多激励系统隔振降噪功率流及振声能量耦合理论与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中央空调、风力机等多激励系统通常安装在同一空间内,由于系统内各种设备振动能量很大,同时随着结构的日趋轻薄,振动和噪声问题日益突出。本文以多项隔振降噪工程为背景,以薄板结构上大型热泵机组系统等隔振降噪模型为研究对象,综合运用导纳法、四端参数法分析了双层隔振系统、双激励双输出二级隔振系统、具有路径质量的单层隔振系统的振动传递路径的功率流,研究了薄板振动产生的振声能量耦合声场特性以及多激励系统中不同设备激励源对形成的振声声场的贡献,并应用振级落差隔振评价指标和功率流传递率隔振评价指标对隔振降噪效果进行了评价。
     首先基于振动系统功率流隔振理论以及导纳理论、四端参数法和电-力类比等方法,建立了中央空调机房内振动设备的隔振系统模型。根据热泵机组的特点建立了符合实际条件的主机双激励双输出的二级隔振系统模型、支撑管路一级隔振系统、具有中间质量块的单激励单输出二级隔振系统和水泵机组的具有质量块的一级隔振系统。以单激励单输出二级隔振系统为例,计算并得到了传递功率流和以及输入、输出速度的变化曲线,明确了具有中间小质量的双层隔振系统的隔振设备重量、上层隔振器刚度、下层隔振器的阻尼以及中间质量块重量等参数对隔振效果的影响。计算结果表明,隔振器的阻尼对隔振效率影响很小,通过调节隔振器刚度和中间小质量块的重量可以调节二阶共振峰值的频率,达到避开设备工作频率和增强隔振降噪效果的目的。
     其次,通过求解薄板振动微分方程和三维矩形空间声波波动方程,确定了当薄板以对称模态振动时能激起矩形空间内的对称声模态的振声耦合边界条件。通过实测振动数据对楼板结构振动产生的振声声场进行模拟,得出在频率在400Hz以下的区域,由于楼板结构的自阻尼,振声强、弱耦合差别很小,而400Hz以上的区域振声具有强耦合的特性,振声强耦合声场噪声值较大且与实测声场数据吻合。
     以中央空调机房内的主要设备为研究对象,根据建立的隔振系统模型,通过计算分析得到了路径参数发生变化时隔振系统的输入、传递功率流,输入、输出速度以及传递载荷的变化曲线。对于热泵机组,空间条件允许的情况下增大中间质量块的重量对降低传递功率流最有效,而只有大幅降低隔振器刚度才能有效降低传递功率流,但必须保证机组启动时的平稳运行。水泵质量块可以起到调节一阶共振峰值位置并降低共振峰后频率的传递功率流,而且能降低设备工作重心使设备安全运行的效果,而增大水泵区域基础面密度也是经济实用的降低传递功率流的方法。
     再后根据实测设备振动数据,应用ANSYS有限元分析软件和Virtual LabAcoustics声学仿真软件模拟了隔振前后机房内设备振动所形成的振声耦合声场,分析了热泵机组、水泵和管路振动对振声声场的频带噪声贡献以及各组成设备在整个隔振系统中比较敏感的隔振降噪频带。热泵机组振动对噪声的贡献是全频带的,这是由于其振动能量最大且位置最接近基础结构中心有关。而水泵机组多靠近机房角落所以不易激起低频振动,且本身振动能量相比热泵机组小多个数量级,所以水泵振动对振声声场的主要贡献频带在300Hz以上。虽然管路隔振支点很多,但总的振动能量多集中在200Hz以下,这与其产生的噪声声场高噪声频带主要集中在200Hz相吻合。
     最后提出了参考功率流传递率评价隔振降噪效果的方法。通过绘制隔振降噪系统的速度振级落差曲线和功率流传递率曲线,并与模拟振声声场得到的频带降噪量频谱图相比较,得出以能量作为评价依据的功率流传递率曲线与频带降噪量曲线总体走势更加吻合的结论,为准确评价降噪效果提供依据。
Multi-incentive systems, such as central air conditioning system and wind turbine
     system, are usually installed in the same space. Since the equipments’vibration energy ishuge and at the same time the structures become increasingly thin and light, vibration andnoise problems have become increasingly prominent. Based on a number of vibrationisolation and noise reduction engineering cases, large-scale heat pump unit systemvibration isolation model on the thin plate structure is chosen as research object. Vibrationtransfer path power flow characteristics of double-deck isolation system, double sourcesexciting and double output double-deck isolation system and single-deck isolation systemwith inertia block are analyzed by comprehensive use of four-end parameter method andmobility method. Vibration-acoustic energy coupling characteristics of sound fieldgenerated by civil thin plate vibration are studied and then analyze multi-incentivesystem’s different machines excitation sources’contribution to the sound field. Applyvibration level difference and power flow transmission ratio to evaluate vibration isolationand noise reduction effect.
     Firstly, based on the vibration power flow isolation theory, mobility method, four-endparameter method and electricity-force analogy method, build vibration equipments’vibration isolation system models. By the heat pump unit’s features and the actual situation,build double sources exciting and double output double-deck vibration isolation system,supporting pipe single-deck vibration isolation system,single source exciting and singleoutput double-deck vibration isolation system with middle mass and water pump’ssingle-deck vibration isolation system with middle mass. For the single source exciting andsingle output double-deck isolation system with middle mass, calculate and obtain curvesof the system’s imported and transmitted power flow, machine and foundation speedamplitude, and identify the impact on vibration isolation effect when the vibration isolationsystem with little intermediate mass’path parameters change, such as machine mass, upper isolator stiffness, lower isolator damping and intermediate mass weight. Results show thatthe isolator damping has little effect on the vibration isolation efficiency. Second-orderresonance peak frequency can be changed by adjusting the isolator stiffness and theintermediate mass weight, and then avoid machine working frequency and improve thevibration isolation effect.
     Secondly, by solving the thin plate vibration differential equation and threedimensional rectangular space acoustic wave equation, knows that symmetric acousticmodes in the rectangular space are promoted when the thin plat vibrates with symmetricalmode. Vibration and acoustic are strong coupling. Simulate the vibration-acoustic couplingsound field generated by the thin plat vibration using the actual vibration data. Resultsshow that vibration-acoustic strong or weak coupling are no difference below 400Hzbecause of the damping of the floor structure. Above 400Hz vibration and acoustic arestrong coupling and simulating results are consistent with the actual measured sound fielddata.
     Thirdly, main equipments in the central air conditioning room as research projects,based on the vibration isolation models, calculate and obtain curves of the system’simported and transmitted power flow, machine and foundation speed amplitude andtransmitted forces to the foundation with the change of the path parameters. For the heatpump unit, increase the weight of the floating raft mass is the most effective method toreduce the transmitted power flow only if the vibration isolation space is enough. Thoughsmall stiffness of the isolator can reach the same result with the increasing weight of themass, it must assure machine’s stable running when it starts. Pump mass can adjust theresonance peak position and reduce the transmitted power flow above the resonancefrequency, and lower the machine’s gravitational center to ensure safe operation. Increasesurface density is an economic and practical method to reduce transmitted power flow.
     Fourthly, based on the actual measured vibration data, apply ANSYS finite elementanalysis software and Virtual Lab Acoustics acoustic simulation software to simulate thevibration-acoustic coupling sound field generated by the machines’vibration before andafter vibration isolation. Analyze the contribution of the heat pump vibration, the pumpvibration and the pipe vibration to the vibration-acoustic coupling sound field. Point outthe machines most important vibration isolation band. For heat pump’s vibration energy isthe largest and its location is the nearest to the center of the foundation, so its contributionto the sound field is the whole band. Since the pump is installed near to the corner of the foundation and its vibration energy is much smaller than heat pump’s, so it is difficult tostimulate low-frequency vibration. Contribution to the noise sound field is mainlyconcentrated above 300Hz. Though having many pipes’isolation fulcrums, the totalvibrational energy is concentrated below 200Hz and it is consistent with the noisespectrum characteristic.
     Finally, propose a reference of power flow transmission ratio to evaluate vibrationisolation and noise reduction effect. Draw vibration isolation and noise reduction system’scurves of speed vibration level difference and power flow transmission ratio, and comparewith the band noise reduction spectrogram, results show that power flow transmission ratiocurve is more consistent with the band noise reduction spectrogram, it can be used as anevaluation criteria for the judgment of the noise reduction effect.
引文
[1]刘泽华.空调冷热源工程.北京:机械工业出版社,2005.
    [2]项端祈.空调系统消声与隔振设计.北京:机械工业出版社,2005.
    [3]马大猷.噪声与振动控制工程手册.北京:机械工业出版社,2002.
    [4]胡志平.建筑暖通设备的振动与防治.浙江建筑,2008,25(1):65-68.
    [5]刘向华,完海鹰,贾贤安.楼顶建筑设备隔振改造.噪声与振动控制,2010,2(1):153-155.
    [6]张国洪.中央空调噪声超标原因浅析.制冷与空调,2009,12(6):24-26.
    [7]周勃,陈长征,王长龙等.冷却塔的噪声控制研究.暖通空调,2007,37(3):75-78.
    [8]赵松龄.噪声的降低与隔离.上海:同济大学出版社,1985.
    [9] H. Sun, S. Lee. Numerical prediction of centrifugal compressor noise. Journal of Sound andVibration,2004(269):421~430.
    [10] Nawrotzki P, Uzunoglu T. Static and dynamic analysis of concrete turbine foundations. StructuralEngineering International, 2008,25(7):21~25.
    [11] J. M. Fields, R.G. De Jong, T. Gjesland, et.al. Standardized general-purpose noise reactionquestions for community noise surveys: research and a recommendation. Journal of Sound andVibration,2001,242:641~679.
    [12]郑磊,余桐奎,韩宇亮.振动噪声特征的主成分分析方法应用研究.舰船电子工程,2009,29(2):184~187.
    [13] M.W-S.CHO, K.-J.KIM. Indirect input identification in multi-source environments by principalcomponent analysis. Mechanical Systems and Signal Processing, 2002,16(5):79~92.
    [14] Villot M, Chanut J. Vibrational energy analysis of ground structure interaction in terms of wavetype. Journal of Sound and Vibration, 2002,231(3):711~719.
    [15]马丰伟,孙玲玲,宋孔杰等.基于功率流的隔振控制研究.噪声与振动控制,2006,4:14~16.
    [16]伍先俊,朱石坚,曹建华.结构声振研究的功率流方法.力学进展,2006,36(3):363~372.
    [17] Cremer L, Heckl M, Ungar E E. Structure-borne sound. Springer, Berlin,1988.
    [18] Harris C M. Shock and Vibration Handbook, Mc Graw-Hill, New York, USA,2002.
    [19] E E Ungar, C W Dietrich. High-frequency Vibration Isolation. Journal of Sound and Vibration,1966,4(2):224~241.
    [20] Bernhard R J, Huff J E. Structureal-acoustic Design at High Frequency Using the Energy FiniteElement Method. Journal of Sound and Vibration, 1999,121:295~301.
    [21] Boelase G A, Vlahopoulos N.An Energy finite flement optimization process for reducing highfrequency vibration in large scal structures. Finite Elements in Analysis andDesign,2000,36:51~67.
    [22]宋孔杰,张蔚波,牛军川.功率流理论在柔性振动控制技术的应用于发展.机械工程学报,2003,39(9):23~28.
    [23]孙玲玲,宋孔杰.复杂机械系统多维藕合振动传递矩阵分析.机械工程学报,2005,41(4):38~42.
    [24] Song K J, Ji L. Power flow transmission of an asymmetrical flexible system excited by anoff-center force. Chinese Journal of Mechanical Engineering,1999,12(3):183~187.
    [25]张克国,王世寰,林淑霞.小中间质量对振动功率流的影响.噪声与振动控制,2008,4:55~57.
    [26]沈密群,严济宽.舰船浮筏装置工程实例.噪声与振动控制,1994,5:21~23.
    [27] Xiong Y P, Xing J T. Power flow analysis of complex coupled systems by progressive approches.Journal of Sound and Vibration, 2001,239(2):275~295.
    [28]严济宽,沈荣滚,尚国青.浮筏装置结构动力参数的选定.噪声与振动控制,1995,1:2~9.
    [29]中国船级社,船舶振动控制指南.北京:人民交通出版社,2000.
    [30] Bitsie F, Bernhard R J. Sensitivity calculations for structural-acoustic EFEM predictions. NoiseControl Engineering Journal, 1998,46:91~96.
    [31]李保泽,范颖涛.空调室外机减振垫对振动和噪声影响的研究.噪声与振动控制,2010,4:45~49.
    [32] Salagame R R, Belegundu A D. Analytical sensitivity of acoustic power radiated from plates.Journal of Sound and Vibration, 1995,117:43~48.
    [33]王敏.柔性耦合隔振系统功率流传递特性研究:(博士学位论文).济南:山东大学,2005.
    [34]常俊英.柔性基础上设备的振动噪声控制技术研究:(博士学位论文).合肥:合肥工业大学,2002.
    [35] B Petersson, J PIunt. On effective mobilities in the prediction of structure boren sound transmissionbetween a source structure and receiving structure, part I: theoretical background and basicexperimental studies. Journal of Sound and Vibration ,1982:4(82) :83~90.
    [36] B Petersson, J PIunt. On effective mobilities in the prediction of structure boren sound transmissionbetween a source structure and receiving structure, part II: procedure for the estimation ofmobilities. Journal of Sound and Vibration,1982,4(82) :91~99.
    [37] Lyon R H, Dejong T G. Theory and application of statistical energy analysis. Boston: ButterworthHeinemann,1995.
    [38] D Sciulli, D J Inman. Isolation design for a flexible system . Journal of Vibration and Acoustics,1998,216(1): 251~267.
    [39]霍睿,宋济平,孙玉国.柔性基础主动隔振系统的功率流传递性.噪声与振动控制,1999,2:9~11.
    [40] P Gardonio, S J Elliott, R J Pinnington. Active isolation structure vibration on a multiple degree offreedom system part I. Journal of Sound and Vibration,1997, 207(1): 61~93.
    [41] P Gardonio, S J Elliott, R J Pinnington. Active isolation structure vibration on a multiple degree offreedom system part II. Journal of Sound and Vibration,1997, 207(1): 95~121.
    [42] P Gardonio, S J Elliott. A study of control strategies for the reduction of structural vibration:transmission of ASME . Journal of Vibration and Acoustics, 1999, 121:482~487.
    [43]夏仕朝,韩江水,何琳等.柔性基础隔振系统功率流传递特性.西安科技大学学报,2007,27(3):419~422.
    [44] Wu C J, White R G. Vibrational power transmission in a finite multi-dimensional beam junctions.Journal of Sound and Vibration. 1995,181(1): 81~92.
    [45] S K Tang, M Y Wong. On noise indices for domestic air conditioners. Journal of Sound andVibration,2004,274:1~12.
    [46]宛敏红,王敏庆,盛美萍.弹性板吸振控制的无量纲功率流研究.振动与冲击,2007,26(7):111~114.
    [47]马业忠,霍睿.板式基础上非线性隔振系统的功率流传递特性.振动工程学报,2008,21(4):394~397.
    [48] Xie S L, Siu W. Analysis of vibration power flow from a vibrating machinery to a floating elasticpanel. Mechanical Systems and Signal Processing, 2007,21:389~404.
    [49]吴广明,彭旭,沈荣瀛.多层隔振系统功率流研究.噪声与振动控制,2004,6(3):1~4.`
    [50]高书磊,霍睿.柔性基础上非线性隔振系统的动力学分析.振动与冲击,2007,26(6):113~115.
    [51]吴广明,沈荣瀛,华宏星.复杂弹性耦合隔振系统振动建模研究.振动工程学报,2005,18(1):47~52.
    [52] Lian W L, Lavrich P. Prediction of power flows through machine vibration isolations. Journal ofVibration and Acoustics, 1999, 224(4):757~774.
    [53]赵群,张义民.振动系统随机传递路径功率流分析.机械设计与制造,2008,6(6):104~105.
    [54]赵群,张义民.双层隔振系统传递路径的功率流传递度排序.组合机床与自动化加工技术,2008,10:4~7.
    [55] L.Sun, A.Y.T.Leung, Y.Y.Lee, K.Song. Vibrational power-flow analysis of a MIMO system usingthe transmission matrix approach. Mechanical Systems and Signal Processing,2007,21:365~388.
    [56]颜松,盛美萍,陈晓力.多源激励下浮筏隔振系统导纳功率流研究.噪声与振动控制,2006,4:26~28.
    [57] Lu W Y, Wang W H. Diagnosis and control of machine induced noise and vibration in steelconstruction. Journal of Mechanical Science and Technology, 2008,22:2107~2121.
    [58] M F M. Hussein, H E M Hunt. A power flow method for evaluating vibration from undergroundrailways. Journal of Sound and Vibration, 2006,293:667~679.
    [59] Kim S M, Brennan M J. A compact matrix formulation using the impedence and mobility approachfor the analysis of structural-acoustic systems. Journal of Vibration and Acoustics, 1999,223(1):97~113.
    [60] M F M Hussein, H E M Hunt. An insertion loss model for evaluating the performance of floatingslab track for underground railway tunnels. Proceedings of the Tenth International Congress onSound and Vibration 2003:419~426.
    [61] J P Talbot, H E M Hunt, On the performance of base-isolated buildings. Building Acoustics, 2000,7(2):163~178.
    [62] D Clouteau, M Arnst, T M Al-Hussaini, G Degrande. Freefield vibrations due to dynamic loadingon a tunnel embedded in a stratified medium. Journal of Sound and Vibration, 2005, 283:173~199.
    [63]盛美萍,王敏庆.单层隔振系统中弹性基座的振动与声辐射特性.机械科学与技术,2000,19:94~96.
    [64]刘鹏辉,张勋疆.基于四端参数分析的弹性基础隔振系统的导纳功率流.东北电力大学学报,2006,26(6):5~9.
    [65]行晓亮,王敏庆,宋代科.弹性基础浮筏的导纳功率流研究.机械科学与技术,2005,24(7):761~763.
    [66] Park Y H, Hong S Y, Kil H H. Power flow model and analysis of in plane waves in finite coupledthin plates. Journal of Vibration and Acoustics, 2001, 244:651~668.
    [67] P Gardonio, M J Brennan. On the origins and development of mobility and impedence methods instructural dynamics. Journal of Vibration and Acoustics, 2002, 249(3):557~573.
    [68] Li T Y, Zhang L, Liu J X. Vibrational wave analysis of infinite damaged beams using structureborne power flow. Applied Acoustics, 2004, 65(1):91~100.
    [69] R Ming, J Pan, M P Norton. The measurement of structural mobilities of a circular cylindrical shell.Journal of the Acoustical Society of America, 2000, 107(3):1374~1382.
    [70] R Ming, J Pan, M P Norton. The measurement of structure-borne sound energy flow in an elasticcylindrical shell. Journal of Vibration and Acoustics, 2001, 242(4):719~735.
    [71] Ho-Jung Lee, Kwang-Joon Kim. Multi-dimensional vibration power flow analysis of compressorsystem mounted in outdoor unit of an air conditioner. Journal of Sound and Vibration, 2004,272:607~625.
    [72] B M Gibbs, A T Moorhouse. Case studies of machine bases as structure borne sound sources inbuildings. International Journal of Acoustics and Vibration, 1999, 4(3):125~133.
    [73] Y K Koh, R G White. Analysis and control of vibrational power transmission to machinerysupporting structures subjected to a multi-excitation system, part II: vibrational power analysis andcontrol schemes. Journal of Sound and Vibration, 1996, 196: 495~508.
    [74] Y K Koh, R G White. Analysis and control of vibrational power transmission to machinerysupporting structures subjected to a multi-excitation system, part III: vibrational power cancellationand control experiments. Journal of Sound and Vibration, 1996, 196:509~522.
    [75] Xu M B, Zhang X M, Zhang W H. The effect of wall joint on the vibrational power flowpropagation in a fluid-filled shell. Journal of Sound and Vibration, 1999, 224(3):395~410.
    [76] Xu M B, Zhang X M, Zhang W H. The effect of wall joint on the power flow propagation incylindrical shells. Journal of Huazhong University of Science and Technology,1996, 24:72~75.
    [77]梁向东.管路内残余气体对管路振动的影响分析与实验研究.噪声与振动控制,2010,4:28~29.
    [78]谢向荣,俞翔,朱石坚.基于ADAMS的柔性基础振动系统隔振性能分析.振动与冲击,2010,3:57~60.
    [79]周建鹏,张志谊,冯国平等.柔性基础动力机械主被动隔振系统的建模与仿真.振动与冲击,2008,27:97~100.
    [80] Elliott S J,Benassi L,Brennan M J. Mobility analysis of active isolation systems. Journal of Soundand Vibration, 2004, 271:297~321.
    [81] Janssens M H A, VerheiJ J W. A pseudo-forces methodology to be used in characterization ofstructure borne sound sources. Applied Acoustics, 2000,61(3):258~308.
    [82] Rajendra S, Seungbo K. Examination of multidimentional vibration isolation measures and theircorrelation to sound radiation over a broad frequency range. Journal of Sound and Vibration, 2003,262(3):419~455.
    [83] Xiong Y P, Xing J T, W G Price. A general mathematical model of power flow analysis andcontrol for integrated structure-control systems. Journal of Sound and Vibration, 2003,267:301~334.
    [84] B A T Peterson, B M Gibbs. Towards a structure-borne sound source characterization. AppliedAcoustics, 2000,61(3):325~343.
    [85]林水秋.振源识别及基于功率流的隔振系统优化设计研究.山东科技大学学报,2008,27(5):61~65.
    [86] Zhu X , Li T Y, Liu J X. Structural power flow analysis of Timoshenko beam with an open crack .Journal of Sound and Vibration, 2006, 297:215~226.
    [87] Li T Y, Zhang W H, Liu T G. Vibrational power flow analysis of damaged beam structures.Journal of Sound and Vibration, 2001, 242 (1): 59~68.
    [88] Li T Y, Zhang T, Liu J X. Vibrational wave analysis of infinite damaged beams usingstructure-borne power flow. Applied Acoustics, 2004, 65(1): 91~100.
    [89]伍先俊,程广利,朱石坚.最小振动功率流隔振系统ANSYS优化设计.武汉理工大学学报:交通科学与工程,2005,29(2):186~189.
    [90]陈炉云,张裕芳.基于功率流分析的结构声优化研究.振动与冲击,2010,29(10):191~194.
    [91]伍先俊,朱石坚.组件功率流计算法和ISIGHT环境下隔振系统优化设计.船舶力学,2006,10(2):138~145.
    [92]伍先俊,朱石坚.基于有限元的功率流计算及隔振系统优化设计技术研究.船舶力学,2005,9(4):138~145.
    [93]王家林,朱石坚.振级落差和插入损失对用关系的研究.海军工程学院学报,1999,27(5):61~65.
    [94]霍睿,施引.功率流隔振效率评价指标及其与振级落差的关系.中国造船,2007,48(3):86~92.
    [95]严济宽.振动隔离效果的评定.噪声与振动控制,1997(6):22~30.
    [96]阙银昌,李珊,肖会勇.最小传递率隔振系统的优化设计.噪声与振动控制,2008,5:25~27.
    [97]宋济平,牛军川,纪琳.复杂机械系统的隔振性能评估研究.噪声与振动控制,2006,4:33~35.
    [98]黄其柏.工程噪声控制学.武汉:华中理工大学出版社,1999.
    [99] M Roger, S Moreau. Broadband self-noise from loaded fan blades. AIAA Journal, 2004,42(3):536~544.
    [100] U Ayr, E Cirillo, F Martellotta. An experimental study on noise indices in air-conditioned offices.Applied Acoustics, 2001, 62:633~643.
    [101] S K Tang, M Y Wong. On noise indices for domestic air conditioners. Journal of Sound andVibration, 2004, 274:1~12.
    [102] J M Fields, R G De Jong, T Gjesland. Standardized general-purpose noise reaction questions forcommunity noise surveys: research and a recommendation. Journal of Sound and Vibration, 2001,242:641~679.
    [103]陈剑波,白建民,黄俊毅.变风量系统末端装置性能与噪声的实验分析.暖通空调,2010,40(1):61~65.
    [104]杨明,朱菀中.某部办公楼空调系统噪声治理.暖通空调,2005,35(6):95~97.
    [105]计育根,夏源龙,胡仰耆.常用风冷式热泵机组和冷水机组的噪声测量和分析.暖通空调,1999,29(3):11~15.
    [106]杜力,赵鹏云.中央空调噪声分析及控制研究.重庆工商大学学报,2009,26(3):291~294.
    [107]韩峰,胡迪科,闫桂荣.圆锥壳结构声振耦合特性分析.噪声与振动控制,2009,10(5):30~33.
    [108]白长青,周进雄,闫桂荣.声振耦合对薄壁圆柱结构动力特性的影响.机械工程学报,2011,47(5):78~84.
    [109] Franck P, Thieny L. Acoustic radiation of an open structure:modeling and experiments. ActaAcustica United with Acustica, 2004, 90(3):496~511.
    [110] Itoh H, Ishikawak, Kobayashi Y. Analysis of transverse vibration of antenna structure resonatorusing Bernoulli-Euler beam theory and quantum mechanical examination of its quantizeddisplacement. Japanese Journal of Applied Physics, 2008, 47(7):5734~5742.
    [111] Zhu X, T.Y.Li, Y.Zhao. Vibrational power flow analysis of thin cylindrical shell with acircumferential surface crack. Journal of Sound and Vibration, 2007, 302:332~349.
    [112]丁渭平,陈花玲,胡选利.腔体声振耦合方程低频解耦误差的研究.噪声与振动控制,2000,8:6~10.
    [113]李丽君,李红艳,刚宪约.声固耦合系统数值计算方法的研究与应用.工程设计学报,2010,17(6):449~453.
    [114]陶红丹,盛美萍,肖和业.声激励下双层耦合结构声与振动特性研究.振动工程学报,2010,23(1):107~112.
    [115] Brunskog J, Hammer P. Prediction model for the impact sound level of lightweight floors. Acust.Acta Acust, 2003, 89:309~322.
    [116]陈美霞,骆东平,彭旭.敷设阻尼材料的双层圆柱壳声辐射性能分析.声学学报,2003,28(6):486~493.
    [117]陈福忠,项昌乐,刘辉.车辆变速箱声振耦合系统的声学特性研究.噪声与振动控制,2010,2(1):15~20.
    [118]彭彬彬,黄协清,吴成军.基于背腔的矩形板的声振耦合分析.中北大学学报,2007,28(5):407~411.
    [119]赵冠军,刘更,吴立言.基于模态叠加法的声固耦合噪声仿真与实验.机械科学与技术,2007,26(12):1633~1636.
    [120]王珺,张景绘,宁玮.复合环境激励下的声振耦合分析.振动与冲击,2011,30(2):15~18.
    [121] Allen M J, Vlahoposlos N. Integration of finite element and boundary element methods forcalculating the radiated sound from a randomly excited structure. Computers and Structures, 2000,77(2):155~169.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700