输入模型的建立及数字模拟[J].重庆大学学报. 2004,27(12):5-8.
    [140]郑启福.内燃机动力学[M].北京:国防工业出版社. 1991.
    [141]丁学明.模糊控制理论研究及其在移动式倒立摆中的应用[D].合肥:中国科技大学, 2005.3.
    [142]刘曙光,魏俊民,竺志超.模糊控制技术[M].北京:中国纺织出版社, 2001.6.
    [143]张国良.模糊控制及其MATLAB应用[M].西安:西安交通大学出版社, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700