海上风电大直径宽浅筒型基础结构设计及安全性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展可再生能源是全球趋势。由于海上风能资源丰富,而且不占用陆上耕地,远离居住区,噪音污染小,使其成为各国竞相开发的资源。但是由于海底地质条件难于勘测,海水中海流、波浪、海冰等环境荷载变化复杂,导致海上风力发电的基础结构施工建设困难、成本高,同时运行维护费用较高。如何降低成本且施工方便,成为基础结构设计的关键技术难题。在各项海上环境荷载作用下,如何保证海上风电基础结构的安全性,也是基础结构应用的必须解决的难点。针对我国海上风电发展阶段的需要,近海和滩涂风场的水深较浅,以往海洋桩基平台的大型打桩施工设备难以进入,本文考虑筒型基础施工速度快,便于在海上恶劣天气的间隙施工,可重复利用的特点,同时考虑到基础压载稳定和水面处抗冲刷的需要,将其与重力式基础结合,提出了海上风电大直径宽浅筒型基础结构的思想。海上风电基础结构承受大弯矩荷载,适用于近海和滩涂的筒型基础结构直径较大,筒基直径是以往任何工程都达不到的。本文对该种结构进行了较全面的研究,分为以下三个方面分析:
     (1)提出了一套适用于近海和滩涂的海上风电大直径宽浅筒型基础结构设计计算方法,给出了筒型基础筒壁承载式和筒顶承载式的两种承载力简化计算和结构设计模式,并对饱和粉砂地基中大直径宽浅筒型基础结构的破坏模式进行研究,采用有限元法对三维筒型基础模型进行承载力计算,验证了理论简化计算的可行性。
     (2)以筒型基础的重量为目标,将优化方法SQP和改进遗传算法首次应用于筒型基础的结构整体尺寸优化设计。在满足基础结构强度、刚度和稳定性的条件下,引入形状优化和拓扑优化,并采用有限元法对大直径筒型基础的传力体系进行局部优化设计。
     (3)基于流固耦合、固土耦合和非线性接触理论,建立筒土模型,筒土——塔架——简化机头整体模型。将有限元——离散元ALE计算方法,应用于大直径筒型基础结构的极限静荷载和风、波浪、海流随机荷载下的耦合动力安全性分析,全面反映筒型基础的受力机理和工作状态。同时,系统评估了海上风电筒型基础的安全性。
Development of renewable energy is a trend in the world. Offshore wind resource has lots of advantage, such as rich, no occupating cultivated land, away from residences, little noise. All countries compete to develop it. But it is difficult to survey the geological conditions of seabed. Sea currents, waves, sea ice, ie, environmental loads are complex. That makes it difficult to construct infrastructure of offshore wind power, and high cost, high maintenance costs. How to reduce the cost and construct conveniently? This becomes the key technology of foundation design for offshore wind power. It is also the main problem and difficult to ensure offshore wind power foundation security in all kinds of environmental loads. In view of the development stage of offshore wind power in our country, it is planning to construct coastal and shallow beach wind power. Previous large-scale piling pile equipment for marine platform construction is difficult to access. This paper considers that the bucket foundation is constructed fast, reusable and easy to be constructed at the gap of bad weather. Taking the seabed foundation need of ballast stability and anti-erosion into account, the paper combines bucket foundation with gravity foundation, raising large-diameter and wide-shallow bucket foundation. With the great moment for the offshore wind power infrastructure, it is larger diameter used in coast and beach than previous any bucket foundation. This structure is comprehensively researched in the paper. The study field is divided into the three aspects as follows:
     (1) Proposing a system calculation method for large-diameter and wide-shallow bucket foundation using in coast and beaches. Presenting two types of simplified calculation of bucket foundation capacity and structural design pattern -- bucket foundation with its wall bearing and bucket foundation with its top bearing for the first time. Studying fuilare mode of large-diameter wide-shallow bucket foundation in saturated sand and bearing capacity of three-dimensional model with the finite element method to verify the feasibility of theoretical simplified calculation.
     (2) The SQP optimization method and the improved genetic algorithm are applied to the overall size optimization of bucket foundation design, with the goal of capacity safety factor for the first time. To meet the need of foundation strength, stiffness and stability, the shape optimization and topology optimization with the finite element method are used to local optimization of the large-diameter bucket foundation transmission system design for the first time, saving a huge amount of investment in project.
     (3) Based on fluid-soild coupling, solid-soil coupling and nonlinear contact theory, the soil-bucket foundation-tower-simplified wind generator model is built. The first time finite element- discrete element ALE method is applied to analysis security of large-diameter and wide-shallow bucket foundation with limit static load and random wind, waves, currents of the coupled dynamic load, fully reflecting the force mechanism and working condition of bucket foundation. Meanwhile, the paper establishs security assessment system for offshore wind power bucket foundation.
引文
[1] http://www.newenergy.org.cn/html/0107/711033427.html,中国新能源网.
    [2]姜谦,2010-2015年中国海上风力发电行业投资分析及前景预测报告[J],中投顾问.
    [3] Simon-Philippe Breton, Geir Moe.Status,plans and technologies for offshore wind turbines in Europe and North America[J],Renewable 2009(34):646-654.
    [4]杨少丽,李安龙,齐剑锋,桶基负压沉贯过程模型试验研究[J].岩土工程学报,2003,25(2):236-238.
    [5]刘振纹,王建华,秦崇仁,袁中立,陈国样,负压桶形基础地基水平承载力研究[J].岩土工程学报,2000,22(6):691-695.
    [6]施晓春,水平荷载作用下桶形基础的性状[D].浙江:浙江大学,2000.
    [7]孙章,筒型基础平台使用过程中安全性研究[D].天津:天津大学,2009.
    [8]施晓春,徐日庆,俞建霖,龚晓南,陈国样,袁中立,桶形基础单桶水平承载力的试验研究[J].岩岩土工程学报,1999,21(6):723-726.
    [9]张伟,周锡礽,余建星,滩海桶形基础极限水平承载力研究海洋技术[J].海洋技术,2003,22(4):54-57.
    [10]王庚荪,孔令伟,杨家岭,单桶负压下沉过程中土体与桶形基础的相互作用[J].岩土力学,2003,24(6):877-821.
    [11]吴梦喜,时钟明,筒形基础承载力计算的极限反力法[J].中国海洋平台,2004,19(4):22-25.
    [12] Deng W,Carter J P,A theoretical study of the vertical uplift capacity of suction caisson[C]. Proceeding of t he 10 th International O ffshore a nd P olar E ngineering Conference,2000,2:342-349.
    [13] M eyerhof G G ,Limit e quilibrium pl asticity in s oil m echanics[A]. Proc. Application of plasticity and generalized stress-strain in geotechnical engineering,ASCE,1980:7-24.
    [14]薛万东,浅海筒形基础平台抗拔力与抗倾稳定分析[J].黄渤海海洋,2001,19(3):87-92.
    [15]吴梦喜,王梅,楼志刚,吸力式沉箱的水平极限承载力计算[J].中国海洋平台,2001,16(4):12-15
    [16] Randolph M F,O’Neill M P,Stewart D P,el al. Performance of suction anchorsin fine grained calcareous soil[A]. Paper OTC8831, Proc[C]. Houston, USA:1998.
    [17] Murff J D,Hamilton J M, P-Ultimate for undrained analysis of laterally loaded piles[J]. Journal of Geotechnical Engineering,ASCE,1993:119(1):91-107.
    [18] Randolph M F,Houlsby G T,The limiting pressure on a circular pile loaded laterally in cohesive soil [J]. Geotechnique,1984,34(4):613-623.
    [19] Aubeny C P,Han S W,Murff J D,Suction caisson capacity in anisotropic, purely cohesive soil [J]. International Journal of Geomechanics,ASCE,2003, 3(2):225-235.
    [20] Suapchawarote C, Randolph M, Gourvenec S, Inclined pull-capacity of suction c aissons [ A]. P roc. 14 th International Offshore a nd P olar E ngineering Conference,California,ISOPE,2004:500-506
    [21] Erbrich CT, Modeling of a novel foundation for offshore structures. Proceeding of the 9th UK ABAQUS User’s Conference,Oxford,English,1994.
    [22]张金来,鲁晓兵,王淑云,时忠民,张建红,桶形基础极限承载力特性研究[J].岩石力学与工程学报,2005,24(7):1169-1172.
    [23]张宇,王梅,楼志刚,竖向荷载作用下桶形基础与土相互作用机理研究[J].土木工程学报,2005,38(2):97-101.
    [24]刘振纹,王建华,袁中立,陈国样,负压桶型基础地基竖向承载力研究[J],中国海洋平台,2001,16(2):1-6.
    [25]张伟,周锡礽,刘海笑,张建辉,滩海桶形基础平台三维有限元静力分析[J],中国海洋平台,2001,16(1):9-14.
    [26]李驰,王建华,软土地基单桶基础循环承载力研究[J].岩土工程学报,2005.9.
    [27]黄新生,滩海油田建设中筒形基础的开发和应用[J].中国海洋平台,1996,11(5):195-201.
    [28]孙百顺,别社安等,钢箱筒基础结构应用优势及前景[J],水道港口,2006.12.
    [29]海上风电开发及沿海大型风电基地建设研讨会[C],workshop on Offshore wind and Coastal Wind Base Development,北京:[出版社不详],2009.
    [30]国家发展和改革委员会,SY/T 10020 -2004,海上固定平台规划、设计和建造的推荐作法——工作应力设计法.
    [31]中国船级社,GD 04-2005,海上平台状态评定指南.
    [32] American Petroleum Instiute,STD.API/PETRO RP 2A-LRFD-ENGL 1993,Recommended Practice for Planning,Designing,and Constructing Fixed Offshore Platforms ----Load and Resistance Factor Design.
    [33]乐从欢,筒型基础动静荷载下承载力研究[D],天津:天津大学,2007.
    [34]刘振纹,软土地基上桶形基础的稳定性研究[D],天津:天津大学,2002.7.
    [35]张宏祥,软土地基中桶形基础的承载力研究和优化设计[D],吉林:吉林大学,2007.
    [36]孙章,筒型基础平台使用过程中安全性研究[D],天津:天津大学,2009.
    [37]张伟,周锡礽,滩海桶形基础极限水平承载力研究[J],中国海洋平台,2004,19(3):14-16.
    [38]刘树杰,海上风机吸力式多桶组合基础承载力特性研究[M],大连:大连理工大学,2009.
    [39]武科,滩海吸力式桶形基础承载力特性研究[D],大连:大连理工大学,2007.
    [40] DE SIGN OF OFFSHORE WIND T URBINE S TRUCTURES[S],DNV-OS—J101.
    [41]中交第一航务工程勘察设计院,长江口深水航道治理工程大圆筒结构试验段工程“威马逊”台风后失稳的验算分析报告[R],上海:长江口航道建设有限公司,2002.
    [42]陈希哲,土力学地基基础[M],北京:清华大学出版社,195~199.
    [43]袁聚云,基础工程设计原理[M],上海:同济大学出版社,2002.
    [44]王元战、华蕾娜、祝振宇,软土地基条件下大型圆筒海岸结构稳定性计算方法[J],岩土力学,2005,20(1):41~45.
    [45]钱家欢,殷宗泽著,土工原理与计算(第二版)[M].北京:中国水利水电出版社,1996.
    [46]海上风电场风电机组地基基础设计方法研究,天津大学新能源研究课题组内部资料.
    [47]严恺、梁其荀,海洋工程,北京:海洋出版社,2002:273~275.
    [48] FD 003—2007,风电机组地基基础设计规定,北京:中国水利水电出版社,2007.
    [49] GB 50017-2003,钢结构设计规范,北京:2003.
    [50] GB 50010-2002,混凝土结构设计规范,中国建筑工业出版社,北京:2002.
    [51] GB 50135—2006,高耸结构设计规范,北京:中国计划出版社,2007.
    [52] Susan Gourvenec, Combined Loading of Skirted Foundations, Proc. 5th ANZYGPC Rotorua, New Zealand, 13-16 March2002. Ed Davies et al, p 105-110.
    [53] International Electrotechnical Commission,IEC 61400-01-2005 Wind turbines-Part Design requirements,2005.
    [54] Zhao S F、Luan MT、Lu A Z, Numerical analysis of bearing capacity of foundation under combined loading[C],Proceedings of the First International Symposium on Frontiers in Offshore Geotechnics,2005: 499~505.
    [55]严磊,风力发电机支撑体系结构设计研究[D],天津,天津大学,2008.
    [56]汪定伟,王俊伟等.智能优化方法[M].北京:高等教育出版社,2007,20~77.
    [57]宫靖远等.风电场工程技术手册[M].北京机械工业出版社,2007,200~207.
    [58] Pekka Maunu. Design of wind turbine foundation slabs. Master’s Thesis, Lulea university of technology, 2008.
    [59] Euro c ode 7: Geotechnical de sign-Part 1: ge neral rules-section 6 s pread foundations, EN 1997-1:2004.
    [60]邹宪恩.大型风力发电机基础设计与施工[J].风力发电,1994年第4期.
    [61]顾元宪,程耿东,结构形状优化设计数值方法的研究和应用[J].计算结构力学及其应用,1993,8.
    [62]杨树耕,孟昭瑛,任贵永,海上桶基平台基础边界条件的简化方法与结构优化[J].海洋工程,1999,5.
    [63]荣见华,姜节胜等,多约束的桥梁结构拓扑优化[J].工程力学,2002,8.
    [64] Guan H, Xue Q, Steven G P, Xie Y M. Optimization of cable-stayed and tied arch bridges[M]. Proc. 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis,MO, USA, 1998. 944-947.
    [65] Guan H, Steven G P, Xie Y M. Evolutionary structural optimization incorporating tension and compression materials[J]. Advances in Structural Engineering in International Journal, A Multi-Science Publication, UK, 1999,2(4): 273-288.
    [66] Xie Y M, Steven G P. Evolutionary structural optimization[M]. Springer-Verlag, Berling, German, 1997.
    [67] Rong J H, Xie Y M, Yang X Y, Liang Q Q. Topology optimization of structures under dynamic response constraints[J]. Journal of Sound and Vibration, 2000, 234(2): 177-189.
    [68] Rong J H, Xie Y M, Yang X Y. An improved method for evolutionary structural optimization against buckling[J]. J.Computers & Structures, 2001,79:253-263.
    [69]何玉林,张立刚,韩德海,风力发电机组轮毂结构优化[J].现代制造工程,2009,1.
    [70]李晶,鹿晓阳,陈世英,结构优化设计理论与方法研究进展[J].工程建设,2007,39(6):21-31.
    [71]李凌飞,基于变密度法的结构拓扑优化研究[D].吉林:吉林大学,2004.
    [72]李华明,基于有限元法的风力发电机组塔架优化设计与分析[D].新疆:新疆农业大学,2004.6.
    [73] Ralf Meske,Jorgen Sauter,(缪炳祺翻译),使用TOSCA和ABAQUS的直线导引系统的拓扑优化[J].工程设计学报,2002,10.
    [74] ADINA R&D,lnc.ADINA Theory and Modeling guide,VolumeI:ADINA Solid&structures.2008.
    [75]叶勇,朱若艳,基于有限元分析的结构优化设计方法[J].重型机械科技,2004.4.
    [76] Kirsch U,Optimal topology of structures[J]. Comp Methods Appl Mech Eng,1988,71:15-28.
    [77] Kirsch U,On Singular Topologies in Optimum Structural Design[J]. Structural Optimization,1990(2):33-142.
    [78] Fleury C,Schmit L A, Dual Methods and Approximation Concepts in Structural Synthesis[J]. NASA,1980,CR:3226.
    [79] Kirsch U,Topping B H V,Minimum Weight Design ofStructural Topologies[J]. J. Structural Eng. 1992(8):1770-1785.
    [80] BendsoeM P,Kikuchi N,Generating Optimal Topologies in Structural Design Using a Homogenization M ethod[J].Comp Meth Appl Mech Engrg,1988,71(1):197-224.
    [81] Cheng Gengdong,J iang Zheng,Study on Topology Optimization with Stress Constraints[J]. Engineering Optimization,1992,20(2):129-148.
    [82] Guo X,Cheng G D,A New Approach for the Solution of Singular Optimum in Structural Topology Optimization[J]. A cta Mechanica Sinica,1997(13):171-178.
    [83]刘春玲,赵法锁等,单桩桩土相互作用及荷载传递机理探讨[J].工程地质学报,2004,12:406-410.
    [84]陈慧远,摩擦接触单元及其分析方法[J].水利学报,1985(4):44-49.
    [85]杜成斌、任青文,用于接触面模拟的三维非线性接触单元[J],东南大学学报(自然科学版),2001.7,Vol.31No.4.
    [86]邵炜、金峰、王光纶,用于接触面模拟的非线性薄层单元[J],清华大学学报(自然科学版),1999,VOI.39No.2.
    [87]王秀勇、王泉、张亭健,有限元无限元耦合法在桶形基础结构与土壤相互作用分析中的应用[J],黄渤海海洋,2000.12.
    [88]麦家煊、薛继乐、王津龙,三维接触单元在堆石坝面板应力位移分析中的应用研究[J],水力发电学报.
    [89]孙德安、姚仰平、殷宗泽,基于SMP准则的双屈服面弹塑性模型的三维化[J],岩土工程学报.
    [90] Chen,W.F.&Mizuno,E.,Nonlinearanalysisin50115meehanies一theoryand ImPlement,(Newyork)Elsevier,1990.
    [91] Morten Baerheim,Lars Hoberg,Tor Inge Tjelta,Development and structural design of the bucket foundations for the Euro-pipe Jacket[A].Twenty-Seventh Offshore Technology Conference,Houston,1995:859-868.
    [92] Rusaas, P., Giske, S.G.., Barrett, G... .Design, operation planning and experience from the marine operations for the Euro-pipe Jacket with bucket foundations [A]. Twenty-Seventh Offshore Technology Conference, Houston, 1995, 885-895
    [93] Tjelta, T.I. Geotechnical experience from the installation of the Euro-pipe jacket with bucket foundations [A]. Twenty-Seventh Offshore Technology Conference, Houston, 1995, 897-908
    [94]肖熙,谭开忍,王秀勇,基于时域的筒型基础海洋平台结构-土壤相互作用分析[J].船舶力学,2005,9(4):83-88.
    [95]黄文熙.土的工程性质[M].北京:水利水电出版社,1983
    [96]王勖成,邵敏,有限单元法基本原理和数值方法[M].北京:清华大学出,1997:1-2.
    [97]张道宽,王显义,软基变形问题的弹塑性有限元分析[A].第四届土力学及基础工程学术会议论文选集,北京:中国建筑工业出版社,1986.
    [98]陆陪炎,陈韶永等,水坠坝冲填土弹塑性本构方程[J].岩土工程学报,Vol.6, No.2, 1984.
    [99]高有潮,陈汀,软粘土地基塑性区开展的非线性有限元分析[J].岩土工程学报,Vol.5,No.2, 1983.
    [100]阎明礼,重塑饱和粘土应力应变关系的非线性模型[J].岩土工程学报,Vol.3, No.4, 1981.
    [101]徐继组,史庆增,丁红岩.筒型基础在国内近海工程中的首次应用与设计[J].中国海上油气工程,1995,7(1):31-36
    [102]朱以文、蔡元奇、徐晗,ABAQUS与岩土工程分析[M],香港:中国图书出版社,2005
    [103]庄茁,ABAQUS/Standard有限元软件入门指南,北京:清华大学出版社,2003
    [104]石亦平、周玉蓉,ABAQUS有限元分析实例详解,北京:机械工业出版社,2006:51~63
    [105]王金昌,陈页开. ABAQUS在土木工程中的应用[M].浙江:浙江大学出版社,2006.
    [106] HKS inc., ABAQUS/Standard User’s Manual [M], Hibbitt, Karlsson&Sorensen, USA.
    [107]邓益兵,桩-桶基础在上拔荷载作用下的模型试验与有限元分析[D].上海:上海海事大学硕士学位论文,2006.
    [108]张伟.滩海筒形基础三维弹塑性数值分析与模型试验研究[D].天津:天津大学,2002.
    [109]龚闽.自升自航式船与地基土相互作用研究[D].上海:上海交通大学,2005
    [110] Goodman L J,Lee C N andWalker F J,The Feasibility of Vacuum Anchorage in Soil[J]. Geotechnigue ,1961,11(3):356-359.
    [111] Zienkiew icz O C,Best B,et al,Analysis of nonlinear problem in rock mechanics with particular reference to jointed rock systems[A]. Proc. 2nd Congress of the Int. Socity for Rock Mechanics[C].1970:501-509.
    [112] Dam janic F and Owen D R J,Mapped infinite elements in transient thermal analysis[J]. Computers & S tructu re.1984,19 (4):673-687.
    [113]段克让,蔡德所,有限元域无限元耦合法计算坝的变形和应力[J].武汉水利电力大学学报,1996,29(1):49-53.
    [114] Zienkiewicz, O. C.,Humpheson, C.and Lewis, R. W. (1975),Associated and non-associated visco-plasticity and plasticityins oil mechanics [J]. Geotechnique,Vol.25,No.4.
    [115] Felipe A Villalobos, Guy T. Houlsby,Byron W. Byrne,Suction caisson foundations for offshore wind turbines
    [116] Magued Iskander,Sherif EI-Gharbawy,Roya Olson,Performance of suction caissons in sand and clay[J]. Canadian Geotechnical Journal, 2002:576-584
    [117] Nayak, G. C,and Zienkiewicz, O. C. (1972),Elasto-plastic stress analysis -Generation for various constitutive relations including strain softening[J].Int. J. Numerical Methods in Engrg, 5, 113-135
    [118] Pastor, M., Zienkiewicz, O. C. and Chan, A. H. C. (1990).Generalized plasticity and the modeling of soil behavior[J]. Int. J. Numerical and Analytical Methods in Geomechanics, No.14, 151-190
    [119] Andrew J. Whittle, M. J. Kavvadas, 1994.Formulation of MIT-E3 constitutive model for over consolidated clays [J]. J. of Geotechnical Engineering, ASCE, Vol.120, No.1, 173-198
    [120]刘振纹,王建华等.负压桶形基础地基水平承载力研究[J].岩土工程学报,vol.22, No.6, 2000
    [121] Hogervorst JR,Field Trails with Large Diameter Suction Piles [R],OTC3817,1980:217-220.
    [122] Temporary sea-floor support of jacket syructures[A],OTC 3750[C],1980,Steven C Helfrich,Alan G,Young,Clarence J Ehlers,McClelland Engineers
    [123] Byrne, B.W.”Investigations of suction caissons in dense sand”,DPhil thesis,University of Oxford. 2000
    [124] Byrne, B.W. and Houlsby, G.T.”Observations of footing behaviour on loose carbonate sands”, G′eotechnique 51, 2001 No. 5, 463-466
    [125] Byrne, B.W. and Houlsby, G.T.”Foundation for offshore wind turbines”, Phil.Trans. of the Royal Society of London, Series A 361, 2003:2909-2300
    [126] Gottardi, G., Houlsby, G.T. and Butterfield, R.”The plastic response of circular footings on sand under general planar loading”, G′eotechnique 49, 1999,No. 4, 453-470
    [127] Houlsby, G.T. and Puzrin, A.M.”A Thermomechanical Framework for Constitutive Models for Rate-Independent Dissipative Materials”, International Journal of Plasticity 16, 2000, No. 9, 1017-1047
    [128] Houlsby, G.T. and Cassidy, M.J.”A plasticity model for the behaviour of footings on sand under combined loading”, G′eotechnique 52, 2002, No. 2, 117-129
    [129] Kelly, R.B.”Proposal for Large Scale Field Trials of Suction Caissons”, Report FOT002, Department of Engineering Science, University of Oxford 2002.
    [130] Kelly, R.B., Byrne, B.W., Houlsby, G.T. and Martin, C.M.”Tensile loading of Model Caisson Foundations for Structures on Sand”, Proc. Int. Offshore and Polar Eng. Conference, Toulon 2004.
    [131] Mangal, J.K.”Partially drained loading of shallow foundations on sand”, Dphil thesis, University of Oxford. 1999.
    [132] Bransby M F, Randolph M F. The effect of embendment depth of the response of skirted foundations to combined loading[R]. Department of Civil Engineering, The University of Western Australia, 1998.
    [133] Bransby M F, Randolph M F. Combined loading of skirted foundatins[J]. Geotechnique, 1998,48:637-655.
    [134]刘树杰、王忠涛、栾茂田,单向荷载作用下海上风机多桶基础承载特性数值分析[J],海洋工程,2006.28(1)
    [135]郇彩云,海上桩式风机基础结构设计与研究[D],大连:大连理工大学,2009.
    [136]吴芳和,近海风机基础结构选型优化与疲劳分析[D],大连:大连理工大学,2009.
    [137]陈铁运,沈慧甲,结构的屈曲[M],上海:上海科学技术文献出版社,1993.
    [138]王克林,刘俊卿,赵冬,平板的弯曲、振动和屈曲[M],北京:北京冶金工业出版社,2006.
    [139]曹妍妍,赵登峰,有限元模态分析理论及其应用[J].机械工程与自动化, 2007,2(1).
    [140]白化同,郭继忠.模态分析理论与实验[M].北京:北京工大学出版社,2001.
    [141]孙传栋,黄维平,曹静,ABAQUS在深水顶张力生产立管模态分析中的应用[J].中国水运,2009,2.
    [142]李火坤,泄流结构耦合动力分析与工作性态识别方法研究[D].天津:天津大学,2008.
    [143]张相庭,工程结构风荷载理论和抗风计算手册[M].上海:同济大学出版社,1990.
    [144]李桂青,梁枢果,高层建筑结构风振计算[J].武汉工业大学学报,1988(4):467~475.
    [145]梁枢果,高层建筑耦联风振响应分析[J].武汉水利电力大学学报,1998,6.
    [146]卢启煌,高耸结构的风振响应研究[D].西安:长安大学,2006.
    [147]孙振,建筑结构风荷载的计算机模拟与分析[D].南京:南京航空航天大学,2007.1.
    [148] Kolousek V ,Pirner M,Fischer O et al,Wind effects on civil engineering structures[M], Elsevier,Amsterdam, Academia,Prague,1984
    [149] Xu X L,Zhu L D,Field measurement and health monitoring of large civil engineering structures during strong winds[A],第十届全国结构风工程学术会议论文集[C],桂林,2001,22-30.
    [150] Kareem A,Kijewski T,7th US National Conference on wind engineering::a summary of papers [J ],J,Wind Eng. Ind. Aerodyn,1996,62:81-129.
    [151] Spanos.P.D,Zeldin.B.A.Monte Carlo treatment of random fields:Abroad perspective,Appl.Mech.Rev.,1998,51(3):219-237.
    [152] Shinozuka M,Jan C M,Digital simulation of random process and its application[J],Journal of Sound and Vibration,1972,25(1):111-128.
    [153] Deodatis G,Shinozuka M,Auto- regressive model for nonstationary stochastic process[J ],of Eng.Mech.,ASCE,1988,114(11):1995-2012.
    [154] Deodatis G,Simulation of ergodic multivariate stochastic process[J],J. of Eng.Mech.,ASCE,1996,122(8):778-787.
    [155] Shinozuka M,Simulation of multivariate and multidimensional random process [J],Journal of the Acoustical Society of America,1971,49(1):357-367.
    [156] Iannuzzi A,Spinelli P,Artificial wind generation and structural response [ J ],Journal of Structural Engineering,ASCE 1987,113(12):2382-2398.
    [157] Grigoriu M,On the spectral representation method in simulation[J],Probabilistic Engineering Mechanics,1993,8:75-90.
    [158]王之宏,风荷载的模拟研究[J],建筑结构学报,1994,15(2):41-52.
    [159] Gurley K R,Tognarelli M A,Kareem A,Analysis and simulation tools for wind engineering[J],Probabilistic Engineering Mechanics,1997,12(1):9-31.
    [160]瞿伟廉,高层建筑和高耸结构的风振控制设计,武汉测绘科技大学出版社,1991.
    [161]燕辉,复杂体型高层建筑风荷载及风振响应研究[D].浙江:浙江大学,2004.
    [162]王耀宏,塔架结构的脉动风荷载数值模拟及响应[J].国外建材科技,2008.V29.N1.
    [163]刘锡良,周颖,风荷载的几种模拟方法[J].工业建筑,2005.
    [164]王修琼,崔剑峰,Davenport谱中系数K的计算公式及其工程应用[J].同济大学学报,2002.7.
    [165] ADINA R&D,lnc.ADINA Theory and Modeling guide,VolumeIII:ADINA Solid&structures.2008.
    [166] B.Bienen, M.J.Cassidy, Advances in the three-dimensional fluid–structure–soil interaction analysis of offshore jack-up structures, Marine Structures, 19(2006)110-140.
    [167] M.B.Zaaijer, Foundation modeling to assess dynamic behavior of offshore wind turbines, Applied Ocean Research, 28 (2006) 45–57.
    [168] Osamu KIYOMIYA,Tatsuomi RIKIJI,Pieter H.A.J.M. van GELDER,Dynamic Response Analysis of Onshore Wind Energy Power Units during Earthquakes and Wind,Proceedings of The Twelfth (2002) International Offshore and Polar Engineering Conference Kitakyushu, Japan, May 26–31, 2002.
    [169]白长旭,波流耦合作用下的立管涡激振动分析[D].大连:大连理工大学,2007,12.
    [170]徐枫,欧进萍,方柱非定常绕流与涡激振动的数值模拟[J].东南大学学报,2005,7,35(1).
    [171]杨柯,充液管道流固祸合轴向振动的对称模型[J].水动力学研究与进展,2005,1,5(1):20-26.
    [172]黄祥鹿,海洋工程流体力学及结构动力响应[M],上海:上海交通大学出版社,1992.
    [173]马驰,董艳秋,杨丽婷,海洋平台张力腿在两种边界条件下的涡激非线性振动的比较研究,船舶力学,2000,2,4(1):7-12.
    [174]岳宝增,刘延柱,王照林,非线性流固耦合问题的ALE分步有限元数值方法[J].力学季刊,2001.3.
    [175]刑景堂等,非线性流体—刚体结构相互作用问题的一种数值模拟方法[J].固体力学学报,2005.12.
    [176] Bathe K J,Finite Element Procedures in Engineering Analysis. Prentice-Hall, 1982.
    [177]李家春,王涛,海洋工程中的流固耦合问题[J].非线性动力学学报,1999,12,Vol6.No4.
    [178]杜庆贵,海流与直立圆柱体相互作用的数值模拟[D].上海:上海交通大学,2009.
    [179]董艳秋.深海采油平台波浪载荷及响应[M].天津大学出版社,天津: 2005.
    [180]郭海燕,王树青,刘德辅,海洋环境荷载下输油立管的静、动力特性研究[J].青岛海洋大学学报, 2001, Vol.31(4):605-611.
    [181]王福军,计算流体动力学分析[M]北京:清华大学出版社,2004.
    [182] Juan P. Pontaza, Hamn-Chen. Three-Dimensional Numerical Simulations of Circular Cylinders Undergoing Two Degree-of-Freedom Vortex-Induced Vibrations. ASME.129(2007):158-164.
    [183]姚熊亮,方媛媛,戴绍仕等,基于LES方法圆柱绕流三维数值模拟[J]..水动力学研究与进展, 2007, 22(5): 564-572.
    [184]尹德操,均匀和分层粘性流体中直立圆柱体的绕流特性研究[D].上海:上海交通大学,2008.
    [185] Vikestad K, Vandiver J K, Laesen C M. Added mass oscillation frequency for a circular cylinder subject to vortex-shedding vibrations and external disturbance [J]. Journal of Fluids and Structures, 2000,14:1071-1088.
    [186]陆鑫森,高等结构动力学[M].上海:上海交通大学出版社. 1992. 76
    [187]王秀丽,常文兵,考虑风与结构耦合作用的张弦梁结构风振响应分析[J].兰州理工大学学报,2008,4.
    [188]张淑茳、史冬岩,海洋工程结构的疲劳与断裂,哈尔滨:哈尔滨工程大学出版社,2004:1~2.
    [189]俞剑勇、张艳芳、王铭飞,海上风力发电工程钢结构疲劳分析[J],钢结构,2008(23):49~51.
    [190] DNV-RP- C203,Fatigue Design of Offshore Steel Structures,DNV, AUG,2005.
    [191]武科,滩海吸力式桶形基础承载力特性研究[D],大连,大连理工大学,2007.12.
    [192]单晓亮,水下航行器燃气涡轮机叶轮模态分析[J],中国科技论文在线.
    [193]刘建军,循环对称结构的有限元分析[D],西安,西北工业大学,2004(3):10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700