超低频振动校准系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超低频振动问题在工程实践中广泛存在,并且日益受到越来越多的关注,所以对于超低频振动校准系统,人们也给予了更多的重视,本文首先分析了超低频振动校准系统的国内外研究现状,并以其为研究核心,通过理论分析、程序仿真和实验研究,建立了一套可以有效减小振动台失真的系统,并获得了良好的实际效果,同时提出新的控制方法并加以验证。本文的主要研究工作有以下几个方面:
     首先,通过对振源的分析,在隔振理论的基础上,提出了基于反馈技术的主动隔振方法,根据不同的反馈参量,介绍了几种不同的反馈方法,并通过MATLAB编程进行仿真,分别予以分析,以找出最优方案。同时,分析了超低频标准振动台的隔振方法,指出被动隔振和主动隔振相结合的方法,可以更有效地解决超低频振动台的基础隔振问题。
     其次,通过介绍超低频振动台的工作原理,构建了超低频振动台的力学模型,并对其动态特性进行分析。指出了超低频振动台的几个关键的技术问题,如振动台的非线性失真、自身的稳定性、地基干扰及背景噪声等问题,并对上述各种问题进行了大致的分析。通过对比相对速度和绝对速度反馈,介绍了相对速度和绝对速度相结合的复合反馈的技术,分析了系统在复合反馈下的动态特性,表明此技术对于超低频振动台减小失真有着明显的作用,从而证实,在超低频振动校准系统中,采用负反馈技术是必要且有效的,它可以改善系统的动态特性,降低系统的失真度,可对超低频振动传感器进行有效的校准。
     再次,基于负反馈技术,以当代先进的PID控制和模糊控制理论为基础,设计了一套基于模糊自整定PID控制算法的数字伺服控制系统,克服了传统的模拟伺服控制器系统通常有着调试困难、容易受到环境温度变化的影响而产生漂移、缺乏实现复杂计算的能力、无法实现现代控制理论指导下的控制算法等缺点。在MATLAB环境下编程并进行仿真,确定了K_D、K_P、K_I三个主要参数的初值,归纳了这三个主要参数的选取规则,指出了误差变化对这三个参数在调整过程中取值变化的影响,以及各参数之间的关系。通过阶跃信号响应仿真表明,该控制器与传统的PID控制器相比,有着更为良好的动态特性。从仿真中还可以看出,系统对于正弦激励信号的跟踪也有着良好的效果。在振动台上通过DSP系统进行硬件实现,实验表明,这种控制器所构成的系统可以有效地减小振动台的失真,具有一定的可行性和有效性。
     然后,分析了系统A类不确定度的产生原因以及计算公式;分别从振动位移误差、输出电压测量误差、台面横向运动误差、频率测量误差等几方面,总结并分析系统的B类不确定度和系统的合成不确定度;同时探讨了在测量数据处理的过程中,对于异常值的判断及其剔除准则;指出了采取多次测量取平均值的处理方法,可以有效地减小系统的随机误差。
     最后,对全文的主要研究工作进行了总结,并展望了今后的需要进一步深入开展的工作。
The ultralow frequency vibrations are widely applied to engineering,which people has been an increasing interest in. The present research status ofultralow frequency was analyzed in the dissertation. By theoretical analysis,simulation and experiments, a system was designed to reduce the THD (TotalHarmonic Distortion) of an ultralow frequency vibration table effectively,which was based on an ultralow frequency vibration calibration system. Andthe system got a good actual effect. A new controller was presented andstudied. The main contents of the dissertation are arranged as follows:
     Firstly, the vibration sources were studies. Based on the theory ofvibration isolation, a new active vibration isolation method was presented.According to different feedback parameters, several kinds of feedbackmethods were introduced and simulated with MATLAB. By discussing them,an optimal method was found. The vibration isolation method was studied ofan ultralow frequency vibration table. A new method was given that passivevibration isolation is combined with the active. And the new method caneffectively solve the foundation isolation of an ultralow frequency vibrationtable.
     Secondly, the principle of an ultralow frequency vibration table wasdiscussed in the dissertation. And its dynamic characteristics were showedwith its mechanical model. Several key technical problems on an ultralowfrequency vibration table were pointed out and discussed, such as its nonlinearTHD, stability, vibration interference of the ground and background noise.Compared with relative velocity feedback and absolute velocity feedback, thecombination feedback method of the relative and the absolute was introduced.With the combination feedback, an ultralow frequency vibration table can beeffectively reduced its THD. Then we can conclude that negative feedback isnecessary and effective in an ultralow frequency vibration calibration system.For the system, the negative feedback can improve the dynamic characteristics,reduce its THD and implement calibration on ultralow frequency vibrationsensors.
     Thirdly, according to the modern PID control and fuzzy control theory, afuzzy PID self-tuning controller of the digital system was designed based onnegative feedback technology. The traditional analog servo control system isoften difficult to debug, easy to drift what ambient temperature can lead to,poor capacity of complex algorithm, lack capacity of realizing control algorithm based on modern control theory. The digital servo control systemcan avoid the defects what the analog one has. By programming withMATLAB and simulating, the initial values of three main parameters:K_D,K_P和K_I, were confirmed. And the selection rules and relationship of them weregeneralized, as well as the effect of the error on the three parameter valuesduring the self-tuning. The simulation of step response showed that the fuzzyPID self-tuning controller made the system better dynamic characteristics thana traditional PID controller. Also with the controller, the system had bettersinusoidal signal tracking effect. The controller was implemented on anultralow frequency vibration table with a DSP unit. The results show that thesystem can effectively reduce the THD with the feasible and effectivecontroller.
     Fourthly, the causes of A type uncertainty were discussed in thedissertation, as well as its computational formula. B type and composeduncertainties were also studied by analyzing vibration displacement error,measurement error of output voltage, the lateral motion error of the tableboard, frequency measurement error and so on. Then the judgment andrejection standard of exceptional value were probed during the measurementdata processing. A method was pointed out in the dissertation that the averagevalue of multimetering can effectively reduce the random error of the system.
     Lastly, a summation is made to generalize the study work in thedissertation. Also the dissertation puts forward the further research work whatwill be carried out in the near future.
引文
[1]陈隆道,郑家龙.超低频信号数字化测量系统的研究[J].电子与仪表技术,1993,(2):33-37.
    [2]陈文真.振动计量标准的建立及测试研究[J].广西电力技术,1999(2).
    [3]范云霄,杨俊茹,赵拥军,于涛.超低频振动传感器的研究[J].煤矿机电,2002,3:1-3.
    [4]樊雪松,苏文,王晓耕.电动振动台水平滑台正交方向响应分析及加强台面的设计[J].航天器环境工程,2006,23(2):90-93.
    [5]方重.大型模拟地震振动台的特殊控制[J].世界地震工程,2000,16(4):106-108.
    [6]高金芳,杨晓伟,姜东升.振动传感器的微加速度动态校准[J].宇航计测技术.2000,20(2):33-4l
    [7]顾保叔,马扣根,陈卫东.振动主动控制[M].北京:国防工业出版社,1997.
    [8]韩冬,何闻.超低频标准振动系统基础设计技术[J].振动与冲击,2008,27(9):20-22韩冬.地震计校准用超低频标准振动系统关键技术的研究[D].浙江大学,2007.
    [9]韩京清.利用非线性特性改进PID控制律[J].信息与控制,1995(6).
    [10]韩瑞珍,陈国定,杨马英.基于模糊推理的自整定PID控制器[J].控制工程,2002,9(2):38-40.
    [11]何闻,贾叔仕.标准动态力源系统基础及隔振基础的设计[J].工程设计学报,1998,(4):39-42.
    [12]洪宝林.随机振动试验系统的鉴定方法及谱分析统计特性[J].测控技术,1989,(1):31-33
    [13]洪宝林.振动传感器的随机校准方法[J].航空计测技术,1994,10(5):6-12
    [14]胡春艳.李新良.陷波法超低频标准振动台失真控制[J].计测技术,2010,30(4):3-4
    [15]胡红波,于梅.低频标准振动台波形复合控制仿真的研究[J].计量技术,2008(1):50-53.
    [16]胡红波,于梅.低频振动速度反馈控制技术的研究[J].计量技术,2009(2):20-22.
    [17]胡红波,于梅.低频振动位移反馈控制技术的研究[J].计量技术,2008(9):28-31.
    [18]胡晚霞,余玲玲等.PID控制器参数快速整定的新方法[J].工业仪表与自动化装置,1996(5).
    [19]黄浩华.地震模拟振动台的设计与应用技术[M].北京:地震出版社,2008.
    [20]季新强,等.精密仪器防微振方法及其研究进展[J].特种结构,2005,22(2):36-40.
    [21]贾叔仕,邹冬冬.地震计量用标准振动台技术总结[J].强度与环境,1994,(3):46-61.
    [22]贾向军.振动校准精度相关技术研究[D].浙江大学,2006.
    [23]静波,陈炎之.机械振动测量的激光干涉技术原理及应用[J].噪声与振动控制,1995(5):40-44.
    [24]李国平.面向精密仪器设备的主动隔振关键技术研究[D].浙江大学,2010.
    [25]李慎安.测量不确定度表达10讲[M].北京:中国计量出版室,1999
    [26]李圣怡.精密和超精密机床设计理论与方法[M].长沙:国防科技大学出版社.2009.
    [27]李士勇.模糊控制神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996.
    [28]李晓蕾,樊尚春.低频电动振动台的关键技术[J].航空计测技术.2003,23(5):1-4
    [29]林浩.模糊PID控制器仿真研究[D].贵州大学,2006.
    [30]刘金锟.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.
    [31]刘智敏,陈坤尧,翁怀真,吴国政.测量不确定度手册[M].北京:中国计量出版社.1997.
    [32]卢志刚,吴杰,吴潮.数字伺服控制系统与设计[M].北京:机械工业出版社.2007.
    [33]陆忠兵,何闻.应用于超低频振动校准系统的低失真度功率放大器的设计[J].机电工程,2003,20(2):51-53
    [34]陆忠兵.超低频标准振动台校准系统的关键技术及其实现方法[D].浙江大学,2003.
    [35]毛义梅.一种PID参数模糊自整定控制器的设计与仿真[J].自动化与仪表.2001,16(3):37-38.
    [36]潘良明.振动校准装置测控系统的开发与研究[D].浙江大学,2006.
    [37]彭辉.振动标准装置误差分析[J].江苏电力技术,1997,(1):23-26.
    [38]戚伯钧.电动振动台的特性分析及测试[J].振动与动态测试,1982(4).
    [39]邱小军,沙家正.有源振动控制[J].噪声与控制,1993,10(2):21-25.
    [40]舒毓龙,孙耀东.高精度低频振动台及伺服隔振[J].地震工程与工程振动,1998,18(4):13l-136.
    [41]孙玉声.振动传感器[M].西安:西安交通大学出版社,1991.
    [42]宋孔杰.高频振动条件下隔振效果的探讨[J].山东工业大学学报,1988,18(4):61-63
    [43]苏奎峰,等.TMS320F2812原理与开发[M].北京:电子工业出版社.2006.
    [44]汤俊雄.微振动振幅的测量[J].光学学报,1989,9:1092-1097.
    [45]王光庆.改善振动校准系统性能相关技术问题的研究及其实现[D].浙江大学,2003.
    [46]王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:中国水利出版社.2006.
    [47]王加春,董申,李旦.超精密机床的主动隔振系统研究[J].振动与冲击,2000,19(3):54-58.
    [48]王永骥,涂键.神经元网络控制[M].北京:机械工业出版社.1999.
    [49]王跃科,叶湘滨.现代动态测试技术[M].北京:国防工业出版社,2003.
    [50]魏燕定,沈国强,何闻,程耀东,贾叔仕.改善标准振动台信噪比的一种有效方法[J].噪声与振动控制,1999(6).
    [51]魏燕定,沈国强,何闻等.改善标准振动台信噪比的一种有效方法[J].噪声与振动控制,1998(2)
    [52]魏燕定.超低频标准振动台若干关键技术研究[D].浙江大学,1998.
    [53]吴昌聚等.水下振动台动态特性的研究[J].机械设计,2003,20(3):36-38
    [54]奚德昌,赵钦淼.振动台及振动试验[M].北京:机械工业出版社,1985.
    [55]肖奇军,李胜勇.模糊自整定PID控制器设计以及MATLAB仿真分析[J].计算机仿真,2005,22(9):242-244
    [56]薛定宇.反馈控制系统设计与分析[M].北京:清华大学出版社,2004.
    [57]严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社,1986.
    [58]严济宽.近代振动隔离技术发展评述[J].噪声与振动控制.1983,5(2):90-96
    [59]严普强,乔陶鹏.工程中的低频振动测量与其传感器[J],振动、测试与诊断,2002,22(4):247-253.
    [60]杨俊.抗恶劣环境外部设备[M].西安:西安电子科技大学出版社,1992.
    [61]杨巧玉,舒毓龙.低频标准振动台技术指标测试方法探讨[J].世界地震工程,2008,24(2):97-101.
    [62]杨巧玉,舒毓龙.宽频带超低频标准振动台的研究[J].世界地震工程,2009,25(3):140-144
    [63]杨晓伟.振动校准现状及发展综述[J].宇航计测技术,2002,20(2):41-47,
    [64]杨学山,王友琴,黄振平.超低频振动测量中振动参量及仪器的选择[J].地震工程与工程振动,1993,13(1):72-76.
    [65]杨学山.工程振动测量和测试技术[M].北京:中国计量出版社,2001.
    [66]杨正一.误差理论与测量不确定度[M].北京:石油工业出版社,2000.
    [67]杨智.工业自整定PID调节器关键技术综述[J].化工自动化及仪表,2000,27(2):5-10
    [68]应怀樵.振动测试与分析[M].北京:中国铁道出版社,1988.
    [69]于梅,孙桥.振动比较法校准技术发展趋势的研究[J].中国计量,2003,(9):55-58.
    [70]于梅.低频超低频振动计量技术的研究与展望[J].振动与冲击,2007,26(11):83-86.
    [71]于梅.低频振动传感器幅值和相移测量的不确定度[J].振动与冲击,2009,28(4):106-109
    [72]于梅.振动基标准装置隔振技术的研究与应用[J].计量学报,2009,30(4):328-331.
    [73]于梅等.振动比较法校准中加速度计灵敏度幅值校准不确定度的评估[J].中国计量,2004,(10):73-74.
    [74]俞阿龙,黄惟一.振动速度传感器幅频特性改进方法的研究[J].自动化仪表,2004.25(5):4-7.
    [75]张德丰.MATLAB自动控制系统设计[M].北京:机械工业出版社.2010.
    [76]张令弥.振动测试与动态分析[M].北京:航空工业出版社
    [77]张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,2000.
    [78]张思.振动测试与分析技术[购.北京:清华大学出版杜。1992.
    [79]张巧寿.振动试验系统现状与发展.机电新产品导报,2001,(10):118-121
    [80]赵富,于志伟,曾鸣,苏宝库.低频线振动台加速度失真非线性补偿控制方法[J].电机与控制学报,2010,14(7):91-96
    [81]赵景波.MATLAB控制系统仿真与设计[M].北京:机械工业出版社.2010.
    [82]郑家龙,陈道铎.利用加速度反馈提高低频标准振动台的波形精度.宇航计测技术,1984(2)
    [83]朱石坚,楼京俊,何其伟,翁雪涛.振动理论与隔振技术[M].北京:国防工业出版社,2006.
    [84]邹冬冬,张仲先等.振动传感器宽频校准方法介绍[J].仪器仪表学报,1998(2)
    [85] Alter D. M.,Tsao T. C., Contml of linear motors for machine tool feed drives:design and implementation of H-optimal feedback control[J].ASME Journal ofDynamic System,Measurement and Control,1996,118(4):649-656.
    [86] C. C. Lee, Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part I and II,IEEE Transactions on Systems, Man and Cybernetics, vol.20, no.2:404-435,1990.
    [87] C.H.Hansen, J.Pan, Active control of vibration in a beam[J].MechianicalEngineering.1991,16(1):57-62
    [88] Conference on Decision and Control Including The symposium on Adaptive Pro,1985,P602-608
    [89] Dick Rhorer, Bey Payne.Preliminary Design of a Very Low Frequency VibrationCalibration System.16th Annual Meeting the American Society for PrecisionEngineering,Arlington,Virginia,USA,2001.
    [90] E.B.Margrab, O.A.Shinaishin.朱光汉,张兴准译.振动实验测试与数据分析[M].北京:机械工业出版社,1983.
    [91] G mez Ram rez E, Simple Tuning of Fuzzy Controllers, Studies in Fuzzinessand soft computing, Hybrid Intelligent System, Springer Berling Heidelberg, vol.208, pp.115-133,2007.
    [92] GB/T13823.2-92,振动与冲击传感器的校准方法激光干涉法绝对校准(一次校准)[S].北京:国家技术监督局,1992
    [93] George,K.I.M.;Hu,B.G;Raymond,G G Two-level Tuning of Fuzzy PIDCotrollers[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2001,31(2),263-269.
    [94] Han-Xiong Li,“A Comparative Design and Tuning for ConventionalFuzzy Control,” IEEE Transactions on Systems, vol.27no.5, pp.884-889,1997.
    [95] Hart-Xiong Li,A Comparative Design and Tuning for Conventional FuzzyControl[J].IEEE Transactions on Systems,Man,and Cybemetics,1997,278(5),OCTOBER:884-889
    [96] HE.W, Zhu.CP,Ma.F, Realization of low-distortion ultra-low frequency vibrationbased on feed back control technology.2005IEEE NETWORKlNG SENSINGAND CONTROL PROCEEDINGS,2005,795-798
    [97] IEEE ICIT’02,Bangkok,THAILAND
    [98] Ibrahim S.R,Mikuleik E.C, A method for the direct identification of vibrationparameters from the free response[J]. The Shock and Vibration Bulletin,1997,47(4):183-198.
    [99] Jetffrey Travis and Jim Kring, LabVIEW大学实用教程[M].北京:电子工业出版社.2008.
    [100] J.Lee,On Methods for Improving Performance of PI-type Fuzzy LogicControllers, IEEE Transactions on Systems, Man and Cybernetics, vol.1, no.4,pp.298-301,1993.
    [101] K.L.Tang,R.J.Mulholland.Comparing Fuzzy Logic with Classical ControllerDesigns[J]. IEEE Transcations on Systems. Man and Cybernetics,1987,17(6):1085-1087.
    [102] L. A.Zadeh. Fuzzy algorithm,” Information and Control, vol.12, no.2, pp.94-120,1968.
    [103] L.A. Zadeh, Fuzzy Sets, Information and Control, vol.8, pp.338-353,1965.
    [104] Liu Xiaoyong,Shi Ren.Research&Development Oil a new type ofDataAcquasition Board for Mechanical Vibration Generator.Proceedings of the4thWorld Congress Oil Intelligent Control andAutomation,v01.1,2002
    [105] Meeting the American Society for Precision Engineering[C],Arlington,Virginia,USA,2001.
    [106] Patent of Russia[S], No.1646615,1991.
    [107] P. J. Escamilla-Ambrosio, A Novel Design and Tuning Procedure for PIDType Fuzzy Logic Controllers, IEEE Symposium on Intelligent Systems, vol.1,pp.36-41,2002.
    [108] Raymond R.Bouche, Calibration ofShock and Vibration MeasuringTransducers. The Shock and Vibration Information Center United StatesDepartment of Defense,1979
    [109] R. K. Mudi and N. R. Pal, A Robust Self-Tuning Scheme for PI-PD-Typeand Fuzzy Controllers, IEEE Transactions on Fuzzy Systems, vol.7, no.1, pp.2-16,1999.
    [110] R.Plunkett.Interaction between a Vibration Machine and Its Foundation[J].NoiseContr01.1958.6(4):35-42
    [111] Richard C Dorf,Roben HBishop.现代控制系统[M].谢红位等译.第8版.北京:高等教育出版社,2004
    [112] Robert S.Koyanagi.Development of a low-frequency-vibration CalibrationSystem.Experimental Mechanics,1975(11):443-448
    [113] R.R.布歇.冲击与振动传感器的校准[M].北京:计量出版社,1984.
    [114] S. F. Lee, H. C. Lu, and T. H. Hung, Optimal Design GA-Based Fuzzy PIDControllers, IEEE International Conference on System, Man and Cybernetics, vol.2, pp.215-220,2002.
    [115] S.C.Wang, C.L.Chen. Computer-aided Transducer Calibration System for aPractical Power System. IEE Proc. Sci. Meas. Technol, V01,142, No.6, November1995
    [116] Van Nauta Lemke,H.R.,Wang De-zhao.Fuzzy PID supervisor.Proceedingsof the IEEE
    [117] Von Martens HJ,Schlaak HJ,Taubner A.Recent Advances in Vibration and ShockMeasurements and Calibrations Using Laser Interferometry.Sixth InternationalConference on Vibration Measurements by Laser Techniques:Advances andApplications5503:l-19.2004
    [118] Won-Suk Ohm, Lixue,Wu Peter Hanes, etc. Generation of Low-frequencyVibration Using a Cantilever Beam for Calibration of Accelerometers[J]. Joumalof Sound and Vibration.2006,(289):192-209.
    [119] Zhihong Xiu and Guang Ren, Optimization Design of TS-PID FuzzyControllers based on Genetic Algorithm, IEEE Intelligent Control and Automation,vol.3, pp.2476-2480,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700