舱筏隔振系统声学设计及优化、控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舱筏隔振技术是当前舰船减振降噪领域的关键技术,它可以有效地隔离舰船主、辅机系统和其它动力设备的机械振动传递,降低艇体的水下辐射噪声。在以声学设计为主导的安静型潜艇设计中,机械系统噪声定量预报和机械噪声控制及优化是潜艇机械噪声研究急需突破的两大问题。因此,本论文以“十一五”国防预研项目“浮筏声学性能优化”,“高性能主动隔振器的研究”和国家安全重大基础研究973项目子专题“高效隔振浮筏声学构建原理”为背景,突破传统的隔振与总体声学性能割裂的局限性,致力于建立舱筏隔振系统定量化的振动传递及声辐射计算方法和以声学性能为目标的优化方法,并有针对性地提出舱筏振动传递控制和远场声辐射抑制方法,以指导舱筏声学设计,降低整艇机械噪声,该研究具有重要的国防意义和实用价值。
     第一章,在阅读大量相关文献的基础上,全面综述了柔性复杂隔振系统的弹性耦合效应、水下复杂圆柱壳体结构的流固耦合效应的研究发展概况。从研究对象和建模方法两个角度分别进行论述,介绍了若干极具潜力的舱筏隔振系统建模方法。较为全面地综述了舱筏隔振系统的主、被动和宽频带振动噪声控制方法及隔振系统振动声学性能优化方法,指出当前建模、控制和优化方法在指导舱筏隔振系统声学设计和优化、控制的难点所在。
     第二章,针对舱筏隔振系统的定量化声学设计这一目标,利用基于频响函数综合的弹性子结构建模方法和基于解析试函数的有限元、边界元耦合方法,建立了典型舱筏隔振系统振动传递和声辐射的整体模型。研究了舱筏隔振系统的多点多向各个层面的弹性耦合效应、艇外流场的流固耦合效应及隔振器的驻波效应对舱筏隔振系统振动传递和声辐射特性的影响,并对结果进行讨论分析,得到了一些颇具价值的结论。讨论分析了带内部基座的圆柱壳体子结构参数变化对舱筏隔振系统振动传递和声辐射特性的影响,给出了带内部基座的圆柱壳体结构的声学设计原则。提出了基座均方力和均方速度传递率,功率流传递率,壳体表面均方振速传递率,壳体表面辐射声功率传递率和远场均方声压传递率等隔振系统振动传递和声学性能评价指标,分析了隔振性能评价指标和远场声辐射指标之间的关系,给出了不同载荷工况下可以替代远场声压评价指标的性能指标。
     第三章,针对舱筏隔振系统中、高频基础非刚性导致隔振性能下降,引起水下远场声辐射增强的问题,利用弹性波在周期结构阻带内无法传播的特性,提出了在振动传递途径上设置周期结构,对特定带宽频率内的振动传递进行纯被动宽频带的控制方法以及一种曲梁周期结构,充分利用曲梁具有径向刚度和切向刚度耦合及波型转换的特性,利用曲梁来传递载荷。利用波动法系统地研究了曲梁和直梁,曲梁和质量耦合系统中波的传播,传递和反射,验证了振动经过曲梁传递后发生的波型转换特性和能量的传递、反射。为简化曲梁周期结构的设计,提出了m-k等效模型,利用传递矩阵不变量法和波向量法研究了曲梁周期结构的带隙特征和输入输出导纳特性,结果表明曲梁周期结构具有较低频段的宽频带隙。利用传递矩阵法研究了曲梁周期结构在基础为弹性板的单自由度系统、两自由度系统和舱筏隔振系统中的应用。结果表明,曲梁周期结构作为机械滤波器能有效地抑制带隙内基础共振峰和上、下隔振器驻波频率处的振动传递和声辐射。在理论分析的基础上,给出舱筏隔振系统中曲梁周期结构工程实用的设计原则和方法。
     第四章,针对低频共振峰处的振动传递和导致的基座-壳体结构的声辐射,采用主动隔振的方法对其进行控制。以内部弹性子结构振源-多通道主被动隔振器-水下带基座的圆柱壳体结构受体这一耦合系统为研究对象,利用基于频响函数综合的子结构方法和基于FxLMS的多通自适应控制算法,建立了该耦合系统的动力学模型和控制模型。结合耦合的有限元、边界元模型,首次研究了对基座连接点的振动加速度进行主动控制时,对水下远场声辐射抑制的影响。数值仿真结果表明,采用主动隔振对基座各连接点的振动加速度进行控制后,可以有效地抑制低频时壳体径向变形为主的强全局辐射模态的声辐射,但抑制效果受到各个控制通道之间耦合强弱的影响,并与圆柱壳体结构的模态密切相关。在理论分析的基础上,对由振源板-四通道主动隔振器-流体加载板组成的主动隔振系统进行实验研究,对系统某阶共振频率(对应流体加载板的第一阶共振模态)受到接近该频率的激励干扰时进行主动控制,实验结果表明该频率处流体加载板连接点的振动和水下声辐射得到了明显的抑制。这位机械-结构的低频振动噪声控制提供了一种控制手段。
     第五章,以舱筏隔振系统的声学优化设计为目标,利用基于频响函数综合的子结构方法,推导了基于频响函数子结构的导纳灵敏度,得到了舱筏隔振系统的振动传递和声辐射结果对浮筏和基座连接点的频响函数及上、下层隔振器的刚度(阻尼)的灵敏度表达式。为克服灵敏度分析容易陷入局部最优的缺点,结合全局搜索能力较强的遗传算法,提出混合遗传算法。利用灵敏度方法,遗传算法和混合遗传算法对低频段上、下层隔振器的刚度在各个振动传递和声辐射优化目标下进行优化,并对各个优化目标下的结果进行讨论,研究了各个优化目标之间的联系和区别。讨论了流固耦合效应、外载荷激励和优化频带对优化结果的影响。数值仿真结果表明,以振动传递特性为优化目标的优化结果不能保证远场辐射声压的最优,以传递到基座的均方力最优时的结果不能保证传递功率流的最优。在优化时,需要考虑流固耦合的影响,并详细考虑不同的优化目标。混合遗传算法兼顾灵敏度分析的局部搜索能力和遗传算法的全局搜索能力,因而能够得到更优的结果,但需要更多的迭代次数。
     第六章,针对利用实测频响函数进行综合时的常见问题,分析了各种误差对综合结果的影响,利用矩方法研究了误差在综合过程中的传递,采用SVD滤波和分频段插值等方法对频响函数数据进行数值处理。利用以带基座圆柱壳体结构为基础的多点耦合单层隔振系统,验证了基于频响函数综合的子结构法对综合应用数值分析和实验方法得到的频响函数数据进行混合建模的正确性。实验结果表明,在进行振动传递建模时,隔振系统的多点多向耦合效应和隔振器的阻抗特性对综合结果的影响巨大。对基于频响函数综合的子结构方法在舱筏隔振系统中振动传递建模的应用进行实验验证,并分析了综合结果产生误差的原因。对设计制造的曲梁周期结构的导纳进行测试,验证了曲梁周期结构带隙的存在和周期结构建模方法的准确性。研究了曲梁周期结构在基础为弹性板的单自由度系统、两自由度系统、多点耦合单层隔振系统和舱筏隔振系统中的应用。实验结果表明,曲梁周期结构能够有效地抑制带隙内基础共振峰处的振动传递,抑制效果和结构的模态(激励点位置,测点位置和不同的频率点)密切相关。曲梁周期结构在隔振系统中的性能和所承载的质量与本身的质量之比有关。周期结构中的振动传递受到输入输出端负载的影响。对多点耦合单层隔振系统中安装曲梁周期结构前后振动传递的对比测试结果表明,安装曲梁周期结构后,基座连接点的响应在带隙内得到了平均10~15dB的衰减,壳体上的测点也得到了4~5dB的衰减。因此,曲梁周期结构为舱筏隔振系统的振动传递宽频带控制提供了一种具有重要应用前景的新思路。
     第七章,对本文的研究内容作了全面总结,并对下一步的研究进行了展望。
Floating raft system is the key technology to isolate vibration of hosts and auxiliary machines, and reduce the structural noise of ships and submarines effectively. For the acoustic design of quiet submarines, quantitative prediction, control treatment selection and optimization of machinery noise are important factors urgently needed to find a new breakthrough in the performance of submarines. Under the support of National Defense Science Foundation for the projects“Acoustic Optimization of Floating Raft Sytem”and“Research on New Type of Active Vibration Isolators”, the support of National 973 subproject“Design of Raft with High Vibration Isolation Performance”, the paper is devoted to modeling the vibration transmission of floating raft system and resultant acoustic radiation, providing design guidelines and abatement techniques for floating raft system to achieve an optimized noise level.
     In chapter 1, the detailed literature reviews on complex flexible isolation system and the vibro-acoustic modeling of complex underwater cylindrical structures are summarized, both in the aspects of research objects and the modeling approaches. Some potential modeling techniques are pointed out. The vibration control means, including passive, active vibration control and broadband control by periodic structures are reviewed. Also the optimization techniques are reviewed. The difficulties about application of these methods to floating raft system are pointed out.
     In chapter 2, a general method for the integrated vibration transmission and acoustic modeling of floating raft system is presented. The coupled finite element/boundary element method (FE/BEM) is employed to study the vibro-acoustic behavior of the fluid-loaded base-cylindrical shell substructure. The modeling of vibration transmission from the vibrating machinery to the base structure is based on the Frequency Response Function-based (FRF-based) substructuring method. The effect of coupling between substructures on the vibration transmission of floating raft system is investigated. The influence of fluid-loading, the wave effects in the vibration isolators, the parameters of base-cylindrical shell substructure on the vibro-acoustic behavior of the floating raft system is investigated in detail. The acoustic design guidelines of base-cylindrical shell are summarized. Based on the modeling results, the vibration isolation measures, such as weighted mean-square force and velocity transmissibilities at base, power flow transmissibility, mean-square velocities and radiated power transmissibilities on surface of cylindrical shell and mean-square pressure transmissibility at far-field are advanced. The relationship between the performance indices of vibration isolation and those of acoustic radiation is studied. The equivalent substitute for measuring the performance of suppressing sound radiation in the far-field is advanced.
     In chapter 3, for suppressing the effects of resonances of foundation that significantly increase the force transmissibility and degrade the isolation performance, periodic structure, a passive band-filter vibration isolation device is developed by using its band gaps, in which waves are effectively attenuated. A curved beam periodic structure possesses of broad low frequency band gap has been designed by using the curved beam, which has the characteristic of coupled radial-tangential stiffness and has the potential of conversion of waves. The multi-layer curved beam periodic structure is composed of rigid plates and curved beams. Based on Flugge’s theory, the six-order coupled differential equations are derived to describe the in-plane motion of curved beam, the dispersion relationships and the six wave components that propagate in curved beam are obtained. The wave approach is employed to study the wave propagation, reflection and transmission in coupled curved beam and semi-infinite straight beam, the semi-infinite curved beam with multiple vibration isolation masses, the coupled masses and finite curved beams. The simulation results demonstrate that, for a given incident extensional or flexural wave, the reflected and transmitted waves contain both kinds of waves. In order to simplify the design process of curved beam periodic structure, the equivalent m-k model is developed. The transfer matrice invariant method and the wave vector approach are employed to analyze the band gap and the driving-point and transfer mobilities of curved beam periodic structure, respectively. The simulation results verify the feasibility of obtaining broad low frequency band by using the curved beam. The transmission matrix method is used to study the dynamics of curved beam periodic structure in one DOF system, two DOFs system with flexible plate as foundations and the floating raft system. Numerical simulation results have demonstrated that by use of periodic structure, the vibration transmission at resonances of bases and isolators is reduced, and the radiation of the foundation plate/shell at resonances is suppressed. Finally, the design guidelines of designing curved beam periodic structure in a given floating raft system are summarized.
     In chapter 4, to improve the low frequency vibration isolation performance of the vibration source-mounts-receiver (SMR) system and suppress the resultant sound radiation, the multi-channel active vibration isolation is employed. Numerical simulation of vibration control of a submerged base-cylindrical shell substructure with active vibration isolation from a vibration flexible plate is presented. The adaptive multi-channel control based on the filtered-x least mean squares (FxLMS) algorithm is used in the active vibration isolation to reduce the acceleration responses of all the connecting points on the bases. The sound radiation with/without control is studied by the dynamic model of the base-cylindrical shell substructure. The relationship between active vibration isolation and the resultant sound radiation is investigated in the time-domain. Numerical results have demonstrated that suppression of vibration on the bases leads to attenuation of sound radiation in the far-field induced by the radial displacement dominant mode of the shell. The performance of control is influenced by the coupling between control channels and related to the structural vibration modes. An experimental system, including a vibration plate, four active vibration isolators and a fluid-loaded plate is established to investigate the role of the proposed active vibration isolation in suppressing vibration transmission as well as underwater sound radiation. The exciting frequency is chosen to be nearly equal to a natural frequency of the coupled system to control the resonance of the fluid-loaded plate. The measured results show that the proposed active isolation is effective.
     In chapter 5, by using the FRF-based substructuring formulation, the expressions of design sensitivity analysis (SA) in terms of the partial derivatives of the physical parameters as well as FRFs of substructures are developed. In order to overcome the shortcomings of SA that may be trapped in a local optimum, the hybrid genetic algorithm (HGA) involving the FRF-based substructuring SA and the genetic algorithm (GA) is developed. To improve the performance at low frequencies, the proposed optimal schemes are employed to determine the optimal stiffness of the upper and lower isolators under five different objective functions concerning both vibration transmission and acoustic radiation. The influence of different objective functions, fluid-loading, the optimized frequency band and the source properties on the optimized results is studied. The optimized results demonstrate that some of the objective functions are equivalent to each other and can be replaced by each other. This investigation reveals that the optimized results for reducing vibration transmission to the base is not necessarily the optimized results for suppressing the sound radiation to the far-field. Thus, it should take into account of fluid-structure interaction and take comprehensive consideration of different vibration or acoustic objectives in the design stage. The numerical results also show that HGA possesses the merits of local search ability of SA and the strong global search ability of GA. Compared with SA and GA, however, HGA requires more evaluation of objective functions in each iteration step and as a result is not computationally efficient.
     In chapter 6, to improve the modeling accuracy of FRF-based substructuring method by using actual measured data, effects of various commonly encountered errors and noise of test data on the modeling results are investigated; propagation of uncertainties of FRFs through FRF-based substructuring is quantified based on an analytical approximation using static moment method; and filters constructed by the SVD approach and piecewise linear interpolation method are used to condition the FRF datas. An experiment to validate the effectiveness of the developed FRF-based substructuring method in modeling isolation system composed of flexible raft and base-cylindrical shell connected through multiple isolators is carried out. The experimental results demonstrate that it should take into account of the wave effects of isolators and the coupling between different degrees of freedom (DOFs). The applicability of FRF-based substructuring method in modeling vibration transmission in floating raft system is verified and the modeling errors are analysed. The experiment of detecting the band gap of designed curved beam periodic structure by measuring driving-point and transfer mobilities is carried out. The experimental results verify the accurancy of the proposed methods in dynamic modeling. The comparative trials of one DOF system, two DOFs system with flexible plate as foundations, a single-layer vibration isolation system connected through multiple isolators and the floating raft system with/without curved beam periodic structure are carried out. The experimental simulation results have demonstrated that by use of periodic structure, the vibration transmission at resonances of bases is reduced and the radiation of the foundation plate/shell at resonances is suppressed. The suppression is related to the structural vibration modes and dependent on the tested points and the frequencies. The modeling results also show that the performance of periodic structure is influenced by the mass ratio of the masses itself to the loaded masses. The vibration transmission in periodic structure is determined by the impedance loading on the input/output end. For the single-layer vibration isolation system connected through multiple isolators with proposed curved beam periodic structure, the experimental results show that responses on both the bases and the surface of the cylindrical shell are attenuated in the band gap of periodic structure. An average attenuation of 10~15dB on the bases and 4~5dB on the shell are obtained. Thus curved beam periodic structure offers a new means for controlling vibration tranmission in broad frequency band.
     Finally, the research and the contributions are summarized and some problems to be further studied are pointed out.
引文
[1].钱家昌,彭旭,陈明.机械设备对基座激励力估算方法研究[J].中国舰船研究, 2008, 3 (001): 48-50.
    [2].Yuan, C.,Zhu, X.,Zhang, G., etc. Indirect engineering estimation of force excited by machinery vibration sources of ship[J]. Chuanbo Lixue(Journal of Ship Mechanics), 2007, 11 (6): 961-973.
    [3].Rivin, E. Passive vibration isolation[M]. Amer Society of Mechanical, 2003.
    [4].Rivin, E. Stiffness and damping in mechanical design[M]. CRC, 1999.
    [5].Newland, D.,Ungar, E. Mechanical vibration analysis and computation[J]. Journal of The Acoustical Society of America, 1990, 88(5): 2506-2506.
    [6].朱石坚,楼京俊,何其伟.振动理论与隔振技术[M].北京:国防工业出版社, 2006.
    [7].Ungar, E. E.,Dietrich, C. W. High-frequency vibration isolation[J]. Journal of Sound and Vibration, 1966, 4 (2): 224-241.
    [8].Soliman, J. I.,Hallam, M. G. Vibration isolation between non-rigid machines and non-rigid foundations[J]. Journal of Sound and Vibration, 1968, 8 (2): 329-351.
    [9].Petersson, B.,Plunt, J. On effective mobilities in the prediction of structure-borne sound transmission between a source structure and a receiving structure, part I: Theoretical background and basic experimental studies[J]. Journal of Sound and Vibration, 1982, 82 (4): 517-529.
    [10].Snowdon, J. C. Vibration isolation: use and characterization[J]. The Journal of the Acoustical Society of America, 1979, 66 (5): 1245-1274.
    [11].Harrison, M.,Sykes, A.,Martin, M. Wave effects in isolation mounts[J]. The Journal of the Acoustical Society of America, 1952, 24 (1): 62-70.
    [12].Du, Y.,Burdisso, R. A.,Nikolaidis, E., etc. Effects of isolators internal resonances on force transmissibility and radiated noise[J]. Journal of Sound and Vibration, 2003, 268 (4): 751-778.
    [13].Lee, J.,Thompson, D. Dynamic stiffness formulation, free vibration and wave motion of helical springs[J]. Journal of Sound and Vibration, 2001, 239 (2): 297-320.
    [14].Li, W. L.,Lavrich, P. Prediction of power flows through machine vibration isolators[J]. Journal of Sound and Vibration, 1999, 224 (4): 757-774.
    [15].Sanderson, M. Vibration isolation: moments and rotations included[J]. Journal of Sound and Vibration, 1996, 198 (2): 171-191.
    [16].熊冶平,宋孔杰.复杂柔性耦合系统的功率流传递谱[J].声学学报, 1996, 21 (004): 368-374.
    [17].冯德振,宋孔杰.浮筏弹性对复杂隔振系统振动传递的影响[J].山东建材学院学报, 1997, 11 (003): 219-223.
    [18].熊冶平,宋孔杰.柔性隔振系统中驻波效应的研究[J].山东工业大学学报, 1995, 25 (002): 108-113.
    [19].孙玲玲,宋孔杰.浮筏隔振系统功率流特性分析[J].应用力学学报, 2003, 20 (003): 99-102.
    [20].行晓亮.浮筏隔振系统导纳功率流特性研究[D].西北工业大学硕士学位论文2005.03.
    [21].颜松.多源复杂激励下振动功率流特性研究[D].西北工业大学硕士学位论文2006.03.
    [22].盛美萍,王敏庆,邢文华, etc.单层隔振系统中弹性基座的振动与声辐射特性[J].机械科学与技术, 2000, (z1): 94-96.
    [23].王国治,李良碧.船舶浮筏装置结构非刚性影响的试验研究[J].船舶工程, 2000, (006): 32-34.
    [24].毛映红,林立.连续隔振浮筏系统功率流研究[J].声学学报, 2001, 26 (003): 272-276.
    [25].王修敏,仇远旺,丁志龙,章炜.船体基座刚度对双层隔振系统隔振效果的影响分析[J].内燃机与动力装置, 2008, 103 (01): 5-7.
    [26].温建明,冯奇.浮筏隔振系统的非刚性基础影响研究[A]. In第八届全国振动理论及应用学术会议论文[C], 2003.
    [27].刘永明,沈荣瀛.多层隔振系统冲击响应研究[J].噪声与振动控制, 1996, 003 2-8.
    [28].Snowdon, J. Mechanical four-pole parameters and their application[J]. Journal of Sound and Vibration, 1971, 15 (3): 307-323.
    [29].Ha, J.,Kim, K. Analysis of mimo mechanical systems using the vectorial four pole parameter method[J]. Journal of Sound and Vibration, 1995, 180 (2): 333-350.
    [30].吴广明.舰船复杂隔振系统建模及其功率流研究[D].上海交通大学博士论文2004.03.
    [31].Guyan, R. Reduction of stiffness and mass matrices[J]. AIAA Journal, 1965, 3 (2): 380.
    [32].瞿祖清.结构动力缩聚技术:理论与应用[D].上海交通大学博士论文1998.12.
    [33].Giagopulos, D.,Natsiavas, S. Hybrid (numerical-experimental) modeling of complex structures with linear and nonlinear components[J]. Nonlinear Dynamics, 2007, 47 (1): 193-217.
    [34].Xiong, Y.,Xing, J.,Price, W. Power flow analysis of complex coupled systems by progressive approaches[J]. Journal of Sound and Vibration, 2001, 239 (2): 275-295.
    [35].张蔚波,于复生,刘辉, etc.导纳法与模态法结合的复杂系统功率流特性研究[J].现代制造工程, 2007, 9.
    [36].张蔚波.基于子系统分析的多维藕合系统功率流传递特性研究[D].山东大学博士学位论文2003.10.
    [37].Liu, W.,Ewins, D. Substructure synthesis via elastic media[J]. Journal of Sound and Vibration, 2002, 257 (2): 361-379.
    [38].吴振东.基于频响函数合成的浮筏隔振系统分析方法研究[D].上海交通大学硕士论文2007.03.
    [39].童宗鹏,王俊峰,尚国清, etc.舱筏结构动态特性的理论与试验研究[J].噪声与振动控制, 2006, 26 (004): 29-32.
    [40].邹春平,陈端石,华宏星.船舶结构振动特性研究[J].船舶力学, 2003, 7 (002): 102-115.
    [41].Goyder, H.,White, R. Vibrational power flow from machines into built-up structures, part I: introduction and approximate analyses of beam and plate-like foundations[J]. Journal of Sound and Vibration, 1980, 68 (1): 59-75.
    [42].Goyder, H.,White, R. Vibrational power flow from machines into built-up structures, Part II: Wave propagation and power flow in beam-stiffened plates[J]. Journal of Sound and Vibration, 1980, 68 (1): 77-96.
    [43].Goyder, H.,White, R. Vibrational power flow from machines into built-up structures, Part III: power flow through isolation systems[J]. Journal of Sound and Vibration, 1980, 68 (1): 97-117.
    [44].姚德源,王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社, 1995.
    [45].Langley, R.,Smith, J.,Fahy, F. Statistical energy analysis of periodically stiffened damped plate structures[J]. Journal of Sound and Vibration, 1997, 208 (3): 407-426.
    [46].Fahy, F. Statistical energy analysis: a critical overview[J]. Philosophical Transactions: Physical Sciences and Engineering, 1994, 346 (1681): 431-447.
    [47].孙进才.统计能量分析(SEA)研究的新进展[J].自然科学进展:国家重点实验室通讯, 1998, 8 (002): 129-136.
    [48].Nefske, D.,Sung, S. Power flow finite element analysis of dynamic systems- Basic theory and application to beams[J]. ASME, Transactions, Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1989, 111 94-100.
    [49].Wang, A.,Vlahopoulos, N.,Wu, K. Development of an energy boundary element formulation for computing high-frequency sound radiation from incoherent intensity boundary conditions[J]. Journal of Sound and Vibration, 2004, 278 (1-2): 413-436.
    [50].曾勤谦.功率流有限元[D].上海交通大学博士论文1999.9.
    [51].殷学文.多层复合圆柱壳体的振动和声辐射研究[D].上海交通大学博士论文2008.
    [52].Keane, A.,Price, W. Statistical energy analysis of strongly coupled systems[J]. Journal of Sound and Vibration, 1987, 117 (2): 363-386.
    [53].Smith Jr, P. Statistical models of coupled dynamical systems and the transition from weak to strong coupling[J]. The Journal of the Acoustical Society of America, 1979, 65 (3): 695-698.
    [54].张建,顾崇衔.非保守耦合系统的统计能量分析原理[J].声学学报, 1993, 18 (001): 66-73.
    [55].Zhang, W.,Wang, A.,Vlahopoulos, N., etc. High-frequency vibration analysis of thin elastic plates under heavy fluid loading by an energy finite element formulation[J]. Journal of Sound and Vibration, 2003, 263 (1): 21-46.
    [56] Xie, S.,Or, S.,Lai Wa Chan, H., etc. Analysis of vibration power flow from a vibrating machinery to a floating elastic panel[J]. Mechanical Systems and Signal Processing, 2007, 21 (1): 389-404.
    [57].李新德,宋孔杰.多维柔性耦合系统功率流传递特性[J].山东大学学报:工学版, 2002, 32 (003): 206-210.
    [58].宋孔杰,张蔚波,牛军川.功率流理论在柔性振动控制技术中的应用与发展[J].机械工程学报, 2003, 39 (009): 23-28.
    [59].张树生,郑继周,程林, etc.浮筏隔振系统功率流的另一计算方法[J].中国机械工程, 2004, 15 (013): 1137-1139.
    [60].刘丽丽.车辆主动悬架系统的功率流传递特性及最优控制策略[D].山东科技大学2004.
    [61].张克国,林淑霞,宋孔杰.多维柔性系统功率流的主动控制研究[J].噪声与振动控制, 2006, 26 (001): 10-12.
    [62].仲翟燕.复杂隔振系统的功率流传递特性和振动噪声控制技术研究[D].山东科技大学2005.
    [63].严济宽,柴敏.振动隔离效果的评定[J].噪声与振动控制, 1997, 006 22-30.
    [64].孙红灵.振动主动控制若干问题的研究[D].中国科学技术大学2007.
    [65].Swanson, D.,Miller, L.,Norris, M. Multidimensional mount effectiveness for vibration isolation[J]. Journal of Aircraft, 1994, 31 (1): 188-196.
    [66].Mak, C.,Jianxin, S. A study of the effect of floor mobility on isolation efficiency of vibration isolators[J]. Low Frequency Noise & Vibration and Active Control, 2001, 20 (1): 1-13.
    [67]. Mak, C.,Jianxin, S. A power transmissibility method for assessing the performance of vibration isolation of building services equipment[J]. Applied Acoustics, 2002, 63 (12): 1281-1299.
    [68].Singh, R.,Kim, S. Examination of multi-dimensional vibration isolation measures and their correlation to sound radiation over a broad frequency range[J]. Journal of Sound and Vibration, 2003, 262 (3): 419-455.
    [69].Lee, H.,Kim, K. Multi-dimensional vibration power flow analysis of compressor system mounted in outdoor unit of an air conditioner[J]. Journal of Sound and Vibration, 2004, 272 (3-5): 607-625.
    [70].崔艳.复杂隔振系统的频率平均功率流分析与效果评估研究[D].山东大学2007.
    [71].霍睿,施引.船舶动力机械隔振设计中的功率流方法与效果评估[J].中国造船, 2000, 41 (004): 46-51.
    [72].张华良,傅志方.浮筏隔振系统各主要参数对系统隔振性能的影响[J].振动与冲击, 2000, 19 (002): 5-8.
    [73].俞孟萨,吴有生.舰船声弹性及声辐射理论研究概述[J].船舶力学, 2008, 12 (004): 669-676.
    [74].邢景棠,崔尔杰.流固耦合力学概述[J].力学进展, 1997, 27 (001): 19-38.
    [75].王旌生,吴有生.粘弹性复合材料结构水中振动及声辐射研究进展综述[J].船舶力学, 2007, 11 (005): 804-811.
    [76].孙雪荣,朱锡.船舶水下结构噪声的研究概况与趋势[J].振动与冲击, 2005, 24 (1): 106-113.
    [77].Junger, M.,Feit, D. Sound, structures, and their interaction[M]. 1st Edition. London: MIT Press, 1986.
    [78].Burroughs, C. Acoustic radiation from fluid-loaded infinite circular cylinders with doubly periodic ring supports[J]. Journal of the Acoustical Society of America, 1984, 75 (3): 715-722.
    [79].Burroughs, C. B. Acoustic radiation from fluid-loaded, ribbed cylindrical shells excited by different types of concentrated mechanical drives[R]. Pennsylvania State University Park Applied Research Lab, 1991.
    [80].Laulagnet, B.,Guyader, J. Modal analysis of a shell's acoustic radiation in light and heavy fluids[J]. Journal of Sound and Vibration, 1989, 131 (3): 397-415.
    [81].Laulagnet, B.,Guyader, J. Sound radiation by finite cylindrical ring stiffened shells[J]. Journal of Sound and Vibration, 1990, 138 (2): 173-191.
    [82].Laulagnet, B.,Guyader, J. Sound radiation from finite cylindrical coated shells, by means of asymptotic expansion of three‐dimensional equations for coating[J]. The Journal of the Acoustical Society of America, 1994, 96 (1): 277-286.
    [83].Laulagnet, B.,Guyader, J. Sound radiation from a finite cylindrical shell covered with a compliant layer[J]. Journal of Vibration and Acoustics, 1991, 113 (2): 267-272.
    [84].Laulagnet, B.,Guyader, J. Sound radiation from finite cylindrical shells, partially covered with longitudinal strips of compliant layer[J]. Journal of Sound and Vibration, 1995, 186 (5): 723-742.
    [85].Laulagnet, B. Sound radiation by a simply supported unbaffled plate[J]. The Journal of the Acoustical Society of America, 1998, 103 (5): 2451-2462.
    [86].Guyader, J.,Laulagnet, B. Structural acoustic radiation prediction: expanding the vibratory response on a functional basis[J]. Applied Acoustics, 1994, 43 (3): 247-269.
    [87].Guo, Y. Acoustic radiation from cylindrical shells due to internal forcing[J]. The Journal of the Acoustical Society of America, 1996, 99(3): 1495-1505.
    [88].Guo, Y. Radiation from cylindrical shells driven by on‐surface forces[J]. The Journal of the Acoustical Society of America, 1994, 95 (4): 2014-2021.
    [89].Guo, Y. Acoustic radiation from cylindrical shells due to internal forcing[J]. Journal of the Acoustical Society of America, 1996, 99 (3): 1495-1505.
    [90].Warburton, G. Vibration of a cylindrical shell in an acoustic medium[J]. Journal of Mechanical Engineering Science, 1961, 3 (1): 69-79.
    [91].Harari, A.,Sandman, B. Radiation and vibrational properties of submerged stiffened cylindrical shells[J]. Journal of the Acoustical Society of America, 1990, 88 (4): 1817-1830.
    [92].Harari, A. Wave propagation in cylindrical shells with finite regions of structural discontinuity[J]. Journal of the Acoustical Society of America, 1977, 62 (5): 1196-1205.
    [93].Harari, A.,Sandman, B. Vibratory response of laminated cylindrical shells embedded in an acoustic fluid[J]. Journal of the Acoustical Society of America, 1976, 60 (1): 117-128.
    [94].Sandman, B. Fluid-loading influence coefficients for a finite cylindrical shell[J]. The Journal of the Acoustical Society of America, 1976, 60 (6): 1256-1264.
    [95].商德江.复杂弹性壳体水下结构振动和声场特性研究[D].哈尔滨工程大学博士论文1999.
    [96].何祚镛.结构振动与声辐射[M].哈尔滨工程大学出版社, 2001.
    [97].曾革委.潜艇结构辐射噪声的建模、求解及其声特性研究[D].华中科技大学博士论文2002.
    [98].沈顺根,李琪华,王大云, etc.加肋旋转壳结构噪声声辐射水弹性研究[J].中国造船, 1992, 2 53-62.
    [99].刘涛.水中复杂壳体的声振特性研究[D].上海交通大学博士论文2002.
    [100].何兵蓉.水下加肋弹性圆柱壳体的振动和声辐射[D].上海交通大学硕士论文1999.
    [101].陈美霞,骆东平,王祖华, etc.激励力对双层圆柱壳声辐射性能的影响[J].船舶力学, 2005, 9 (002): 124-130.
    [102].陈美霞,骆东平,杨叔子.壳间连接形式对双层壳声辐射性能的影响[J].振动与冲击, 2005, 24 (005): 77-80.
    [103].陈美霞,骆东平,曹钢, etc.有限长加肋双层圆柱壳低阶模态声辐射性能分析[J].哈尔滨工程大学学报, 2004, 25 (004): 446-450.
    [104].陈美霞,骆东平,周锋, etc.敷设阻尼材料双层壳体低阶模态声辐射性能分析[J].中国造船, 2004, 45 (B12): 177-181.
    [105].黎胜.水下结构声辐射和声传输的数值分析及主动控制模拟研究[D].大连理工大学博士论文2001.
    [106].姚熊亮,计方,钱德进, etc.壳间连接介质对双层壳声辐射性能的影响[J].声学技术, 2009, (003): 312-317.
    [107].姚熊亮,钱德进,刘庆杰, etc.双层圆柱壳振动传递及近场声辐射特性研究[J].声学技术, 2007, 26 (006): 1226-1234.
    [108].姚熊亮,钱德进,张爱国, etc.内部含基座的加肋双层壳振动与声辐射计算[J].中国舰船研究, 2008, 3 (001): 31-36.
    [109].Ko, S.,Seong, W.,Pyo, S. Structure-borne noise reduction for an infinite, elastic cylindrical shell[J]. The Journal of the Acoustical Society of America, 2001, 109 (4): 1483-1495.
    [110].Leissa, A. Vibration of shells[M]. NASA, 1973.
    [111].Soedel, W. Vibrations of shells and plates[M]. CRC, 2004.
    [112].Reddy, J. Mechanics of laminated composite plates and shells: theory and analysis[M]. CRC, 2004.
    [113].曹志远.板壳振动理论[M].中国铁道出版社, 1989.
    [114].Maxit, L.,Ginoux, J. Prediction of the vibro-acoustic behavior of a submerged shell non periodically stiffened by internal frames[J]. Journal of the Acoustical Society of America, 2010, 128 (1): 137-151.
    [115].谢官模,李军向,罗斌, etc.环肋,舱壁和纵骨加强的无限长圆柱壳在水下的声辐射特性[J].船舶力学, 2004, 8 (002): 101-108.
    [116].陈晓利,盛美萍.多加肋圆柱壳体振动特性的导纳法研究[J].振动与冲击, 2007, 26 (004): 133-135.
    [117].Yoshikawa, S.,Williams, E.,Washburn, K. Vibration of two concentric submerged cylindrical shells coupled by the entrained fluid[J]. The Journal of the Acoustical Society of America, 1994, 95 (6): 3273-3286.
    [118].Jeong, K. Natural frequencies and mode shapes of two coaxial cylindrical shells coupled with bounded fluid[J]. Journal of Sound and Vibration, 1998, 215 (1): 105-124.
    [119].Wang, Z.,Xing, J.,Price, W. A study of power flow in a coupled plate-cylindrical shell system[J]. Journal of Sound and Vibration, 2004, 271 (3-5): 863-882.
    [120].Lee, Y.,Choi, M. Free vibrations of circular cylindrical shells with an interior plate using the receptance method[J]. Journal of Sound and Vibration, 2001, 248 (3): 477-497.
    [121].Lee, Y.,Choi, M.,Kim, J. Free vibrations of laminated composite cylindrical shells with an interior rectangular plate[J]. Journal of Sound and Vibration, 2003, 265 (4): 795-817.
    [122].Bjarnason, J.,Achenbach, J.,Igusa, T. Acoustic radiation from a cylindrical shell with an internal plate[J]. Wave Motion, 1992, 15 (1): 23-41.
    [123].Bjarnason, J.,Igusa, T.,Achenbach, J. The effect of substructures on the acoustic radiation from axisymmetric shells of finite length[J]. The Journal of the Acoustical Society of America, 1992, 92 (1): 246-255.
    [124].Li, D.,Cheng, L.,Gosselin, C. Analysis of structural acoustic coupling of a cylindrical shell with an internal floor partition[J]. Journal of Sound and Vibration, 2002, 250 (5): 903-921.
    [125].Peterson, M.,Boyd, D. Free vibrations of circular cylinders with longitudinal, interior partitions[J]. Journal of Sound and Vibration, 1978, 60 (1): 45-62.
    [126].Missaoui, J.,Cheng, L.,Richard, M. Free and forced vibration of a cylindrical shell with a floor partition[J]. Journal of Sound and Vibration, 1996, 190 (1): 21-40.
    [127].Rebillard, E.,Laulagnet, B.,Guyader, J. Influence of an embarked spring-mass system and defects on the acoustical radiation of a cylindrical shell[J]. Applied Acoustics, 1992, 36 (2): 87-106.
    [128].Howard, C.,Hansen, C.,Pan, J. Power transmission from a vibrating body to a circular cylindrical shell through passive and active isolators[J]. Journal of the Acoustical Society of America, 1997, 101 (3): 1479-1491.
    [129].Ragnarsson, P.,Pluymers, B.,Donders, S., etc. Subcomponent modelling of input parameters for statistical energy analysis by using a wave-based boundary condition[J]. Journal of Sound and Vibration, 329 (1): 96-108.
    [130].徐张明.带浮筏装置的水中壳体模型振动声辐射及其结构参数灵敏度研究[D].上海交通大学博士论文2003.
    [131].冷文浩.带有复合结构的多层隔振系统振动传递及声幅射研究[D].中国船舶科学研究中心博士论文1997.
    [132].Yan, J.,Li, T.,Liu, J., etc. Space harmonic analysis of sound radiation from a submerged periodic ring-stiffened cylindrical shell[J]. Applied Acoustics, 2006, 67 (8): 743-755.
    [133].Caresta, M.,Kessissoglou, N. Purely axial vibration of thin cylindrical shells with shear-diaphragm boundary conditions[J]. Applied Acoustics, 2009, 70 (8): 1081-1086.
    [134].钱斌.圆柱壳组合系统振动噪声的有效导纳功率流法研究[D].西北工业大学2002.
    [135].Ming, R.,Pan, J.,Norton, M. The mobility functions and their application in calculating power flow in coupled cylindrical shells[J]. The Journal of the Acoustical Society of America, 1999, 105 (3): 1702-1713.
    [136].Ming, R.,Pan, J.,Norton, M. The measurement of structural mobilities of a circular cylindrical shell[J]. The Journal of the Acoustical Society of America, 2000, 107 (3): 1374-1382.
    [137].Saijyou, K.,Yoshikawa, S. Analysis of flexural wave velocity and vibration mode in thin cylindrical shell[J]. The Journal of the Acoustical Society of America, 2002, 112 (6): 2808-2813.
    [138].Saijyou, K. Dominant modes of submerged thin cylindrical shells[J]. Applied Acoustics, 2006, 67 (10): 1031-1043.
    [139].吴芳.板和加肋板附加水质量算法研究[D].大连理工大学2006.
    [140].孙洋.附加水质量对船体总振动固有频率影响的研究[D].大连理工大学2008.
    [141].恽伟君,段根宝.流固耦合振动流体边界元拟湿模态综合性[J].交通部上海船舶运输科学研究所学报, 1991, 14 (002): 7-16.
    [142].恽伟君,段根宝.流固耦合拟湿模态综合法在大型复杂结构动态计算中的应用[J].振动与冲击, 1992, 11 (001): 11-26.
    [143].Zienkiewicz, O.,Taylor, R. The finite element method for solid and structural mechanics[M]. Butterworth-Heinemann, 2005.
    [144].Bathe, K.,Wilson, E. Numerical methods in finite element analysis[M]. Prentice-Hall Englewood Cliffs, NJ, 1976.
    [145].王勖成.有限单元法[M].清华大学出版社, 2003.
    [146].Cheung, Y.,Tham, L. Finite strip method[M]. CRC, 1997.
    [147].Babuska, I.,Suri, M. The p and hp versions of the finite element method, basic principles and properties[J]. Siam Review, 1994, 36 (4): 578-632.
    [148].Babu ka, I.,Griebel, M.,Pitk ranta, J. The problem of selecting the shape functions for a p-type finite element[J]. International Journal For Numerical Methods In Engineering, 2005, 28 (8): 1891-1908.
    [149].龙驭球.新型有限元论[M].清华大学出版社, 2004.
    [150].石钟慈.样条有限元[J].计算数学, 1979, 1 (1): 50-72.
    [151].Gry, L. Dynamic modelling of railway track based on wave propagation[J]. Journal of Sound and Vibration, 1996, 195 (3): 477-505.
    [152].Peplow, A.,Finnveden, S. A super-spectral finite element method for sound transmission in waveguides[J]. The Journal of the Acoustical Society of America, 2004, 116 (3): 1389-1400.
    [153].Birgersson, F.,Finnveden, S.,Robert, G. Modelling turbulence-induced vibration of pipes with a spectral finite element method[J]. Journal of Sound and Vibration, 2004, 278 (4-5): 749-772.
    [154].Finnveden, S. Spectral finite element analysis of the vibration of straight fluid-filled pipes with flanges[J]. Journal of Sound and Vibration, 1997, 199 (1): 125-154.
    [155].Doyle, J. Wave propagation in structures[M]. Springer New York etc, 1989.
    [156].Waki, A. On the application of finite element analysis to wave motion in one-dimensional waveguides[D]. UK: Southampton University 2007.
    [157].赵志高.结构声辐射的机理与数值方法研究[D].华中科技大学2005.
    [158].Schenck, H. Improved integral formulation for acoustic radiation problems[J]. The Journal of the Acoustical Society of America, 1968, 44 (1): 41-58.
    [159].Burton, A.,Miller, G. The application of integral equation methods to the numerical solution of some exterior boundary-value problems[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1971, 323 (1553): 201-210.
    [160].Shen, L.,Liu, Y. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton–Miller formulation[J]. Computational Mechanics, 2007, 40 (3): 461-472.
    [161].Liu, Y.,Shen, L.,Bapat, M. Development of the Fast Multipole Boundary Element Method for Acoustic Wave Problems[J]. Recent Advances in Boundary Element Methods: A Volume to Honor Professor Dimitri Beskos, 2009, 287-303.
    [162].Gumerov, N. A.,Duraiswami, R. A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation[J]. The Journal of the Acoustical Society of America, 2009, 125 (1): 191-205.
    [163].Liu, Y. Fast multipole boundary element method-theory and applications in engineering[M]. Cambridge University Press, Cambridge, 2009.
    [164].Nishimura, N. Fast multipole accelerated boundary integral equation methods[J]. Applied Mechanics Reviews, 2002, 55 (4): 299-324.
    [165].Zhang, Z.,Raveendra, S. Eigenfrequency Extraction Based on Boundary Element Method[J]. Canadian Acoustics, 2001, 29 (3): 30-31.
    [166].邹元杰,赵德有.水下结构声固耦合振动的特征值计算[J].船舶力学, 2004, 8 (002): 109-120.
    [167].纪刚,张纠康.低频域结构噪声问题数值解法[J].海军工程大学学报, 2002, 14 (004): 71-76.
    [168].沈惠明,赵德明.流固耦合振动问题的特征值解法[J].大连理工大学学报, 1990, 30 (003): 369-372.
    [169].Fahnline, J. Computing fluid-coupled resonance frequencies, mode shapes, and damping loss factors using the singular value decomposition[J]. The Journal of the Acoustical Society of America, 2004, 115 (4): 1474-1482.
    [170].雷新海,钱勤.流固耦合系统湿模态正交性的统一证明[J].应用力学学报, 1993, 10 (004): 77-81.
    [171].Xing, J. Natural vibration of two-dimensional slender structure–water interaction systems subject to Sommerfeld radiation condition[J]. Journal of Sound and Vibration, 2007, 308 (1-2): 67-79.
    [172].张升明.流体的可压缩性对弹性结构振动的影响[J].水动力学研究与进展: A辑, 1994, (004): 429-436.
    [173].邹元杰,赵德有.流体可压缩性对半无限流体域中结构振动的影响[J].振动与冲击, 2004, 23 (002): 21-27.
    [174].Everstine, G.,Henderson, F. Coupled finite element/boundary element approach for fluid-structure interaction [J]. Journal of the Acoustical Society of America, 1990, 87 (5): 1938-1947.
    [175].Everstine, G. Finite element formulatons of structural acoustics problems[J]. Computers & Structures, 1997, 65 (3): 307-321.
    [176].Chen, P. T. Acoustic radiations for submerged elastic structures using natural mode expansions in conjunction with radiation modes approach[J]. Journal of Sound and Vibration, 2001, 246 (2): 245-263.
    [177].Chen, Z.,Hofstetter, G.,Mang, H. A Galerkin-type BE-FE formulation for elasto-acoustic coupling[J]. Computer Methods In Applied Mechanics and Engineering, 1998, 152 (1-2): 147-155.
    [178].Gaul, L.,Wenzel, W. A coupled symmetric BE-FE method for acoustic fluid-structure interaction[J]. Engineering Analysis With Boundary Elements, 2002, 26 (7): 629-636.
    [179].Chen, P.,Ju, S.,Cha, K. A symmetric formulation of coupled BEM/FEM in solving responses of submerged elastic structures for large degrees of freedom[J]. Journal of Sound and Vibration, 2000, 233 (3): 407-422.
    [180].Geng, P. Parallel HP Methods for Coupled BE/FE Analysis of Structural Acoustics Problems[D]. University of Texas at Austin 1994.
    [181].Langer, U. Parallel iterative solution of symmetric coupled FE/BE-equations via domain decomposition[A]. In The Sixth International Conference on Domain Decompoeition[C], 1992; 335-344.
    [182].Fischer, M. The fast multipole boundary element method and its application to structure-acoustic field interaction[D]. Universit?t Stuttgart 2004.
    [183].Gaul, L.,Brunner, D.,Junge, M. Coupling a Fast Boundary Element Method with a Finite Element Formulation for Fluid-Structure Interaction. In Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods, Marburg, S.,Nolte, B., Eds. Springer: 2008; 519-546.
    [184].Brunner, D.,Of, G.,Junge, M., etc. A fast BE-FE coupling scheme for partly immersed bodies[J]. International Journal For Numerical Methods In Engineering, 81 (1): 28-47.
    [185].Schneider, S. FE/FMBE coupling to model fluid-structure interaction[J]. International Journal For Numerical Methods In Engineering, 2008, 76 (13): 2137-2156.
    [186].Brunner, D.,Junge, M.,Gaul, L. A comparison of FE-BE coupling schemes for large-scale problems with fluid-structure interaction[J]. International Journal For Numerical Methods In Engineering, 2009, 77 (5): 664-688.
    [187].Desmet, W. A wave based prediction technique for coupled vibro-acoustic analysis[D]. Katholieke Universiteit Leuven, Department of Mechanical Engineering, Heverlee, Belgium 1998.
    [188].Desmet, W. Mid-frequency vibro-acoustic modelling: challenges and potential solutions[A]. In Proceedingsof ISMA 2002[C], 2002; 835-862.
    [189].Langley, R.,Bremner, P. A hybrid method for the vibration analysis of complex structural-acoustic systems[J]. The Journal of the Acoustical Society of America, 1999, 105 (3): 1657-1671.
    [190].胡莹,陈克安.基于FE-SEA混合法的梁弯曲振动响应分析[J].振动与冲击, 2008, 27 (7): 91-96.
    [191].Vlahopoulos, N.,Zhao, X. An investigation of power flow in the mid-frequency range for systems of co-linear beams based on a hybrid finite element formulation[J]. Journal of Sound and Vibration, 2001, 242 (3): 445-473.
    [192].Shorter, P.,Langley, R. Vibro-acoustic analysis of complex systems[J]. Journal of Sound and Vibration, 2005, 288 (3): 669-699.
    [193].Cotoni, V.,Shorter, P.,Langley, R. Numerical and experimental validation of a hybrid finite element-statistical energy analysis method[J]. The Journal of the Acoustical Society of America, 2007, 122 (1): 259-270.
    [194].陈书明,王登峰,曹晓玲,昝建明.车内噪声FE-SEA混合建模及分析方法[J].振动工程学报, 2010, 23 (2): 140-144.
    [195].张瑾,邹元杰,韩增尧.声振力学环境预示的FE-SEA混合方法研究[J].强度与环境, 2010, 37 (3): 14-20.
    [196].邹元杰,张瑾,韩增尧.基于FE-SEA方法的卫星部组件随机振动条件研究[J].航天器环境工程, 2010, 27 (4): 456-461.
    [197].Maxit, L. Wavenumber space and physical space responses of a periodically ribbed plate to a point drive: A discrete approach[J]. Applied Acoustics, 2009, 70 (4): 563-578.
    [198].Berot, F.,Peseux, B. Vibro-acoustic behavior of submerged cylindrical shells: analytical formulation and numerical model[J]. Journal of Fluids and Structures, 1998, 12 (8): 959-1003.
    [199].Liu, C.,Chen, P. Numerical analysis of immersed finite cylindrical shells using a coupled BEM/FEM and spatial spectrum approach[J]. Applied Acoustics, 2009, 70 (2): 256-266.
    [200].Mace, B. R.,Duhamel, D.,Brennan, M. J., etc. Finite element prediction of wave motion in structural waveguides[J]. The Journal of the Acoustical Society of America, 2005, 117 (5): 2835-2843.
    [201].Mace, B. R.,Manconi, E. Modelling wave propagation in two-dimensional structures using finite element analysis[J]. Journal of Sound and Vibration, 2008, 318 (4-5): 884-902.
    [202].Mead, D. The forced vibration of one-dimensional multi-coupled periodic structures: An application to finite element analysis[J]. Journal of Sound and Vibration, 2009, 319 (1-2): 282-304.
    [203].Houillon, L.,Ichchou, M. N.,Jezequel, L. Wave motion in thin-walled structures[J]. Journal of Sound and Vibration, 2005, 281 (3-5): 483-507.
    [204].Ichchou, M.,Akrout, S.,Mencik, J. Guided waves group and energy velocities via finite elements[J]. Journal of Sound and Vibration, 2007, 305 (4-5): 931-944.
    [205].Mencik, J.,Ichchou, M. Multi-mode propagation and diffusion in structures through finite elements[J]. European Journal of Mechanics/A Solids, 2005, 24 (5): 877-898.
    [206].Ichchou, M.,Mencik, J.,Zhou, W. Wave finite elements for low and mid-frequency description of coupled structures with damage[J]. Computer Methods In Applied Mechanics and Engineering, 2009, 198 (15-16): 1311-1326.
    [207].Mencik, J. M.,Ichchou, M. N. A substructuring technique for finite element wave propagation in multi-layered systems[J]. Computer Methods In Applied Mechanics and Engineering, 2008, 197 (6-8): 505-523.
    [208].Manconi, E.,Mace, B. Modelling wave propagation in cylinders using a wave/finite element technique[A]. In 19th International Congress on Acoustics [C], Madrid, 2007.
    [209].Mead, D.,Bardell, N. Free vibration of a thin cylindrical shell with periodic circumferential stiffeners[J]. Journal of Sound and Vibration, 1987, 115 (3): 499-520.
    [210].Mead, D.,Bardell, N. Free vibration of a thin cylindrical shell with discrete axial stiffeners[J]. Journal of Sound and Vibration, 1986, 111 (2): 229-250.
    [211].Lee, S.,Vlahopoulos, N.,Waas, A. M. Analysis of wave propagation in a thin composite cylinder with periodic axial and ring stiffeners using periodic structure theory[J]. Journal of Sound and Vibration, 329 (16): 3304-3318.
    [212].Maess, M.,Gaul, L. Substructuring and model reduction of pipe components interacting with acoustic fluids[J]. Mechanical Systems and Signal Processing, 2006, 20 (1): 45-64.
    [213].Maess, M.,Wagner, N.,Gaul, L. Dispersion curves of fluid filled elastic pipes by standard FE models and eigenpath analysis[J]. Journal of Sound and Vibration, 2006, 296 (1-2): 264-276.
    [214].Maess, M.,Herrmann, J.,Gaul, L. Finite element analysis of guided waves in fluid-filled corrugated pipes[J].The Journal of the Acoustical Society of America, 2007, 121 (3): 1313-1323.
    [215].Bobillot, A.,Balmes, E. Iterative techniques for eigenvalue solutions of damped structures coupled with fluids[A]. In 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[C], Denver, CO, 2002.
    [216].Mencik, J.,Ichchou, M. Wave finite elements in guided elastodynamics with internal fluid[J]. International Journal of Solids and Structures, 2007, 44 (7-8): 2148-2167.
    [217].Nilsson, C.,Jones, C.,Thompson, D., etc. A waveguide finite element and boundary element approach to calculating the sound radiated by railway and tram rails[J]. Journal of Sound and Vibration, 2009, 321 (3-5): 813-836.
    [218].俞孟萨,黄国荣,伏同先.潜艇机械噪声控制技术的现状与发展概述[J].船舶力学, 2003, 7 (004): 110-120.
    [219].姚耀中,林立.潜艇机械噪声控制技术综述[J].舰船科学技术, 2007, 29 (001): 21-26.
    [220].杜冬.动力吸振器控制算法研究及在舰船设备减振中的应用[D].上海交通大学2007.
    [221].Vakakis, A.,Gendelman, O.,McFarland, D., etc. Nonlinear targeted energy transfer in mechanical and structural systems[M]. Springer Verlag, 2008.
    [222].Du, Y.,Burdisso, R. A.,Nikolaidis, E. Control of internal resonances in vibration isolators using passive and hybrid dynamic vibration absorbers[J]. Journal of Sound and Vibration, 2005, 286 (4-5): 697-727.
    [223].Dylejko, P. G.,Kessissoglou, N. J.,Tso, Y., etc. Optimisation of a resonance changer to minimise the vibration transmission in marine vessels[J]. Journal of Sound and Vibration, 2007, 300 (1-2): 101-116.
    [224].Goodwin, A. J. H. The design of a resonance changer to overcome excessive axial vibration of propeller shafting[J]. Institute of Marine Engineers-Transactions, 1960, 72: 37-63.
    [225].Sun, J. Q.,Jolly, M. R.,Norris, M. A. Passive, adaptive and active tuned vibration absorbers-a survey[J]. Journal of Vibration and Acoustics, 1995, 117: 234-242.
    [226].Yilmaz, C.,Kikuchi, N. Analysis and design of passive band-stop filter-type vibration isolators for low-frequency applications[J]. Journal of Sound and Vibration, 2006, 291 (3-5): 1004-1028.
    [227].阿斯尼基福罗夫,谢信,王轲译.船体结构声学设计[M].北京:国防工业出版社, 1998; 124- 135.
    [228].刘见华,金咸定,李喆.阻振质量阻抑结构声的传递[J].上海交通大学学报, 2003, 37 (008): 1201-1204.
    [229].刘见华,金咸定,李晓彬.阻振质量对板平面弯曲波传播的阻抑[J].船舶力学, 2006, 10 (006): 131-137.
    [230].桂洪斌,金咸定.大质量隔振的机械阻抗法分析[J].振动工程学报, 2004, 17 (S): 1032-1035.
    [231].李江涛,王玮波,吴有生.阻振质量对基座纵横向振动传递的影响[J].船舶力学学术会议暨《船舶力学》创刊十周年纪念学术会议论文集. , 2007.
    [232].Chidamparam, P.,Leissa, A. Vibrations of planar curved beams, rings, and arches[J]. Applied Mechanics Reviews, 1993, 46 (9): 467-483.
    [233].Charpie, J.,Burroughs, C. An analytic model for the free in‐ plane vibration of beams of variable curvature and depth[J]. The Journal of the Acoustical Society of America, 1993, 94 (2): 866-879.
    [234].Markus, S.,Nanasi, T. Vibration of curved beams[J]. The Shock and Vibration Inform. Center(Defense) The Shock and Vibration Dig., 1981, 13 (4): 3-14.
    [235].Walsh, S.,White, R. Vibrational power transmission in curved beams[J]. Journal of Sound and Vibration, 2000, 233 (3): 455-488.
    [236].Walsh, S.,White, R. Measurement of vibrational power transmission in curved beams[J]. Journal of Sound and Vibration, 2001, 241 (2): 157-183.
    [237].Wu, C.,Lundberg, B. Reflection and transmission of the energy of harmonic elastic waves in a bent bar[J]. Journal of Sound and Vibration, 1996, 190 (4): 645-659.
    [238].Bot, A. L.,Ichchou, M. N.,Jezequel, L. Energy flow analysis for curved beams[J]. The Journal of the Acoustical Society of America, 1997, 102 (2): 943-954.
    [239].Kang, B.,Riedel, C. H.,Tan, C. A. Free vibration analysis of planar curved beams by wave propagation[J]. Journal of Sound and Vibration, 2003, 260 (1): 19-44.
    [240].Lee, S. K.,Mace, B. R.,Brennan, M. J. Wave propagation, reflection and transmission in curved beams[J]. Journal of Sound and Vibration, 2007, 306 (3-5): 636-656.
    [241].Jeong, C.,Ih, J. Effects of nearfield waves and phase information on the vibration analysis of curved beams [J]. Journal of Mechanical Science and Technology, 2009, 23 (8): 2193-2205.
    [242].Cuschieri, J. Structural power-flow analysis using a mobility approach of an L-shaped plate[J]. The Journalof the Acoustical Society of America, 1990, 87 (3): 1159-1165.
    [243].Cuschieri, J.,McCollum, M. In-plane and out-of-plane waves’power transmission through an L-plate junction using the mobility power flow approach[J]. The Journal of the Acoustical Society of America, 1996, 100 (2): 857-870.
    [244].Langley, R.,Heron, K. Elastic wave transmission through plate/beam junctions[J]. Journal of Sound and Vibration, 1990, 143 (2): 241-253.
    [245].Skeen, M. An investigation of energy flow through coupled plate structures[D]. University of New South Wales 2008.07.
    [246].Wang, Z.,Xing, J.,Price, W. An investigation of power flow characteristics of L-shaped plates adopting a substructure approach[J]. Journal of Sound and Vibration, 2002, 250 (4): 627-648.
    [247].Spadoni, A.,Ruzzene, M.,Scarpa, F. Dynamic response of chiral truss-core assemblies[J]. Journal of intelligent material systems and structures, 2006, 17 (11): 941-952.
    [248].Tee, K.,Spadoni, A.,Scarpa, F., etc. Vibroacoustics and wave propagation of novel chiral honeycombs[A]. In Proceedings of SPIE, 2008; 1-9.
    [249]. Starostin, E.,Van der Heijden, G. The shape of a M bius strip[J]. Nature Materials, 2007, 6 (8): 563-567.
    [250].Ibrahim, R. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound and Vibration, 2008, 314 (3-5): 371-452.
    [251].Carrella, A.,Brennan, M.,Waters, T., etc. On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets[J]. Journal of Sound and Vibration, 2008, 315 (3): 712-720.
    [252].Chin, E.,Lee, K.,Winterflood, J., etc. Low frequency vertical geometric anti-spring vibration isolators[J]. Physics Letters A, 2005, 336 (2-3): 97-105.
    [253].Dumas, J.,Lee, K.,Winterflood, J., etc. Testing of a multi-stage low-frequency isolator using Euler spring and self-damped pendulums[J]. Classical and Quantum Gravity, 2004, 21 (5): 965-971.
    [254].Ju, L.,Blair, D. Low resonant frequency cantilever spring vibration isolator for gravitational wave detectors [J]. Review of Scientific Instruments, 1994, 65 (11): 3482-3488.
    [255].Jenkins, M.,Nelson, P.,Pinnington, R., etc. Active isolation of periodic machinery vibrations[J]. Journal of Sound and Vibration, 1993, 166 (1): 117-140.
    [256].Gardonio, P.,Elliott, S.,Pinnington, R. Active isolation of structural vibration on a multiple-degree-of- freedom system, part I: the dynamics of the system[J]. Journal of Sound and Vibration, 1997, 207 (1): 61-93.
    [257].Gardonio, P.,Elliott, S.,Pinnington, R. Active isolation of structural vibration on a multiple-degree-of- freedom system, part II: effectiveness of active control strategies[J]. Journal of Sound and Vibration, 1997, 207 (1): 95-121.
    [258].Gardonio, P.,Elliott, S. Passive and active isolation of structural vibration transmission between two plates connected by a set of mounts[J]. Journal of Sound and Vibration, 2000, 237 (3): 483-511.
    [259].Daley, S.,Johnson, F. A.,Pearson, J. B., etc. Active vibration control for marine applications[J]. Control Engineering Practice, 2004, 12 (4): 465-474.
    [260].Preumont, A.,Horodinca, M.,Romanescu, I., etc. A six-axis single-stage active vibration isolator based on Stewart platform[J]. Journal of Sound and Vibration, 2007, 300 (3-5): 644-661.
    [261].Serrand, M.,Elliott, S. Multichannel feedback control for the isolation of base-excited vibration[J]. Journal of Sound and Vibration, 2000, 234 (4): 681-704.
    [262].Huang, X.,Elliott, S.,Brennan, M. Active isolation of a flexible structure from base vibration[J]. Journal of Sound and Vibration, 2003, 263 (2): 357-376.
    [263].Brennan, M.,Elliott, S.,Huang, X. A demonstration of active vibration isolation using decentralized velocity feedback control[J]. Smart Materials and Structures, 2006, 15 (1): N19-N22.
    [264].Kim, S.,Elliott, S.,Brennan, M. Decentralized control for multichannel active vibration isolation[J]. Ieee Transactions on Control Systems Technology, 2001, 9 (1): 93-100.
    [265].牛军川,宋孔杰,霍睿等.柔性耦合系统主动隔振策略研究[J].机械工程学报, 2001, 37 (12): 27-29.
    [266].Niu, J.,Song, K.,Lim, C. On active vibration isolation of floating raft system[J]. Journal of Sound and Vibration, 2005, 285 (1-2): 391-406.
    [267].Pan, X.,Tso, Y.,Juniper, R. Active control of low-frequency hull-radiated noise[J]. Journal of Sound and Vibration, 2008, 313 (1-2): 29-45.
    [268].Pan, X.,Tso, Y.,Juniper, R. Active control of radiated pressure of a submarine hull[J]. Journal of Sound and Vibration, 2008, 311 (1-2): 224-242.
    [269].Caresta, M. Active control of sound radiated by a submarine in bending vibration[J]. Journal of Sound andVibration, 2011, 330 (4): 615-624.
    [270].Fuller, C. R.,Elliott, S. J.,Nelson, P. A., etc. Active control of vibration[M]. Academic Press, 1996.
    [271].Nelson, P. A.,Elliott, S. J.,Williams, J. E. F. Active control of sound[M]. Academic Press, 1992.
    [272].陈克安,马远良.自适应有源消声控制-原理,算法及实现.西安:西北工业大学出版社: 1993.
    [273]Liang, W.,Woon Seng, G.,Sen, M. Integration of Bass Enhancement and Active Noise Control System in Automobile Cabin[J]. Advances in Acoustics and Vibration, 2008, 2008.
    [274]Lichuan, L.,Shruthi, G.,Priya, T., etc. Still in womb: Intrauterine acoustic embedded active noise control for infant incubators[J]. Advances in Acoustics and Vibration, 2008, 2008.
    [275]李双.基于模态分析方法的有源声学结构研究[D].西北工业大学2007.
    [276].欧进萍.结构振动控制:主动,半主动和智能控制[M].科学出版社, 2003.
    [277].盖玉先,李旦.振动主动控制中电磁作动器动态特性的研究[J].高技术通讯, 2001, 11 (006): 76-78.
    [278].赵利颇,潘存治,马强.基于电磁作动器的主动隔振系统研究[J].石家庄铁道学院学报, 2006, 19 (002): 51-53.
    [279].Zhang, Z.,Chen, Y.,Yin, X., etc. Active vibration isolation and underwater sound radiation control[J]. Journal of Sound and Vibration, 2008, 318 (4-5): 725-736.
    [280].Zhang, Z.,Hu, F.,Hua, H. Simulation and experiment on active vibration isolation with an adaptive method[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 224 (3): 225-238.
    [281].Zhang, Z.,Huang, X.,Chen, Y., etc. Underwater sound radiation control by active vibration isolation: an experiment[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2009, 223 (4): 503-515.
    [282].Hussein, M. Dynamics of banded materials and structures: analysis, design and computation in multiple scales[D]. The University of Michigan 2004.
    [283].Brillouin, L. Wave propagation in periodic structures[M]. 3rd Edition . New York: Dover Publications, 2003.
    [284].Cremer, L.,Heckl, M.,Petersson, B. A. T. Structure-borne sound: structural vibrations and sound radiation at audio frequencies[M]. 3rd Edition. Berlin: Springer, 2005.
    [285].Mead, D.,Mallik, A. An approximate theory for the sound radiated from a periodic line-supported plate[J]. Journal of Sound and Vibration, 1978, 61 (3): 315-326.
    [286].Mead, D. Free wave propagation in periodically supported, infinite beams[J]. Journal of Sound and Vibration, 1970, 11 (2): 181-197.
    [287].Mead, D. A general theory of harmonic wave propagation in linear periodic systems with multiple coupling[J]. Journal of Sound and Vibration, 1973, 27 (2): 235-260.
    [288].Mead, D. Wave propagation and natural modes in periodic systems: I. Mono-coupled systems[J]. Journal of Sound and Vibration, 1975, 40 (1): 1-18.
    [289].Mead, D. Wave propagation and natural modes in periodic systems: II. Multi-coupled systems, with and without damping[J]. Journal of Sound and Vibration, 1975, 40 (1): 19-39.
    [290].Heckl, M. Coupled waves on a periodically supported Timoshenko beam[J]. Journal of Sound and Vibration, 2002, 252 (5): 849-882.
    [291].Mangaraju, V.,Sonti, V. Wave attenuation in periodic three-layered beams: analytical and FEM study[J]. Journal of Sound and Vibration, 2004, 276 (3-5): 541-570.
    [292].Mead, D.,Parthan, S. Free wave propagation in two-dimensional periodic plates[J]. Journal of Sound and Vibration, 1979, 64 (3): 325-348.
    [293].Mead, D.,Zhu, D.,Bardell, N. Free vibration of an orthogonally stiffened flat plate[J]. Journal of Sound and Vibration, 1988, 127 (1): 19-48.
    [294].Mead, D. J. Wave propagation in continuous periodic structures: research contributions from Southampton, 1964-1995[J]. Journal of Sound and Vibration, 1996, 190 (3): 495-524.
    [295].Langley, R. S. The response of two-dimensional periodic structures to point harmonic forcing[J]. Journal of Sound and Vibration, 1996, 197 (4): 447-469.
    [296].Langley, R. S.,Bardell, N. S.,Ruivo, H. M. The response of two-dimensional periodic structures to harmonic point loading: a theoretical and experimental study of a beam grillage[J]. Journal of Sound and Vibration, 1997, 207 (4): 521-535.
    [297].Ruzzene, M. Control of wave propagation in sandwich plate rows with periodic honeycomb core[J]. Journal of Engineering Mechanics, 2003, 129 (9): 975-986.
    [298].Ruzzene, M. Vibration and sound radiation of sandwich beams with honeycomb truss core[J]. Journal of Sound and Vibration, 2004, 277 (4-5): 741-763.
    [299].Richards, D.,Pines, D. Passive reduction of gear mesh vibration using a periodic drive shaft[J]. Journal of Sound and Vibration, 2003, 264 (2): 317-342.
    [300].Díaz-de-Anda, A.,Pimentel, A.,Flores, J., etc. Locally periodic Timoshenko rod: Experiment and theory[J]. The Journal of the Acoustical Society of America, 2005, 117 (5): 2814-2819.
    [301].Toso, M. Wave propagation in rods, shells, and rotating shafts with non-uniform geometry[D]. University of Maryland 2004.
    [302].Sigmund, O.,Jensen, J. S. Systematic design of phononic band-gap materials and structures by topology optimization[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2003, 361 (1806): 1001-1019.
    [303].Jensen, J. S. Phononic band gaps and vibrations in one-and two-dimensional mass–spring structures[J]. Journal of Sound and Vibration, 2003, 266 (5): 1053-1078.
    [304].郁殿龙.基于声子晶体理论的梁板类周期结构振动带隙特性研究[D].国防科学技术大学2006.
    [305].Jeong, S. Analysis of vibration of 2-D periodic cellular structures[D]. Georgia Institute of Technology 2005.
    [306].Phani, A. S.,Woodhouse, J.,Fleck, N. A. Wave propagation in two-dimensional periodic lattices[J]. The Journal of the Acoustical Society of America, 2006, 119 (4): 1995-2005.
    [307].Yong, Y.,Lin, Y. K. Propagation of decaying waves in periodic and piecewise periodic structures of finite length[J]. Journal of Sound and Vibration, 1989, 129 (2): 99–118.
    [308].Bondaryk, J. Vibration of truss structures[J]. The Journal of the Acoustical Society of America, 1997, 102 (4): 2167-2175.
    [309].Martinsson, P.,Movchan, A. Vibrations of lattice structures and phononic band gaps[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 2003, 56 (1): 45-64.
    [310].Sorokin, S. Analysis of wave propagation in sandwich plates with and without heavy fluid loading[J]. Journal of Sound and Vibration, 2004, 271 (3-5): 1039-1062.
    [311].Sorokin, S.,Ershova, O. Plane wave propagation and frequency band gaps in periodic plates and cylindrical shells with and without heavy fluid loading[J]. Journal of Sound and Vibration, 2004, 278 (3): 501-526.
    [312].Singh, A.,Pines, D. J.,Baz, A. Active/passive reduction of vibration of periodic one-dimensional structures using piezoelectric actuators[J]. Smart Materials and Structures, 2004, 13 (4): 698-711.
    [313].Baz, A. Active control of periodic structures[J]. Journal of Vibration and Acoustics, 2001, 123 (4): 472-479.
    [314].Ruzzene, M.,Baz, A. Control of wave propagation in periodic composite rods using shape memory inserts[J]. Journal of Vibration and Acoustics, 2000, 122 (2): 151-159.
    [315].Chen, T.,Ruzzene, M.,Baz, A. Control of wave propagation in composite rods using shape memory inserts: theory and experiments[J]. Journal of Vibration and Control, 2000, 6 (7): 1065-1081.
    [316].Wu, T.,Wang, K. Periodic isolator design enhancement via vibration confinement through eigenvector assignment and piezoelectric circuitry[J]. Journal of Vibration and Control, 2007, 13 (7): 989-1006.
    [317].Asiri, S. Tunable mechanical filter for longitudinal vibrations[J]. Shock and Vibration, 2007, 14 (5): 377-391.
    [318].Asiri, S.,Baz, A.,Pines, D. Active periodic struts for a gearbox support system[J]. Smart Materials and Structures, 2006, 15 (6): 1707-1714.
    [319].Langley, R. Wave Transmission Through One-Dimensional Near Periodic Structures: Optimum and to Random Disorder[J]. Journal of Sound and Vibration, 1995, 188 (5): 717-743.
    [320].Bouzit, D.,Pierre, C. Localization of vibration in disordered multi-span beams with damping[J]. Journal of Sound and Vibration, 1995, 187 (4): 625-648.
    [321].Movchan, A. Asymptotic models of Bloch-Floquet waves in periodic waveguides[J]. Vibration Problems ICOVP-2007, 2008, 126 291-305.
    [322].Li, F.,Wang, Y. Study on wave localization in disordered periodic layered piezoelectric composite structures[J]. International Journal of Solids and Structures, 2005, 42 (24-25): 6457-6474.
    [323].Sackman, J.,Kelly, J.,Javid, A. A layered notch filter for high-frequency dynamic isolation[J]. Journal of Pressure Vessel Technology, 1989, 111 (1): 17-24.
    [324].Ghosh, A. Periodically layered composites for attenuation of dynamic loads[J]. Nuclear Engineering and Design, 1985, 84 (1): 53-58.
    [325].Koo, G.,Park, Y. Vibration reduction by using periodic supports in a piping system[J]. Journal of Sound and Vibration, 1998, 210 (1): 53-68.
    [326].Asiri, S.,Baz, A.,Pines, D. Periodic struts for gearbox support system[J]. Journal of Vibration and Control, 2005, 11 (6): 709-721.
    [327].Szefi, J. T. Helicopter Gearbox Isolation Using Periodically Layered Fluidic Isolators[D]. Pennsylvania, USA: The Pennsylvania State University 2003.
    [328].Photiadis, D.,Williams, E.,Houston, B. Wave-number space response of a near periodically ribbed shell[J]. The Journal of the Acoustical Society of America, 1997, 101 (2): 877-886.
    [329].Gonella, S.,Ruzzene, M. Homogenization of vibrating periodic lattice structures[J]. Applied Mathematical Modelling, 2008, 32 (4): 459-482.
    [330].Lin, Y. K.,Donaldson, B. K. A brief survey of transfer matrix techniques with special reference to the analysis of aircraft panels[J]. Journal of Sound and Vibration, 1969, 10 (1): 103-143.
    [331].Signorelli, J.,Von Flotow, A. H. Wave propagation, power flow, and resonance in a truss beam[J]. Journal of Sound and Vibration, 1988, 126 (1): 127–144.
    [332].Von Flotow, A. H. Disturbance propagation in structural networks[J]. Journal of Sound and Vibration, 1986, 106 (3): 433-450.
    [333].Luongo, A.,Romeo, F. Real wave vectors for dynamic analysis of periodic structures[J]. Journal of Sound and Vibration, 2005, 279 (1-2): 309-325.
    [334].Gry, L.,Gontier, C. Dynamic modelling of railway track: a periodic model based on a generalized beam formulation[J]. Journal of Sound and Vibration, 1997, 199 (4): 531-558.
    [335].Duhamel, D. A recursive approach for the finite element computation of waveguides[J]. Journal of Sound and Vibration, 2009, 323 (1-2): 163-172.
    [336].Tao, J.,Liu, G.,Lam, K. Design optimization of marine engine-mount system[J]. Journal of Sound and Vibration, 2000, 235 (3): 477-494.
    [337].Swanson, D.,Wu, H.,Ashrafiuon, H. Optimization of aircraft engine suspension systems[J]. Journal of Aircraft, 1993, 30 (6): 979-984.
    [338].Yu, Y.,Naganathan, N.,Dukkipati, R. A literature review of automotive vehicle engine mounting systems[J]. Mechanism and Machine Theory, 2001, 36 (1): 123-142.
    [339].汪玉,陈国钧.船舶动力装置双层隔振系统的优化设计[J].中国造船, 2001, 42 (001): 45-49.
    [340].陈先进,吴崇健.基于极大滴法的两级隔振系统的优化设计[J].振动与冲击, 1999, 18 (004): 45-49.
    [341].毛为民,朱石坚,张振中.基于柔性基础的双层隔振系统概率灵敏度分析[J].海军工程大学学报, 2005, 17 (003): 52-56.
    [342].Jazar, G.,Narimani, A.,Golnaraghi, M., etc. Practical frequency and time optimal design of passive linear vibration isolation mounts[J]. Vehicle System Dynamics, 2003, 39 (6): 437-466.
    [343].TRANSMISSION, B. Optimization of passive and active non-linear vibration mounting systems based on vibratory power transmission[J]. Journal of Sound and Vibration, 1996, 194 (3): 295-316.
    [344].Nayfeh, T. A.,Emaci, E.,Vakakis, A. F. Application of nonlinear localization to the optimization of a vibration isolation system[J]. Aiaa Journal, 1997, 35 (8): 1378-1386.
    [345].Xie, S.,Or, S.,Chan, H., etc. Design optimization of machinery mounting systems with an elastic support structure[J]. Engineering Optimization, 2007, 39 (2): 229-244.
    [346].Xie, S.,Or, S.,Chan, H., etc. Design optimization of vibration isolation system through minimization of vibration power flow[J]. Structural Engineering and Mechanics, 2008, 28 (6): 677-694.
    [347].Snyman, J.,Heyns, P.,Vermeulen, P. Vibration isolation of a mounted engine through optimization[J]. Mechanism and Machine Theory, 1995, 30 (1): 109-118.
    [348].伍先俊,朱石坚.基于有限元的功率流计算及隔振系统优化设计技术研究[J].船舶力学, 2005, 9 (004): 138-145.
    [349].Lee, D.,Hwang, W.,Kim, C. Design sensitivity analysis and optimization of an engine mount system using an FRF-based substructuring method[J]. Journal of Sound and Vibration, 2002, 255 (2): 383-398.
    [350].Denli, H.,Sun, J. Structural-acoustic optimization of sandwich structures with cellular cores for minimum sound radiation[J]. Journal of Sound and Vibration, 2007, 301 (1-2): 93-105.
    [351].Fritze, D.,Marburg, S.,Hardtke, H. J. FEM-BEM-coupling and structural-acoustic sensitivity analysis for shell geometries[J]. Computers & Structures, 2005, 83 (2-3): 143-154.
    [352].张军,兆文忠,张维英.结构声辐射有限元/边界元法声学-结构灵敏度研究[J].振动工程学报, 2005, 18 (003): 366-370.
    [353].Christensen, S.,Sorokin, S.,Olhoff, N. On analysis and optimization in structural acoustics-Part I: Problemformulation and solution techniques[J]. Structural and Multidisciplinary Optimization, 1998, 16 (2): 83-95.
    [354].Christensen, S.,Sorokin, S.,Olhoff, N. On analysis and optimization in structural acoustics-Part II: Exemplifications for axisymmetric structures[J]. Structural and Multidisciplinary Optimization, 1998, 16 (2): 96-107.
    [355].傅志方,华宏星.模态分析理论与应用[M].上海交通大学出版社, 2000.
    [356].Lin, R.,Lim, M. Derivation of structural design sensitivities from vibration test data[J]. Journal of Sound and Vibration, 1997, 201 (5): 613-631.
    [357].Choi, K.,Kim, N. Structural Sensitivity Analysis and Optimization: Linear systems[M]. New York: Springer, 2005.
    [358].Chang, K. J.,Park, Y. P. Substructure dynamic modification using component receptance sensitivity[J]. Mechanical Systems and Signal Processing, 1998, 12 (4): 525-541.
    [359].Lee, D.,Hwang, W. Parametric optimization of complex systems using a multi-domain FRF-based substructuring method[J]. Computers & Structures, 2003, 81 (22-23): 2249-2257.
    [360].Foumani, M.,Khajepour, A.,Durali, M. Optimization of engine mount characteristics using experimental/ numerical analysis[J]. Journal of Vibration and Control, 2003, 9 (10): 1121-1139.
    [361].Holmstr m, K. Practical optimization with the tomlab environment in matlab[A]. In Proceedings of the 42nd SIMS Conference[C], Telemark University College, Porsgrunn, Norway, October, 2001; 89-108.
    [362].Alkhatib, R.,Nakhaie Jazar, G.,Golnaraghi, M. Optimal design of passive linear suspension using genetic algorithm[J]. Journal of Sound and Vibration, 2004, 275 (3-5): 665-691.
    [363].Gundogdu, O. Optimal seat and suspension design for a quarter car with driver model using genetic algorithms[J]. International Journal of Industrial Ergonomics, 2007, 37 (4): 327-332.
    [364].He, Y.,McPhee, J. A design methodology for mechatronic vehicles: Application of multidisciplinary optimization, multibody dynamics and genetic algorithms[J]. Vehicle System Dynamics, 2005, 43 (10): 697-733.
    [365].Goldberg, D. Genetic Algorithms in Search and Optimization[M]. New York: Addison-wesley, 1989.
    [1].Jetmundsen, B.,Bielawa, R.,Flannelly, W. Generalized frequency domain substructure synthesis[J]. Journal of The American Helicopter Society, 1988, 33 55.
    [2].Li, W. L.,Lavrich, P. Prediction of power flows through machine vibration isolators[J]. Journal of Sound and Vibration, 1999, 224 (4): 757-774.
    [3].Liu, W.,Ewins, D. Substructure synthesis via elastic media[J]. Journal of Sound and Vibration, 2002, 257 (2): 361-379.
    [4].Cremer, L.,Heckl, M.,Petersson, B. A. T. Structure-borne sound: structural vibrations and sound radiation at audio frequencies[M]. 3rd Edition. Berlin: Springer, 2005.
    [5].Petersson, B.,Plunt, J. On effective mobilities in the prediction of structure-borne sound transmission between a source structure and a receiving structure, part I: Theoretical background and basic experimental studies[J]. Journal of Sound and Vibration, 1982, 82 (4): 517-529.
    [6].Foumani, M.,Khajepour, A.,Durali, M. Optimization of engine mount characteristics using experimental/ numerical analysis[J]. Journal of Vibration and Control, 2003, 9 (10): 1121-1139.
    [7].原春晖,朱显明,汪浩.设备安装对基座导纳测量的影响研究[J].中国造船, 2005, 46 (003): 41-46.
    [8].Liu, C.,Chen, P. Numerical analysis of immersed finite cylindrical shells using a coupled BEM/FEM and spatial spectrum approach[J]. Applied Acoustics, 2009, 70 (2): 256-266.
    [9].Everstine, G.,Henderson, F. Coupled finite element/boundary element approach for fluid-structure interaction[J]. Journal of the Acoustical Society of America, 1990, 87 (5): 1938-1947.
    [10].钱振华,黄修长,华宏星.用于壳体自由振动分析的广义协调元[J].噪声与振动控制, 2010, 1: 9-14.
    [11].Ragnarsson, P.,Pluymers, B.,Donders, S., etc. Subcomponent modelling of input parameters for statistical energy analysis by using a wave-based boundary condition[J]. Journal of Sound and Vibration, 329 (1): 96-108.
    [12].SYSNOISE, R. 5.6 User's Manual[M]. 2003.
    [13].何兵蓉.水下加肋弹性圆柱壳体的振动和声辐射[D].上海交通大学硕士论文1999.
    [14].Xiong, Y.,Xing, J.,Price, W. Power flow analysis of complex coupled systems by progressive approaches[J]. Journal of Sound and Vibration, 2001, 239 (2): 275-295.
    [15].Pan, J.,Hansen, C. Total power flow from a vibrating rigid body to a thin panel through multiple elastic mounts[J]. The Journal of the Acoustical Society of America, 1992, 92 (2): 895-907.
    [16].严济宽.机械振动隔离技术[M].上海科学技术文献出版社, 1986.
    [17].Yan, B.,Brennan, M.,Elliott, S., etc. Characteristics of distributed parameter isolators[J]. Journal of Sound and Vibration, 2009, 320 (3): 516-526.
    [18].Kari, L. On the waveguide modelling of dynamic stiffness of cylindrical vibration isolators. Part I: The model, solution and experimental comparison[J]. Journal of Sound and Vibration, 2001, 244 (2): 211-233.
    [19].Kari, L. On the waveguide modelling of dynamic stiffness of cylindrical vibration isolators. Part II: The dispersion relation solution, convergence analysis and comparison with simple models[J]. Journal of Sound and Vibration, 2001, 244 (2): 235-257.
    [20].Dickens, J. Investigation of asymmetrical vibration isolators for maritime machinery applications[R]. DSTO Aeronautical and Maritime Research Laboratory, 1999.
    [21].Dickens, J.,Norwood, C. Universal method to measure dynamic performance of vibration isolators under static load[J]. Journal of Sound and Vibration, 2001, 244 (4): 685-696.
    [22].Forrest, J. Experimental modal analysis of three small-scale vibration isolator models[J]. Journal of Sound and Vibration, 2006, 289 (1-2): 382-412.
    [23].王锁泉,周庆云,席亦农, etc.隔振元件机械阻抗测量与数据处理方法研究[J].舰船科学技术, 2006, 28 (S2).
    [24].Kim, S.,Singh, R. Multi-dimensional characterization of vibration isolators over a wide range of frequencies[J]. Journal of Sound and Vibration, 2001, 245 (5): 877-913.
    [25].周相荣,王强.橡胶减振元件中高频机械阻抗的数值模拟[J].噪声与振动控制, 2006, 26 (003): 8-10.
    [26].吴广明.舰船复杂隔振系统建模及其功率流研究[D].上海交通大学博士论文2004.03.
    [27].钟章贵,余永丰,邓海华, etc.整舱浮筏隔振系统功率流理论与试验研究[J].噪声与振动控制, 2007, 27 (003): 24-27.
    [1].Ojalvo, I. Coupled twist-bending vibrations of incomplete elastic rings[J]. International Journal of Mechanical Sciences, 1962, 4 (1): 53-72.
    [2].Langley, R. A transfer matrix analysis of the energetics of structural wave motion and harmonic vibration[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1996, 452 (1950): 1631-1648.
    [3].Kang, Y. J.,Yoo, C. H. Thin-Walled Curved Beams. II: Analytical Solutions for Buckling of Arches[J]. Journal of Engineering Mechanics, 1994, 120 (10): 2102-2125.
    [4].Bonello, P.,Brennan, M. J.,Elliott, S. J. Vibration control using an adaptive tuned vibration absorber with a variable curvature stiffness element[J]. Smart Materials and Structures, 2005, 14 (5): 1055-1065.
    [5].刘鸿文.材料力学[M].北京:高等教育出版社, 1986.
    [6].左鹤声.机械阻抗方法与应用[M].机械工业出版社, 1987.
    [7]. Huang Xiuchang, Jiang Aihua, Zhang Zhiyi, Hua Hongxing. Design and Optimization of Periodic Structure Mechanical Filter in Suppression of Foundation Resonances. Journal of Sound and Vibration. 2011, 330(20): 4689-4712.
    [8].Romeo, F.,Luongo, A. Invariant representation of propagation properties for bi-coupled periodic structures[J]. Journal of Sound and Vibration, 2002, 257 (5): 869-886.
    [9].Romeo, F.,Luongo, A. Vibration reduction in piecewise bi-coupled periodic structures[J]. Journal of Sound and Vibration, 2003, 268 (3): 601-615.
    [10].崔艳.复杂隔振系统的频率平均功率流分析与效果评估研究[D].山东大学2007.
    [1].Mazeaud, B.,Galland, M. A multi-channel feedback algorithm for the development of active liners to reduce noise in flow duct applications[J]. Mechanical Systems and Signal Processing, 2007, 21 (7): 2880-2899.
    [2].Kim, S.,Park, Y. Active control of multi-tonal noise with reference generator based on on-line frequency estimation[J]. Journal of Sound and Vibration, 1999, 227 (3): 647-666.
    [3].Belanger, P.,Berry, A.,Pasco, Y., etc. Multi-harmonic active structural acoustic control of a helicopter main transmission noise using the principal component analysis[J]. Applied Acoustics, 2009, 70 (1): 153-164.
    [4].张志谊,王俊芳,周建鹏, etc.基于跟踪滤波的自适应振动控制[J].振动与冲击, 2009, 28 (002): 64-67.
    [5].Fahy, F.,Gardonio, P. Sound and structural vibration: radiation, transmission and response[M]. 2nd ed. Oxford: Academic Press, 2007.
    [6].Zhang, Z.,Hu, F.,Hua, H. Simulation and experiment on active vibration isolation with an adaptive method[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 224 (3): 225-238.
    [7].Zhang, Z.,Huang, X.,Chen, Y., etc. Underwater sound radiation control by active vibration isolation: an experiment[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2009, 223 (4): 503-515.
    [1].冷文浩.带有复合结构的多层隔振系统振动传递及声幅射研究[D].中国船舶科学研究中心博士论文1997.
    [2].徐张明.带浮筏装置的水中壳体模型振动声辐射及其结构参数灵敏度研究[D].上海交通大学博士论文2003.
    [3].Singh, R.,Kim, S. Examination of multi-dimensional vibration isolation measures and their correlation to sound radiation over a broad frequency range[J]. Journal of Sound and Vibration, 2003, 262 (3): 419-455.
    [4].Febbo, M.,Vera, S. Optimization of a Two Degree of Freedom System Acting as a Dynamic Vibration Absorber[J]. Journal of Vibration and Acoustics, 2008, 130 (1): 011013-1-011013-11.
    [1].Liu, C. Combination of an improved FRF-based substructure synthesis and power flow method with application to vehicle axle noise analysis[J]. Shock and Vibration, 2008, 15 (1): 51-60.
    [2].Huizinga, A.,Van Campen, D.,De Kraker, A. Application of hybrid frequency domain substructuring for modelling an automotive engine suspension[J]. Journal of Vibration and Acoustics, 1997, 119 (3): 304-310.
    [3].Ochsner, S. D.,Bernhard, R. J. Application of a component mobility modeling technique to automotive suspension systems[J]. Noise Control Engineering Journal, 1995, 43 (3): 73-82.
    [4].Lim, T. C.,Steyer, G. C. Hybrid experimental-analytical simulation of structure-borne noise and vibration problems in automotive systems[J]. SAE transactions, 1993, 101: 585-585.
    [5].Dambrogio, W.,Sestieri, A. Recent Research Developments in Sound and Vibration[J]. Analysis of Coupled Structures Using Combined Experimental and Theoretical Models, Transworld Research Network Publishers, New Delhi, India, 2003, 173-193.
    [6].Lim, T. C.,Steyer, G. C. An improved numerical procedure for the coupling of dynamic components using frequency response functions[A]. In Proceedings of the Ninth International Modal Analysis Conference[C], 1992; 355-355.
    [7].Otte, D.,Leuridan, J.,Grangier, H., etc. Coupling of Structures Using Measured FRF's by Means of SVD-based Data Reduction Techniques[A]. In Proceedings of the Eighth International Modal Analysis Conference[C], 1990; 213-220.
    [8].Otte, D.,Leuridan, J.,Grangier, H., etc. Prediction of the dynamics of structural assemblies using measured FRF-data: some improved data enhancement techniques[A]. In Proceedings of the Ninth International Modal Analysis Conference[C], 1991; 909-918.
    [9].Duarte, M. L. M. Experimentally-derived structural models for use in further dynamic analysis[D]. University of London Department of Mechanical Engineering, Imperical College of Scence, Technology and Medicine 1996.
    [10].Williams, A.,Chipman, C.,Avitabile, P. Modal and Frequency Based Substructuring Using Rotational DOF Considerations[A]. In Proceedings of the 26th International Modal Analysis Conference[C], Orlando, Florida,February 2008.
    [11].De Klerk, D.,Rixen, D.,Voormeeren, S. General framework for dynamic substructuring: history, review, and classification of techniques[J]. AIAA Journal. 2008, 46 (5): 1169-1181.
    [12].Valk, P.,Wuijckhuijse, J.,Klerk, D. A Benchmark Test Structure for Experimental Dynamic Substructuring[J]. Structural Dynamics, 2011, 3: 1113-1122.
    [13].Rixen, D. How measurement inaccuracies induce spurious peaks in Frequency Based Substructuring[A]. In Proceedings of the Twenty Sixth International Modal Analysis Conference, Society for Experimental Mechanics[C], Orlando, FL (Bethel, CT), 2008.
    [14].Sanliturk, K.,Cakar, O. Noise elimination from measured frequency response functions[J]. Mech Syst Signal Process, 2005, 19 (3): 615-631.
    [15].Gialamas, T.,Tsahalis, D.,Otte, D., etc. Substructuring technique: improvement by means of singular value decomposition (SVD)[J]. Applied Acoustics, 2001, 62 (10): 1211-1219.
    [16].Bregant, L.,Sas, P.,Otte, D. FRF substructure synthesis- Evaluation and validation of data reduction methods[A]. In International Modal Analysis Conference, 13th,[C], Nashville, TN; U.S.A;, 1995; 1592-1597.
    [17].Liu, W. Structural dynamic analysis and testing of coupled structures[D]. London: University of London Department of Mechanical Engineering, Imperical College of Scence, Technology and Medicine 2000.
    [18].Cuppens, K.,Sas, P.,Hermans, L. Evaluation of the FRF based substructuring and modal synthesis technique applied to vehicle FE data[A]. In Proceedings of the Twenty fifth International Conference on Noise and Vibration Engineering, ISMA, Leuven, Belgium, 2000.
    [19].GAUL, L.,MOLL, W. Substructuring using experimental modal data[A]. In SPIE proceedings series, 2002.
    [20].Nicgorski, D.,Avitabile, P. Experimental issues related to frequency response function measurements for frequency-based substructuring[J]. Mechanical System and Signal Processing, 2010, 24 (5): 1324-1337.
    [21].Nicgorski, D.,Avitabile, P. Conditioning of FRF measurements for use with frequency based substructuring[J]. Mechanical System and Signal Processing, 2010, 24 (2): 340-351.
    [22].Carne, T. G.,Dohrmann, C. R. Improving experimental frequency response function matrices for admittance modeling[A]. In Proceeding of the 24th International Modal Analysis Conference (IMAC XXIV)[C], St. Louis, Missouri, 2006.
    [23].Varoto, P.,Lofrano, M.,Cicogna, T., etc. Moment mobility FRF measurement techniques[A]. In IMAC-XXIV Conference & Exposition on Structural Dynamics [C], 2006.
    [24].Helderweirt, S.,Van der Auweraer, H.,Mas, P., etc. Application of accelerometer-based rotational degree of freedom measurements for engine subframe modelling[A]. In Proceedings of the 19th international modal analysis conference[C], 2001; 1298-1304.
    [25].Avitabile, P.,O'CALLAHAN, J. Frequency response function expansion for unmeasured translation and rotation DOFS for impedance modelling applications[J]. Mechanical System and Signal Processing, 2003, 17 (4): 723-745.
    [26].De Klerk, D.,Rixen, D.,Voormeeren, S., etc. Solving the RDoF Problem in Experimental Dynamic Substructuring[A]. In Proceedings of the Twenty Sixth International Modal Analysis Conference, Society for Experimental Mechanics Paper 129[C], 2008.
    [27].Bregant, L.,Casagrande, D. Rotational degrees of freedom data synthesis based on force excitation[A]. In Proceedings of the International Seminar on Modal Analysis, ISMA25[C], Leuven, Belgica, 2001; 981-988.
    [28].de Klerk, D.,Voormeeren, S.,Petzsche, T. Enhanced FRF Determination using a 3D Impedance Head[A]. In Proceedings of the Twenty Sixth International Modal Analysis Conference, Society for Experimental Mechanics[C], Orlando,FL, 2008.
    [29].Carne, T. G.,Griffith, D. T.,Casias, M. E. Support conditions for experimental modal analysis[J]. Sound and Vibration, 2007, 41 (6): 10-16.
    [30].Sj vall, P.,Abrahamsson, T. Substructure system identification from coupled system test data[J]. Mechanical System and Signal Processing, 2008, 22 (1): 15-33.
    [31].Carne, T. G.,Dohrmann, C. R. Experimental-based modeling of a support structure as part of a full system model[A]. In Proceedings from the 18th International Modal Analysis Conference[C], 2000; 461-467.
    [32].Carne, T. G.,Griffith, D. T.,Casias, M. E. Support Conditions for Free Boundary-Condition Modal Testing[A]. In Proceedings of the Twenty Fifth International Modal Analysis Conference, Society for Experimental Mechanics Paper 295[C], 2007.
    [33].Iankov, R.,Moens, D.,Sas, P., etc. Propagation of variances of FRFs through FRF-based coupling calculation[J]. In Proceedings of the International Seminar on Modal Analysis, ISMA27, Leuven, Belgium, 2002,IV 1845-1852.
    [34].de Klerk, D.,Voormeeren, S. Uncertainty propagation in experimental dynamic substructuring[A]. In Proceedings of the Twenty Sixth International Modal Analysis Conference, Society for Experimental Mechanics Paper 133[C], 2008.
    [35].Voormeeren, S.,de Klerk, D.,Rixen, D. Uncertainty quantification in experimental frequency based substructuring[J]. Mechanical System and Signal Processing, 2010, 24 (1): 106-118.
    [36].Mayes, R. L.,Hunter, P. S.,Simmermacher, T. W., etc. Combining experimental and analytical substructures with multiple connections[A]. In Proceedings of the 26th International Modal Analysis Conference (IMAC XXVI)[C], Orlando, FL, 2008.
    [37].Allen, M. S.,Mayes, R. L. Comparison of FRF and modal methods for combining experimental and analytical substructures[A]. In Proceedings of the Twenty Fifth International Modal Analysis Conference, Society for Experimental Mechanics[C], Orlando, FL (Bethel, CT), 2007.
    [38].Mayes, R.,Stasiunas, E. Combining Lightly Damped Experimental Substructures with Analytical Substructures[A]. In Proceeding of 25th International Modal Analysis Conference (IMAC XXV)[C], Florida, 2007.
    [39].Mayes, R. L.,Ross, M.,Hunter, P. S. Examples of Hybrid Dynamic Models Combining Experimental and Finite Element Substructures[J]. Structural Dynamics, 2011, 3:1065-1082.
    [40].Pascual, R.,Golinval, J. C.,Razeto, M. A frequency domain correlation technique for model correlation and updating[A]. In Proceedings of the 15th International Modal Analysis Conference[C], Orlando, U.S.A, 1997; 587-592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700