管道中氢—空气预混火焰传播动力学实验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可燃气预混燃烧是燃烧实际应用中最基础、最重要的研究课题,也是其火灾、爆炸事故防治的基本研究对象。由于受限空间中的预混火焰动力学是内燃机燃烧的典型过程,同时也代表爆轰波发展中的火焰加速、爆燃向爆轰转变等过程,因此在工程燃烧和爆炸安全等方面均有重要应用。另外,氢气作为一种未来具有广阔前景的新能源,开展氢-空气可燃混合气体燃烧特性和行为的研究势在必行。同时,开发和验证与之相应的、能够广泛应用的燃烧模型和方法对于氢气燃烧应用和爆炸安全具有举足轻重的作用。
     本研究的主要目的是为预混燃烧动力学及其机理提供深入的基础性研究,并为预混燃烧和爆炸安全科学研究和工程应用提供坚实的理论基础和可靠的燃烧模型与方法。本论文主要完成两个研究目标。第一个目标是系统地研究管道中预混燃烧动力学特性,包括火焰动力学及其与压力波的相互作用、动态升压特性以及火焰传播的内在动力学机理。本文的另一个重要的目标是研究管道中气体爆炸动力学特性,在此基础上发展和验证能够合理预测灾害性气体爆炸的理论模型和数值方法。本论文的研究基于管道中预混氢-空气预混火焰传播的实验测量和计算流体动力学(CFD)数值模拟。
     在实验中,运用高速纹影摄像方法和压力测试技术研究了水平放置的半开口管道和封闭管道中不同当量比的氢-空气火焰动力学和升压特性。高速摄像仪和纹影设备用来记录燃烧过程中火焰形状和位置随时间的变化规律。压力传感器用来测量这种非稳态燃烧过程中的瞬态压力随时间变化特性。另外,实验还研究重力、开口率和当量比对燃烧动力学的影响。
     在数值模拟中,预混火焰的传播过程分别模拟为二维和三维的化学反应性流动。在二维的数值模拟中预混燃烧采用动态增厚火焰模型(TF模型)进行模拟。氢气在空气中的化学反应采用19步详细化学反应机理进行求解。三维的数值模拟通过两种不同的数值方法开展。第一种方法基于与二维模拟一样的燃烧技术,即动态增厚火焰模型。但是在模拟中采用了动态的自适应性网格加密技术和火焰面追踪技术。而氢-空气化学反应采用7步简化反应机理进行解算。第二种方法为大涡模拟结合湍流燃烧速度模型的方法。采用基于大涡模拟预混燃烧模型的数值计算以实现对不同的火焰动力学现象及其内在机理的深入研究,并在此基础上揭示实验现象的本质规律与机理。该燃烧模型考虑了四种不同物理机理效应对预混火焰燃烧速度的影响,即流动湍流、火焰前锋诱导湍流、热-扩散不稳定性以及未燃气体瞬态温度与压力等物理因素对预混火焰燃烧速度的增强作用。
     实验研究结果表明相比于其他常用气体燃料,管道中氢-空气预混火焰经历了更多的复杂火焰动力学特性变化,包括火焰形状和其他动力学特征。其中一个重要的发现就是在封闭管道中当氢-空气预混气体当量比在0.84<Φ<4.22范围内时,经典Tulip火焰会产生显著的变形。实验表明变形Tulip火焰在火焰形成经典Tulip形状之后产生,并在初始Tulip火舌的引导前锋附近产生变形(凹陷)时引发。当次生Tulip尖端传播到初始Tulip火舌中部并与初始Tulip尖端大小形状相当时,变形Tulip火焰发展成为“三重”Tulip火焰。在第一个变形Tulip火焰消失之际,火焰前锋将产生第二次Tulip火焰变形,此时火焰前锋形成一连串的次生Tulip尖端。实验中对这种显著的Tulip火焰变形进行了细致的研究,并与经典Tulip火焰的瓦解和消失过程进行了区分。变形Tulip火焰的动力学特性与经典Tulip火焰动力学特性有显著的不同。前者经历了更多的火焰形状变化和更不稳定的燃烧动力学过程。经典Tulip火焰在第一次变形Tulip火焰消失时可重新出现。实验高速纹影图像和压力测试记录结果表明变形Tulip火焰传播可分为五个动力学阶段,即球形火焰、指尖形火焰、接触壁面火焰、Tulip火焰和变形Tulip火焰。实验中火焰形状变化(包括Tulip和变形Tulip形状的产生)的引发与火焰前锋突然减速和压力上升的骤然下降同步发生。Tulip和变形Tulip火焰的形成及其动力学特性对混合气体的组成具有较强的依赖性。重力对Tulip火焰具有显著的影响,能使Tulip火焰在低当量比和高当量比时以不同的方式消失,但是在本文实验中重力并不能导致实质性的火焰动力学变化。开口率对火焰传播动力学有重要影响。当开口率小于等于0.4时能形成显著的变形Tulip火焰。火焰传播的特征时间和对应的引导前锋特征位置均随开口率的增大而增大。
     基于动态增厚火焰模型的二维数值模拟合理地再现了实验中观察到的火焰五个特征阶段的动力学现象。实验和数值模拟中均观察到了火焰诱导逆向流动和涡旋运动。火焰前锋、逆向流动与已燃区涡旋运动之间的相互作用将改变火焰形状并使火焰前锋发展成为Tulip形状。火焰第一次接触管道侧壁面时所触发的压力波是变形Tulip火焰传播过程中火焰前锋急剧减速和周期性振荡现象的直接原因,并对变形Tulip火焰的形成具有重要作用。采用动态增厚火焰的三维数值模拟能够较好地重复实验中的火焰特性。并且三维模拟的压力上升过程与实验结果符合较好。数值模拟结果与实验结果之间较好的吻合性表明增厚火焰模型对于管道中氢-空气预混火焰传播的模拟具有较高的适用性。通过数值模拟发现Tulip(?)]变形Tulip火焰均可以在没有壁面摩擦的情况下形成,这说明壁面摩擦对Tulip(?)]变形Tulip火焰的形成并不重要。
     通过大涡模拟方法进一步深入研究了火焰前锋、压力波与燃烧诱导流动之间的相互作用,特别是当火焰前锋形成变形Tulip形状时。同时完善并通过实验验证了LES燃烧模型。LES模拟很好地再现了实验观察到的变形Tulip动力学特性。数值计算结果表明经典Tulip火焰形成之后在火焰前锋附近已燃区形成大尺度的涡旋运动。这些涡旋在火焰附近持续运动从而改变火焰前锋附近流场,直接导致初始Tulip尖端和靠近管道侧壁面的火焰前锋传播速度大于初始Tulip火舌中部火焰速度。这种火焰前锋传播速率之间的差异最后可导致变形Tulip火焰形成。LES燃烧模型很好地再现了管道中氢-空气预混火焰传播动力学和压力上升特性。数值模拟也表明网格分辨率在火焰前锋发生反转之后对燃烧动力学的模拟结果有一定程度的影响。
     在实验与CFD数值模拟基础上,基于压力波与火焰的相互作用关系,对封闭管道中氢-空气预混火焰传播动力学进行了理论分析,建立了变形Tulip火焰传播的理论模型。理论分析结果与实验及大涡模拟结果吻合较好,同时理论分析证明了变形Tulip火焰形成本质原因是Taylor不稳定性。
Premixed combustion of the combustible gas mixture is a very fundamental and potential subject for practical application, e.g. accidental explosions. The fundamental understanding of premixed flame propagation phenomena is essential for the development of novel analytical and numerical combustion models. Premixed flame dynamics in confined vessels is of particular importance since it provides understanding of the burning processes taking place in internal combustion engines, and explains the mechanisms behind flame acceleration that can lead to transition from deflagration to detonation. In addition, hydrogen is a promising alternative energy carrier in the future, and it is desirable to characterize the combustion behavior of its blends with air. Meantime, the development and the validation of contemporary combustion models with a wide range of applicability are important for both hydrogen combustion applications and explosion safety.
     This study aims to provide fundamental and in-depth investigation for premixed combustion and reliable predictive approaches for combustion engineering and explosion safety. Two primary aims is planned to be achieved in the present work. The first objective of this work is to study the premixed combustion dynamics in tubes, i.e. flame and pressure dynamics, and explain the mechanisms of the dynamics of the premixed combustion and flame. Another important target of the present study is to investigate gas explosions in tubes, and to develop and validate theoretical and numerical methods that could provide reasonable prediction of accidental gas explosions inside tubes. Laboratory experiments and CFD numerical simulations of premixed hydrogen-air flames in tubes are the basis of the thesis.
     In the experiments, both the dynamics of premixed hydrogen-air flames and pressure build-up at various equivalence ratios propagating in half-open and closed horizontal ducts are investigated using high-speed schlieren photography and pressure records. The high-speed schlieren device is used to record the changes both in the flame shape and position as a function of time during the combustion process. The pressure transient in the duct during the nonsteady combustion is measured using a pressure transducer. The influences of gravity, opening ratio and equivalence ratio on the flame dynamics are also examined in the experimental investigation.
     In the numerical simulations, the premixed combustion wave is simulated as two-dimensional (2D) or three-dimensional (3D) chemically reacting flow. A dynamic thickened flame (TF) model is applied in the2D numerical simulation to account for the premixed combustion. The chemical reaction of hydrogen and air is taken into account using a19-step detailed chemistry scheme. The3D numerical simulations are carried out using two numerical approaches. The first one is based on the same combustion technique as that in the2D simulation, namely the dynamic TF flame method. Nevertheless, a dynamically and locally adaptive mesh refinement is adopted, and tracks the location of the flame front. The hydrogen-air chemical reactions are taken into accounts using a seven-step chemistry scheme. The second one is the large eddy simulation (LES) together with a turbulent burning velocity model. The LES premixed combustion model is applied to gain an insight into various phenomena of flame and explain the experimental observations. The model accounts for the effects of four different physical mechanisms, i.e. flow turbulence, turbulence generated by flame front itself, diffusive-thermal instability, and transient pressure and temperature of unburned gas, on the premixed flame burning velocity.
     The experimental study shows that the premixed hydrogen/air flame in ducts undergoes more complex shape changes and exhibits more distinct characteristics than that of other gaseous fuels. One of the outstanding findings is that significant distortions happen to the classical tulip flame front after its full formation when equivalence ratio ranges from0.84to4.22in the closed duct. A distorted tulip flame is initiated as the distortions or indentations are created very near the leading tips of the tulip lips after a well-pronounced classical tulip flame is produced. The distorted tulip flame develops into a salient "triple tulip" shape as the secondary tulip cusps approach the center of the primary tulip lips and appear comparable to the primary cusp. A second distorted tulip flame appears with a cascade of secondary cusps on the primary tulip lips just before the collapse of the first one. The salient tulip flame distortions are specially scrutinized and distinguished from the classical tulip. The dynamics of distorting tulip flame is different from that of classical tulip flame. The distorting tulip flame undergoes more complex shape changes and more unstable combustion process than the classical tulip flame. The normal tulip flame can be reproduced after the disappearance of the first distortion followed by another distortion. The schlieren images and the pressure records show that the distorted tulip flame propagation can be divided into five stages of dynamics, i.e. spherical flame, finger-shape flame, flame touching the sidewalls, tulip flame and distorted tulip flame. The initiation of flame shape changes coincides with the deceleration both of pressure rise and flame front speed for flames with tulip distortions. And the formation and dynamics of both tulip and distorting tulip flames depend on the mixture composition. The gravity has a noticeable impact on the tulip flame and can make the tulip flame collapse in different way between low and high equivalence ratios. The opening ratio can significantly influence the flame dynamics in a partially open duct. When the opening ratio is smaller than0.4a remarkable distorted tulip flame can be formed. The characteristic times and the corresponding characteristic distances of flame front increase with the increase of the opening ratio.
     The flame dynamics observed in the experiment is well reproduced in the2D numerical simulation with TF method. The flame-induced reverse flow and vortex motion are observed both in experiment and the2D simulation. The interactions between the flame front, reverse flow and vortices in the burned gas change the flame shape and ultimately the flame front develops into a tulip shape. The pressure wave triggered by the first contact of the flame with the side walls is responsible for the periodic deceleration of the flame front and plays an important role in the formation of the distorted tulip flame. The flame and pressure dynamics observed in the experiment are well reproduced in the3D numerical simulation using the dynamic TF model. The predicted pressure dynamics in the numerical simulation is also in good agreement with that in the experiment. The close correspondence between the experiment and the numerical simulation demonstrate that the TF approach is quite reliable for the study of premixed hydrogen/air flame propagation in the closed duct. Both the tulip and distorted tulip flames can be created in the simulation with free-slip boundary condition at the duct walls, which means that the wall friction could be unimportant for the tulip and distorted tulip formation.
     The LES numerical simulation provides further understanding of the interaction between flame front, pressure wave and combustion-generated flow, especially when the flame acquires a "distorted tulip" shape. The dynamics of "distorted tulip" flame observed in the experiment is well reproduced by the LES. The numerical simulations show that large-scale vortices are generated in the burnt gas after the formation of a classical tulip flame. The vortices remain in the proximity of the flame front and modify the flow field around the flame front. As a result, the flame front in the original cusp and near the sidewalls propagates faster than that close to the centre of the original tulip lips. The discrepancy in the flame propagation rate can finally lead to the formation of the "distorted tulip" flame. The LES model validated previously against large-scale hydrogen/air deflagrations is successfully applied in this study to reproduce the dynamics of flame propagation and pressure build up in the small-scale duct. It is confirmed that grid resolution has an influence to a certain extent on the simulated combustion dynamics after the flame inversion.
     On the basis of the experimental and numerical investigation of the interaction between flame front and pressure wave, the premixed flame dynamics for hydrogen/air mixture in the closed duct is theoretically analyzed. A theoretical model of the distorted tulip flame is developed. The results predicted using the theoretcial model is in satisfactory agreement with those in the experiments and LES. The theoretical analysis demonstrates that the Taylor instability is the substantial cause of the "distorted tulip" flame.
引文
[1]Bjerketvedt D, Bakke JR, van Wingerden K. Gas explosion handbook [J]. Journal of Hazardous Materials,1997,52:1-150.
    [2]Dorofeev SB. Flame acceleration and explosion safety applications [J]. Proceedings of the Combustion Institute,2011,33:2161-2175.
    [3]Liberman M. Flame, detonation, explosion-when, where and how they occur [M]. Third International Disposal Conference. Karlskoga, Sweden.2003:5-23.
    [4]Lea CJ, Ledin HS. A review of the state-of-the-art in gas explosion modeling [J]. Health & safety Laboratory, Fire and explosion group, Hampur Hill, Buxton, SK179JN,2002.
    [5]Kristoffersen K. Gas explosions in process pipes [D]. Porsgrunn, Norway; Telemark University College,2004.
    [6]Pande JO, Tonheim J. Ammonia plant Nil:Explosion hydrogen in a pipeline for CO2 [J]. Process Safety Progress,2001,20:37-40.
    [7]Kinsmann P, Lewis J. Report on a second study of pipeline accidents using the Health and Safety Executive's risk assessment programs MISHAP and PIPERS [J]. Health and Safety Executive [HSE] Research Report,063,2002.
    [8]毕明树.开敞空间可燃气云爆炸压力研究[D].大连;大连理工大学,2001.
    [9]王志荣.受限空间气体爆炸传播及其动力学过程研究[D].南京;南京工业大学,2005.
    [10]Hirano T. Accident explosions of semiconductor manufacturing gases in Japan [J]. Journal of Loss Prevention in the Process Industries,2004,17:29-34.
    [11]Bematik A, Libisova M. Loss prevention in heavy industrial:Risk assessment of large gasholder [J]. Journal of Loss Prevention in the Process Industries,2004,17:271-278.
    [12]Ng HD, Lee JHS. Comments on explosion problems for hydrogen safety [J]. Journal of Loss Prevention in the Process Industries,2008,21:136-146.
    [13]Fairweather M, Hargrave GK, Ibrahim SS, Walker DG. Studies of premixed flame propagation in explosion tubes [J]. Combustion and Flame,1999,116:504-518.
    [14]Gamezo VN, Ogawa T, Oran ES. Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing [J]. Combustion and Flame,2008,155:302-315.
    [15]Dorofeev SB. Hydrogen flames in tubes:Critical run-up distances [J]. International Journal of Hydrogen Energy,2009,34:5832-5837.
    [16]Law CK. Combustion at a crossroads:Status and prospects [J]. Proceedings of the Combustion Institute,2007,31:1-29.
    [17]Molkov V. Hydrogen safety research:state-of-the-art [M]. Proceedings of the 5th International Seminar on Fire and Explosion Hazards. Edinburgh, UK.2007:28-43.
    [18]冯文,王淑娟,倪维斗,陈昌和.氢能的安全性和燃料电池汽车的氢安全问题[J].太阳能学报,2003,24:678-682.
    [19]Green MA. Hydrogen safety issues compared to safety issues with methane and propane; proceedings of the Advances in Cryogenic Engineering, Vols 51A and B, F,2006 [C].
    [20]Jacob PO. DEO guidelines on hydrogen safety [J]. SAE World Congress,2005.
    [21]HySafe. Safety of Hydrogen as an Energy Carrier, Electronic information at http://www.hysafe.org/.
    [22]HySafe. HySafe, HySafe 1st Periodic Report, Executive Summary, (http://www.hysafe.org/),2005.
    [23]Hirschfelder JO, Curtis CF. Theory of propagation of flames [M]//WILKINS W A. Third Symposium on Combustion, Flame and Explosion Phenomena. Baltimore.1949:121.
    [24]Hirschfelder JO, Curtis CF, Bird RB. Molecular Theory of Gases and Liquids [M]. New York, 1954.
    [25]Markstein GH. Nonsteady flame propagation [M]. New York:Pergamon Press Limited,1964.
    [26]Matalon M. Flame dynamics [J]. Proceedings of the Combustion Institute,2009,32:57-82.
    [27]Xiao HH, Wang QS, He XC, Sun JH, Shen XB. Experimental study on the behaviors and shape changes of premixed hydrogen-air flames propagating in horizontal duct [J]. International Journal of Hydrogen Energy,2011,36:6325-6336.
    [28]Xiao HH, Makarov D, Sun JH, Molkov V. Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct [J]. Combustion and Flame,2011, In press:doi:10.1016/j.combustflame.2011.1012.1003.
    [29]Poinsot T, Veynante D. Theoretical and numerical combustion [M].2nd ed. Philadelphia: Edwards RT Inc,2005.
    [30]Ciccarelli G, Dorofeev S. Flame acceleration and transition to detonation in ducts [J]. Progress in Energy and Combustion Science,2008,34:499-550.
    [31]Verhelst S, Wallner T. Hydrogen-fueled internal combustion engines [J]. Progress in Energy and Combustion Science,2009,35:490-527.
    [32]Dorofeev SB, Kuznetsov MS, Alekseev VI, Efimenko AA, Breitung W. Evaluation of limits for effective flame acceleration in hydrogen mixtures [J]. Journal of Loss Prevention in the Process Industries,2001,14:583-589.
    [33]Oran ES, Boris JP. Numerical Simulation of Reactive Flow [M]. Cambridge:Cambridge University Press,2000.
    [34]Abu-Orf GM, Cant RS. A turbulent reaction rate model for premixed turbulent combustion in spark-ignition engines [J]. Combustion and Flame,2000,122:233-252.
    [35]Akkerman V, Bychkov V, Petchenko A, Eriksson LE. Accelerating flames in cylindrical tubes with nonslip at the walls [J]. Combustion and Flame,2006,145:206-219.
    [36]Bychkov V, Akkerman V, Fru G, Petchenko A, Eriksson LE. Flame acceleration in the early stages of burning in tubes [J]. Combustion and Flame,2007,150:263-276.
    [37]Bychkov W, Liberman MA. Dynamics and stability of premixed flames [J]. Physics Reports, 2000,325:116-237.
    [38]Kagan L, Sivashinsky G. The transition from deflagration to detonation in thin channels [J]. Combustion and Flame,2003,134:389-397.
    [39]Kratzel T, Pantow E, Fischer M. On the transition from a highly turbulent curved flame into a tulip flame [J]. International Journal of Hydrogen Energy,1998,23:45-51.
    [40]Law CK. Combustion physics [M]. New York:Cambridge university press,2006.
    [41]Makarov DV, Molkov VV. Modeling and large eddy simulation of deflagration dynamics in a closed vessel [J]. Combustion, Explosion and Shock Waves,2004,40:136-144.
    [42]Matalon M, Mcgreevy JL. The initial development of a tulip flame [J]. Proceedings of the Combustion Institute,1994,1407-1413.
    [43]Matalon M, Metzener P. The propagation of premixed flames in closed tubes [J]. Journal of Fluid Mechanics,1997,336:331-350.
    [44]Molkov V, Makarov D, Grigorash A. Cellular structure of explosion flames:Modeling and large-eddy simulation [J]. Combustion Science and Technology,2004,176:851-865.
    [45]Starke R, Roth P. An experimental investigation of flame behavior during cylindrical vessel explosions [J]. Combustion and Flame,1986,66:249-259.
    [46]Starke R, Roth P. An Experimental Investigation of Flame Behavior during Explosions in Cylindrical Enclosures with Obstacles [J]. Combustion and Flame,1989,75:111-121.
    [47]Xiao HH, Wang QS, He XC, Sun JH, Yao LY. Experimental and numerical study on premixed hydrogen/air flame propagation in a horizontal rectangular closed duct [J]. International Journal of Hydrogen Energy,2010,35:1367-1376.
    [48]Dunn-Rankin D, Barr PK, Sawyer RF. Numerical and experimental study of "tulip" flame formation in a closed vessel[J]. Proceedings of the Combustion Institute,1986,21:1291-1301.
    [49]Dunn-Rankin D, Sawyer RE. Interaction of a laminar flame with its self-generated flow during constant volume combustion; proceedings of the 10th ICDERS, Berkley, California, F August,1985 [C].
    [50]Dunn-Rankin D, Sawyer RF. Tulip flames:changes in shape of premixed flames propagating in closed tubes [J]. Experiments in Fluids,1998,24:130-140.
    [51]Mogi T, Kim D, Shiina H, Horiguchi S. Self-ignition and explosion during discharge of high-pressure hydrogen [J]. Journal of Loss Prevention in the Process Industries,2008,21: 199-204.
    [52]Dryer FL, Chaos M, Zhao Z, Stein JN, Alpert JY, Homer CJ. Spontaneous ignition of pressurized releases of hydrogen and natural gas into air [J]. Combustion Science and Technology,2007,179:663-694.
    [53]Glassman I. Combustion [M]. second edition ed. San Diego, California:Academic press inc., 1987.
    [54]Williams FA. Combustion theory [M]. Massachusetts:Perseus books,1985.
    [55]Bradley D, Gaskell PH, Gu XJ. Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames:A com-putational study [J]. Combustion and Flame,1996, 104:176-198.
    [56]Lamoureux N, Djebaili-Chaumeix N, Paillard CE. Laminar flame velocity determination for H2-air-He-CO2 mixtures using the spherical bomb method [J]. Experimental Thermal and Fluid Science,2003,27:385-393.
    [57]Huang ZH, Zhang Y, Zeng K, Liu B, Wang Q, Jiang D. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures [J]. Combustion and Flame,2006,146: 302-311.
    [58]胡二江,何佳佳,黄佐华,金春,王婕,苗海燕,王锡斌,蒋德明.氢气-空气-稀释气混合气层流燃烧速度的测定和火焰稳定性分析[J].科学通报,2008,53:2514-2525.
    [59]Fristrom RM, Westenberg AA. Flame structure [M]. New York:Mc Graw Hill,1965.
    [60]Kee RJ, Rupley FM, Miller JA. Technical report SAND89-8009 [J]. Sandia National Laboratories,1989,
    [61]Teerling OJ. Acoustics and flame acceleration in regions of partial confinement [D]. Leeds, UK; University of Leeds,2004.
    [62]Aung KT, Hassan MI, Faeth GM. Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure [J]. Combustion and Flame,1997,109: 1-24.
    [63]Landau LD, Lifshitz EM. Fluid Mechanics [M]. Oxford:Pergamon Press,1987.
    [64]Kwon OC, Faeth GM. Flame/stretch interactions of premixed hydrogen-fueled flames: measurements and predictions [J]. Combustion and Flame,2001,124:590-610.
    [65]焦琦,苗海燕,黄潜,黄佐华,蒋德明,曾科.初始压力对天然气·氢气-空气混合气火焰传播特性的影响[J].燃烧科学与技术,2009,15:374-380.
    [66]Aung KT, Hassan MI, Faeth GM. Effects of pressure and nitrogen dilution on flame/stretch interactions of laminar premixed H2/O2/N2 flames [J]. Combustion and Flame,1998,112: 1-15.
    [67]Liu FS, Guo HS, Smallwood GJ, Gulder OL. Numerical study of the superadiabatic flame temperature phenomenon in hydrocarbon premixed flames [J]. Proceedings of the Combustion Institute,2002,29:1543-1550.
    [68]Dong C, Zhou Q, Zhao Q, Zhang Y, Xu T, Hui S. Experimental study on the laminar flame speed of hydrogen/carbon monoxide/air mixtures [J]. Fuel,2009,88:1858-1863.
    [69]Dahoe AE. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions [J]. Journal of Loss Prevention in the Process Industries,2005,18:152-166.
    [70]Law CK. A compilation of experimental data on laminar burning velocities, reduced kinetic mechanisms for applications in combustion systems [J]. Springer Verlag,1993,15-26.
    [71]Takahashi F, Mizomoto M, and Ikai S. Nuclear Energy/Synthetic Fuels [M]. New York, 1983.
    [72]Wu CK, Law CK. On the determination of laminar flame speeds from stretched flames [J]. Proceedings of the Combustion Institute,1984,1941-1949.
    [73]Iijima T, Takeno T. Effects of temperature and pressure on burning velocity [J]. Combustion and Flame,1986,65:35-43.
    [74]Dowdy DR, Smith DB, Taylor SC, Williams A. The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen-air mixtures [J]. Proceedings of the Combustion Institute,1990,325-332.
    [75]Egolfopoulos FN, Law CK. An experimental and computational study of the burning rates of ultra-lean to moderately rich H2/O2/N2 laminar flames with pressure variations [J]. Proceedings of the Combustion Institute,1990,333-346.
    [76]Koroll GW, Kumar RK, Bowles EM. Burning velocities of hydrogen-air mixtures [J]. Combustion and Flame,1993,94:330-340.
    [77]Vagelopoulos CM, Egolfopoulos FN. Further considerations on the determination of laminar flame speeds from streched flames [J]. Proceedings of the Combustion Institute,1995, 1341-1347.
    [78]Tse SD, Zhu DL, Law CK. Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres [J]. Proceedings of the Combustion Institute,2000, 28:1793-1800.
    [79]Lamoureux N, Djebaili-Chaumeix N, Paillard CE. Laminar flame velocity determination for H2-air-steam mixtures using the spherical bomb method [J]. Journal de Physique de France IV, 2002,12:445-452.
    [80]Law CK. Propagation, structure, and limit phenomena of laminar flames at elevated pressures [J]. Combustion Science and Technology,2006,178:335-360.
    [81]Nagy J, Conn J, Verakis H. Explosion development in a spherical vessel [R]. Technical Reports RI7279, US Department of Interior, Bureau of Mines,1969.
    [82]Day M, Bell J, Bremer PT, Pascucci V, Beckner V, Lijewski M. Turbulence effects on cellular burning structures in lean premixed hydrogen flames [J]. Combustion and Flame,2009,156: 1035-1045.
    [83]陈正,琚冶光,Minaev S.圆柱火焰的可燃极限及稳定性分析[J].工程热物理学报,2002,23:513-516.
    [84]Darrieus G. proceedings of the Propagation dun front de flamme, presented at La Technique Moderne, Paris, F,1938 (unpublished work) [C].
    [85]Landau LD. On the theory of slow combustion [J]. Acta PhyscoChim USSR,1944,19: 77-85.
    [86]Lipatnikov AN, J. C. Molecular transport effect on turbulent flame propagation and structure [J]. Progress in Energy and Combustion Science,2005,31:1-7.
    [87]Sivashinsky GI. On self-turbulization of a laminar flame [J]. Acta Astronautica,1979,5: 569-591.
    [88]Dorofeev S. Flame acceleration and transition to detonation:a framework for estimating potential explosion hazards in hydrogen mixtures [M]. Lecture presented at the 3rd European Summer School on Hydrogen Safety. Belfast, UK.2008.
    [89]Teodorczyk A, Lee JHS. Detonation attenuation by foams and wire meshes lining the walls [J]. Shockwaves,1995,4:225-236.
    [90]Liu F, Mclntosh AC, Brindley J. A numerical investigation of Rayleigh-Taylor effects in pressure wave-premixed flame interaction [J]. Combustion Science and Technology,1993,91: 373-386.
    [91]Bradley D, Harper C. The development of instabilities in laminar explosion flames [J]. Combustion and Flame,1994,99:562-572.
    [92]Zeldovich YB, Barenblatt GI, Librovich VB, Makhviladze GM. The mathematical theory of combustion and explosions [M]. New York:Consultants Bureau,1985.
    [93]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [94]Pope SB. Turbulent flows [M]. Cambridge:Cambridge University Press,2000.
    [95]Borghi R. Recent advances in aerospace science [M]. New York:Plenum Press,1985.
    [96]Warnatz J, Maas U, Dibble RW. Combustion [M].3rd ed. Berlin, Germany:Springer-Verlag Berlin Heidelberg,2001.
    [97]Peters N. Turbulent combustion [M]. Cambridge:Cambridge University Press,2000.
    [98]Chapman DL. On the rate of explosion in gases [J]. Philosophical Magazine,1899,47: 90-104.
    [99]Jouguet E. On the propagation of chemical reactions in gases [J]. Journal de mathematiques pures et appliquers,1905,6:347.
    [100]Zeldovich YB. On the theory of of the propagation of detonation in gaseous systems [J]. Zhur Eksp Teor Fiz,1940,10:542-568.
    [101]von Neumann J. Theory of detonation waves [J]. OSRD Report, No.549,1942.
    [102]Doring W. On detonation processes in gases [J]. Annals of Physics,1943,43:421-436.
    [103]Denisov YN, Troshin YK. On the mechanism of detonative combustion[J]. Proceedings of the Combustion Institute,1960,600-610.
    [104]Denisov YN, Troshin YK. Structure of gaseous detonations in channels [J]. Zeitschrift fur technische Physik,1960,30:450.
    [105]韩启祥,王家骅,王波.预混气爆震管中爆燃到爆震转捩距离的研究[J].推进技术,2003,24:63-66.
    [106]夏昌敬,周凯元,沈兆武.可燃气体非稳定爆轰波通过90°圆弯管传播特性的实验研究[J].实验力学,2002,17:438-443.
    [107]余立新,孙文超,吴承康.氢/空气火焰在半开口有障碍物管道中的传播特性[J].燃烧科学与技术,2002,8:27-30.
    [108]Mallard M, Le Chatelier H. Recherches experimentales et theoriques sur la combustion des melanges gazeux explosifs [J]. Annales de Mines,1883; 8:274-568.
    [109]Ellis OCde C. Flame movement in gaseous explosive mixtures [J]. Fuel Science,1928,7: 502-508.
    [110]Salamandra GD, Bazhenova TV, Naboko IM. Formation of detonation wave during combustion of gas in combustion tube [J]. Proceedings of the Combustion Institute,1959,7: 851-855.
    [111]Gonzalez M, Borghi R, Saouab A. Interaction of a Flame Front with Its Self-Generated Flow in an Enclosure-the Tulip Flame Phenomenon[J]. Combustion and Flame,1992,88:201-220.
    [112]Marra FS, Continillo G Numerical study of premixed laminar flame propagation in a closed tube with a full Navier-Stokes approach [J]. Proceedings of the Combustion Institute,1996,26: 907-913.
    [113]Metzener P, Matalon M. Premixed flames in closed cylindrical tubes [J]. Combustion Theory and Modelling,2001,5:463-483.
    [114]Clanet C, Searby G. On the "tulip flame" phenomenon [J]. Combustion and Flame,1996, 105:225-238.
    [115]Schmidt EHW, Steinecke H, Neubert U. Flame and schlieren photographs of combustion waves in tubes [J]. Proceedings of the Combustion Institute,1952,4:658-666.
    [116]Gonzalez M. Acoustic instability of a premixed flame propagating in a tube [J]. Combustion and Flame,1996,107:245-259.
    [117]Rotman DA, Oppenheim AK. Aerothermodynamic properties of stretched flames in enclosures [J]. Proceedings of the Combustion Institute,1986,1303-1310.
    [118]Markstein GH. A shock-tube study of flame front-pressure wave interaction [J]. Proceedings of the Combustion Institute,1956,6:387-398.
    [119]Barrere M, Williams FA. Comparison of combustion instabilities found in various types of combustion chambers [J]. Proceedings of the Combustion Institute,1976,169-181.
    [120]Guenoche H. Flame propagation in tubes and in closed vessels [M]//MARKSTEIN G H. Nonsteady Flame Propagation. New York; Pergamon Press.1964:107.
    [121]陈先锋.丙烷-空气预混火焰微观结构及加速传播过程中的动力学研究[D].合肥;中国科学技术大学,2007.
    [122]叶经方,贾正望,董刚,范宝春.激波与火焰作用的实验与理论研究[J].工程热物理学报,2005,26:511-514.
    [123]范宝春,江强,董刚,叶经方.激波与火焰的相互作用过程[J].爆炸与冲击,2003,23:488-492.
    [124]Evens MW, Scheer MD, Schoen LJ, Miller JA. A study of high velocity flames developed by grids in tubes [J]. Proceedings of the Combustion Institute,1948,168-176.
    [125]Catlin CA, Fairweather M, Ibraiim SS. Predictions of turbulent, premixed flame propagation in explosion tubes [J]. Combustion and Flame,1995,102:115-128.
    [126]Gubba SR, Ibrahim SS, Malalasekera W, Masri AR. Measurements and LES calculations of turbulent premixed flame propagation past repeated obstacles [J]. Combustion and Flame, 2011,158:2465-2481.
    [127]Kessler DA, Gamezo VN, Oran ES. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems [J]. Combustion and Flame,2010, 157:2063-2077.
    [128]Gamezo VN, Ogawa T, Oran ES. Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen-air mixture [J]. Combustion and Flame,2007,31: 2463-2471.
    [129]Lee JH, Knystautas R, Chan CK. Turbulent flame propagation in obstaclefilled tubes [J]. Proceedings of the Combustion Institute,1984,1663-1672.
    [130]Kuznetsov M, Alekseev V, Yankin Y, Dorofeev S. Slow and fast deflagrations in hydrocarbon-air mixtures [J]. Combustion Science and Technology,2002,174:157-172.
    [131]Masri AR, Ibrahim SS, Nehzat N, Green AR. Experimental study of premixed flame propagation over various solid obstructions [J]. Experimental Thermal and Fluid Science, 2000,21:109-117.
    [132]Ibrahim SS, Masri AR. The effects of obstructions on overpressure resulting from premixed flame deflagration [J]. Journal of Loss Prevention in the Process Industries,2001,14:213-221.
    [133]Patel SNDH, Jarvis S, Ibrahim SS, Hargrave GK. An experimental and numerical investigation of premixed flame deflagration in a semiconfined explosion chamber [J]. Proceedings of the Combustion Institute,2002,29:1849-1854.
    [134]Johansen T, Ciccarelli G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel [J]. Combustion and Flame,2009,156: 405-416.
    [135]周凯元,李宗芬.丙烷-空气爆燃波的火焰面在直管道中的加速运动[J].爆炸与冲击,2000.20:137-142.
    [136]林柏泉,张仁贵,吕恒宏.瓦斯爆炸过程中火焰传播规律及其加速机理的研究[J].煤炭学报,1999,24:56-59.
    [137]何学秋,杨艺,王恩元,刘贞堂.障碍物对瓦斯爆炸火焰结构及火焰传播影响的研究[J].煤炭学报,2004,29:186-189.
    [138]Kuznetsov M, Alekseev V, Matsukov I, Dorofeev S. DDT in a smooth tube filled with a hydrogen-oxygen mixture [J]. Shock Waves,2005,14:205-215.
    [139]Zeldovich YB, Librovich VB, Makhviladze GM, Sivashinsky GI. On the development of detonation in a non-uniformly preheated gas [J]. Astronaut Acta,1970,15:313-321.
    [140]Dorofeev SB. Flame acceleration and DDT in gas explosions [J]. Journal de Physique,2002, 12:3-10.
    [141]Zhou B, Sobiesiak A, Quan P. Flame behavior and flame-induced flow in a closed rectangular duct with a 90 degrees bend [J]. International Journal of Thermal Sciences,2006, 45:457-474.
    [142]Sato Y, Sakai Y, Chiga M. Flame propagation along 90° bend in an open duct [J]. Proceedings of the Combustion Institute,1996,26:931-937.
    [143]王昌建,徐胜利,郭长铭.气相爆轰波在半圆形弯管中传播现象的实验研究[J].爆炸与冲击,2003,23:448-453.
    [144]王昌建,郭长铭,徐胜利,张寒红.气相爆轰在T形管中传播现象的实验研究[J].力 学学报,2004,36:16-23.
    [145]王昌建,徐胜利,费立森,郭长铭.弯管内爆轰波传播的流场显示和数值模拟[J].力学学报,2006,38:9-15.
    [146]何学超.丙烷-空气预混火焰在90°弯曲管道内传播特性的实验和模拟研究[D].合肥;中国科学技术大学,2009.
    [147]Company FM. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications:hydrogen vehicle safety report (DE-AC02294CE50389) [J]. US Department Of Energy,1997.
    [148]Makarov D, Verbecke F, Molkov V, Roe O, Skotenne M, Kotchourko A, Lelyakin A, Yanez J, Hansen O, Middha P, Ledin S, Baraldi D, Heitsch M, Efimenko A, Gavrikov A. An inter-comparison exercise on CFD model capabilities to predict a hydrogen explosion in a simulated vehicle refuelling environment [J]. International Journal of Hydrogen Energy,2009, 34:2800-2814.
    [149]Makarov DV, Molkov VV. Large eddy simulation of gaseous explosion dynamics in an unvented vessel [J]. Combustion, Explosion and Shock Waves,2004,40:136-144.
    [150]Molkov V. A multiphenomena turbulent burning velocity model for large eddy simulation of premixed combustion [M]//ROY G D. Nonequilibrium Phenomena:Plasma, Combustion, Atmosphere. Moscow; Torus Press Ltd.2009:315-323.
    [151]Molkov V, Makarov D, Puttock J. The nature and large eddy simulation of coherent deflagrations in a vented enclosure-atmosphere system [J]. Journal of Loss Prevention in the Process Industries,2006,19:121-129.
    [152]-Molkov V,-Makarov D, Schneider H. LES modelling of an unconfined large-scale hydrogen-air deflagration [J]. Journal of Physics D:Applied Physics,2006,39:4366-4376.
    [153]Molkov V, Verbecke F, Makarov D. LES of hydrogen-air deflagrations in a 78.5-m tunnel [J]. Combustion Science and Technology,2008,180:796-808.
    [154]Molkov VV, Makarov DV, Schneider H. Hydrogen-air deflagrations in open atmosphere: Large eddy simulation analysis of experimental data [J]. International Journal of Hydrogen Energy,2007,32:2198-2205.
    [155]Baraldi D, Kotchourko A, Lelyakin A, Yanez J, Gavrikov A, Efimenko A, Verbecke F, Makarov D, Molkov V, Teodorczyk A. An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations with pressure relief vents [J]. International Journal of Hydrogen Energy,2010,35:12381-12390.
    [156]Baraldi D, Kotchourko A, Lelyakin A, Yanez J, Middha P, Hansen OR, Gavrikov A, Efimenko A, Verbecke F, Makarov D, Molkov V. An inter-comparison exercise on CFD model capabilities to simulate hydrogen deflagrations in a tunnel [J]. International Journal of Hydrogen Energy,2009,34:7862-7872.
    [157]Wen JX, Madhav RVC, Tam VHY. Numerical study of hydrogen explosions in a refuelling environment and in a model storage room [J]. International Journal of Hydrogen Energy,2010, 35:385-394.
    [158]Pfortner H, Schneider H. Fraunhofer-institut fur treib-und explosivstoffe [M]. ICT-Projektforschung 19/83 Forschungsprogramm "ProzeBgasfreisetzung-Explosion in der Gasfabrik und Auswirkungen von Druckwellen auf das Containment" Ballonversuche zur Untersuchung der Deflagration von Wasserstoff/Luft-Gernischen (AbschluBbericht).1983.
    [159]Groethe M, Merilo E, Sato Y. Large-scale hydrogen deflagrations and detonations [M]. International Conference on Hydrogen Safety. Pisa, Italy.2005.
    [160]Royle M, Shirvill LC, Roberts TA. Vapour cloud explosions from the ignition of methane/hydrogen/air mixtures in a congested region [M]. International Conference on Hydrogen Safety. San Sebastian.2007.
    [161]Groethe M. Hydrogen deflagration safety studies in a semi-open space [M].14th World Hydrogen Energy Conference. Montreal, Quebec, Canada.2002.
    [162]Shirvill LC, Roberts TA, Royle M. Safety studies on high-pressure hydrogen vehicle refueling stations:part 1 Releases into a simulated high-pressure dispensing area [J]. confidential draft for Hysafe,2005.
    [163]Kumar RK. Combustion of hydrogen at high concentrations including the effects of obstacles [J]. Combustion Science and Technology,1983,35:175-186.
    [164]Sato Y, Iwabuchi H, Groethe M, Merilo E, Chiba S. Experiments on hydrogen deflagration [J]. Journal of Power Sources,2006,159:144-148.
    [165]Chatrathi K, Going JE, Grandestaff B. Flame propagation in industrial scale piping [J]. Process Safety Progress,2001,20:286-294.
    [166]Hirano T. Combustion science for safety [J]. Proceedings of the Combustion Institute,2002, 29:167-180.
    [167]喻健良,周崇,刘润杰,严清华.可燃气体爆炸火焰和压力波传播特性的实验研究[J].天然气工业,2004,24:87-90.
    [168]陈先锋,孙金华,刘义,刘晅亚,陈思凝,陆守香.丙烷/空气预混火焰层流向湍流转变中微观结构的研究[J].科学通报,2006,51:2920-2925.
    [169]刘义.甲烷-煤尘火焰结构及传播特性的研究[D];中国科学技术大学博士论文,2006.
    [170]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996.
    [171]Kleine H, Timofeev E, Takayama K. Laboratory-scale blast wave phenomena-optical diagnostics and applications [J]. Shock Waves,2005,14:343-357.
    [172]冯天植,刘成民,赵润祥,王福华.纹影技术述评[J].弹道学报,1994,2:
    [173]廖光煊,王喜世,秦俊.热灾害实验诊断方法[M].合肥:中国科学技术大学出版社,2003.
    [174]Roth R, Starke P. An Experimental Investigation of Flame Behavior During Cylindrical Vessel Explosions [J]. Combustion and Flame,1986,66:249-259.
    [175]Pocheau A, Kwon CW. Proceedings of A.R.C. Colloquium [M]. Paris: C.N.R.S.-P.I.R.S.E.M.,1989, p.62.
    [176]Petchenko A, Bychkov V, Akkerman V, Eriksson LE. Violent folding of a flame front in a flame-acoustic resonance [J]. Physical Review Letters,2006,97:164501.
    [177]Petchenko A, Bychkov V, Akkerman V, Eriksson LE. Flame-sound interaction in tubes with nonslip walls [J]. Combustion and Flame,2007,149:418-434.
    [178]Akkerman VB, Bychkov VV, Bastiaans RJM, de Goey LPH, van Oijen JA, Eriksson LE. Flow-flame interaction in a closed chamber [J]. Physics of Fluids,2008,20:055107.
    [179]Pelce P. Effect of gravity on the propagation of flames in tubes [J]. Journal of Physics,1985, 46:503-510.
    [180]Khokhlov AM, Oran ES, Wheeler JC. Scaling in buoyancy-driven turbulent premixed flames [J]. Combustion and Flame,1996,105:28-30.
    [181]Libby PA. Theoretical analysis of the effect of gravity on premixed turbulent flames [J]. Combustion Science and Technology,1989,68:15-33.
    [182]Molkov V, Dobashi, Suzuki RM, Hirano T. Venting of deflagrations:hydrocarbon-air and hydrogen-air systems [J]. Journal of Loss Prevention in the Process Industries,2000,13: 397-409.
    [183]王岳,雷宇,张孝谦,Konig J, Eigenbrod C.浮力对皱折锋面预混V形火焰的影响[J].燃烧科学与技术,2002,8:493-497.
    [184]http://ww. hysafe. org/BRHS. Biennial report on hydrogen safety (version 1.2) [M]. European NoE HySafe.2007.
    [185]Anderson JD. Computational fluid dynamics:The basic with applications [M]. New York: McGraw-Hill,1995.
    [186]周雪漪.计算水力学[M].北京:清华大学出版社,1995.
    [187]陶文铨.数值传热学[M].第二版ed.西安:西安交通大学出版社,2001.
    [188]White FM. Viscous fluid flow [M]. New York:McGraw-Hill,1991.
    [189]Piller M, Nobile E, Thomas J. DNS study of turbulent transport at low Prandtl numbers in a channel flow [J]. Journal of Fluid Mechanics,2002,458:419-441.
    [190]Janicka J, Sadiki A. Large eddy simulation of turbulent combustion systems [J]. Proceedings of the Combustion Institute,2005,30:537-547.
    [191]Veynante D, Vervisch L. Turbulent combustion modeling [J]. Progress in Energy and Combustion Science,2002,28:193-266.
    [192]Yakhot V, Orszag SA. Renormalization-Group Analysis of Turbulence [J]. Physical Review Letters,1986,57:1722-1724.
    [193]Yakhot V, Orszag SA. Renormalization group analysis of turbulence [J]. Journal of Scientific Computing,1986,1:3-51.
    [194]Butler TD, Orourke PJ. A numerical method for two-dimensional unsteady reacting flows [J]. Proceedings of the Combustion Institute,1977,16:1503.
    [195]Kuo KK. Principles of Combustion [M].2nd ed.:John Wiley & Sons Inc.,2005.
    [196]Legier JP, Poinsot T, Veynante D. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion [J]. Proceedings of the Summer Program,2000.
    [197]Colin O, Ducros F, Veynante D, Poinsot T. A thickened flame model for large eddy simulations of turbulent premixed combustion [J]. Physics of Fluids,2000,12:1843-1863.
    [198]Lacaze G, Cuenot B, Poinsot T, Oschwald M. Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration [J]. Combustion and Flame,2009, 156:1166-1180.
    [199]De A, Acharya S. Large eddy simulation of a premixed Bunsen flame using a modified thickened-flame model at two Reynolds number [J]. Combustion Science and Technology, 2009,181:1231-1272.
    [200]Petchenko A, Bychkov V. Axisymmetric versus non-axisymmetric flames in cylindrical tubes [J]. Combustion and Flame,2004,136:429-439.
    [201]Zimont VL, Lipatnikov AN. A numerical model of premixed turbulent combustion of gases [J]. Chemical Physics Reports,1995,14:993-1025.
    [202]Babkin VS. Personal communication [M]. Novosibirsk, Russia; Institute of Chemical Kinetics and Combustion, Siberian Branch, Russian Academy of Science.2003.
    [203]Yakhot V. Propagation velocity of premixed turbulent flames [J]. Combustion Science and Technology,1988,60:191-214.
    [204]Pocheau A. Scale-invariance in turbulent front propagation [J]. Physical Review E,1994,49: 1109-1122.
    [205]Karlovitz B, Denniston DWJ, Wells FE. Investigation of turbulent flames [J]. Journal of Chemical Physics,1951,19:541-547.
    [206]Molkov W, Nekrasov VP, Baratov AN, Lesnyak SA. Turbulent gas combustion in a vented vessel [J]. Combustion, Explosion and Shockwaves,1984,20:149-153.
    [207]Gostintsev YA, Istratov AG, Shulenin YV. Self-similar propagation of a tree turbulent flame in mixed gas mixtures combustion [J]. Combustion, Explosion and Shock Waves,1988,24: 63-70.
    [208]Kuznetsov VR, Sabel Nikov VA, Libby PA. Turbulence and Combustion [M]. New York: Hemisphere Publishing Corporation,1990.
    [209]Conaire OM, Curran HJ, Simmie JM, Pitz WJ, Westbrook CK. A comprehensive modeling study of hydrogen oxidation[J]. International Journal of Chemical Kinetics,2004,36:603-622.
    [210]Li J, Zhao Z, Kazakov A, Dryer FL. An Updated Comprehensive Kinetic Model of Hydrogen Combustion [J]. International Journal of Chemical Kinetics,2004,36:566-575.
    [211]Miller JA, Mitchell RE, Smooke MD, Kee RJ. Toward a comprehensive chemical kinetic mechanism for the oxidation of acetylene:Comparison of model predictions with results from flame and shock tube experiments [J]. Proceedings of the Combustion Institute,1982,19: 181-196.
    [212]Leyer JC, Manson N. Development of vibratory flame propagation in short closed tubes and vessels [J]. Proceedings of the Combustion Institute,1971,13:551-558.
    [213]Mercx WPM, Berg AC. The explosion blast prediction model in the revised "yellow book" [M]. The 31st Annual Loss Prevention Meeting. Houston.1997.
    [214]吴红波,张立,郭子如.点火能对瓦斯火焰传播影响的实验研究[J].煤矿爆破,2004,1:5-7.
    [215]Kerampran S, Desbordes D, Veyssiere B. Propagation of a fame from the closed end of a smooth horizontal tube of variable length; proceedings of the Proceedings of the 18th ICDERS, F,2001 [C].
    [216]Bychkov VV, Golberg SM, Liberman MA, Eriksson LE. Propagation of curved stationary flames in tubes [J]. Physical Review E,1996,54:3713-3724.
    [217]Dold JW, Joulin G. An Evolution Equation Modeling Inversion of Tulip Flames [J]. Combustion and Flame,1995,100:450-456.
    [218]Nkonga B, Fernandez G, Guillard H, Larrouturou B. Numerical investigations of the tulip flame instability-comparisons with experimental results [J]. Combustion Science and Technology,1993,87:69-89.
    [219]Kaltayev AK, Riedel UR, Warnatz J. The hydrodynamic structure of a methane-air tulip flame [J]. Combustion Science and Technology,2000,158:53-69.
    [220]Chomiak J, Zhou G. A numerical study of large amplitude baroclinic instabilities of flames [J]. Proceedings of the Combustion Institute,1996,26:883-889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700