基于阻尼耗能的薄板结构低噪声拓扑优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在进行薄板结构低噪声设计时,基于增加结构阻尼耗能的处理方法是最为直接、有效的,它不仅可以降低结构的响应峰值,还能提高机械系统在动态环境下的抗振性和稳定性。在阻尼复合结构的设计中,由于现代产品轻量化及结构动态耗能特性的要求,阻尼材料往往只能在特定位置局部覆盖,不同的分布对结构阻尼耗能特性影响很大,传统的优化手段很难得到最优的分布形式,材料利用率低,是限制阻尼技术发展的关键问题之一。本文以薄板结构为研究对象,在深入研究约束阻尼和压电分流阻尼复合板有限元建模和分布特性的基础上,将拓扑优化方法引入阻尼层在薄板结构上的分布优化问题中,提出了基于阻尼耗能的薄板结构低噪声拓扑优化方法。本文的研究成果主要体现在以下几个方面:
     对约束阻尼层复合板结构的有限元建模方法进行了研究,提出了粘弹性层的界面有限单元模型,该模型可以与基于Love-Kirchhoff经典板壳理论建立的基础层和约束层单元直接耦合,提高了建模效率,采用模态应变能方法计算了模态损耗因子,并通过数值模型验证了建模方法的正确性;应用基于迭代格式的IRS (Improved Reduced System)动态缩聚IIRS方法对模型降阶,提高了计算速度,最后分析了约束阻尼层在悬臂梁上的分布形式对结构阻尼耗能特性的影响。
     基于各向正交惩罚材料密度法(SIMP)密度-刚度插值方法,建立了阻尼复合板结构有限元模型,分析了惩罚因子的选择方法,以避免优化过程中产生局部模态,采用移动渐进线法(MMA)作为优化求解器,引入敏度过滤技术消除数值算法的不稳定性和模态跟踪方法保证模态阶次不发生变化,计算了模态损耗因子对设计变量的敏度,提出了拓扑优化一般流程,最后采用数值算例验证了优化方法的有效性。
     采用有限元-边界元方法,给出了阻尼复合板结构辐射声功率的计算模型,引入了声阻抗矩阵概念,分析了声学灵敏度,采用SIMP插值模型和MMA算法,对典型约束阻尼复合板结构单频辐射声功率进行了拓扑优化并分析了优化结果;分析了板结构声辐射模态特性,提出了基于声辐射模态理论的拓扑优化目标函数,可以实现声功率在某阶模态峰值最小,但该方法仅适用于模态频率较低的情形。
     基于分层线性位移假设,考虑了界面应力和位移连续条件,由Hamilton原理和第二类压电方程,推导了压电复合板的力电耦合动力学有限元方程,数值验证了建模方法的工程适用性;结合外部电路电压与电流的关系,建立了压电分流阻尼结构系统方程,分析了常见分流电路的减振特性。
     采用闭路准静态能量循环方法,阐述了压电复合结构广义机电耦合系数(GEMCC)在能量层面的含义,分析了GEMCC与压电复合结构阻尼耗能之间的关系;建立了压电复合板的SIMP插值模型,根据GEMCC计算形式,提出了拓扑优化方法,并进行了数值分析;提出了压电片极化表面电荷量计算方法,根据设计连通性要求,基于植物根系形态形成机理,提出了压电复合板的仿生拓扑优化方法,给出了优化流程,结合数值算例,分析了优化方法的可行性。
     最后,对约束阻尼复合板结构的最优拓扑结构进行了实验研究,验证了本文所提出的拓扑优化方法的有效性。
The method of increasing system damping energy dissipation is the most direct and effective approach in the design of low noise plate strucutres, as it not olny reduce the peak value of the structural resonance, but also enhance the vibration resistance and dynamic stability of the system. Light weight is very important in composite strucutre design, so the damping materials are only located on certain area partially. However, it is difficult to find the optimal location using traditional optimization methods considering the complexity of the system dynamic chacteristic. This dissertation analyze the finite element modeling and distribution characteristic of the composite plates with Passive constrained layer damping (PCLD) treatments or PZT shunt damping treatments, and use topology optimization method to find the optimal topology of damping layers. The features obtained in this dissertation are mainly as follows:
     A general, accurate, easy-to-use interface finite element that can directly couple together the base structure plate elements, the viscoelastic layer and the constraining layer plate elements, is introduced. The base layer and constraining layer is modeled with plate elements based on Love-Kirchhoff classical plate theory. The modal loss factor is calculated by means of modal strain energy method. Then, Numerical model is adopted to verify the modeling method. In order to speed up, the improved reduced system based on iteration is used. Then, the relation between the distribution of PCLD and the damping effects of a cantilever beam is analyzed.
     The finite element modeling is established based on the solid isotropic material with penalization (SIMP) model. To eliminate local mode, the penalization factors are analyzed. Then, the optimizer is chosen as the method of moving asymptote (MMA) approach. The design sensitivities filtering technology is applied to remove checkerboards and a mode-tracking method to avoid altering the order of the modal. The design sensitivities of the modal loss factor is then calculated. A general flow of topology optimization is proposed. The validation of the method is carried out by numerical cases.
     The sound radiation power of the PCLD damped composite plate is obtained by finite element method-boundary element method (FEM-BEM) approach, and its sensitivity is analyzed then. By using the SIMP model and MMA optimizer, the topology of the PCLD is optimized to minimize the sound power of plates at a certain frequency. The sound radiation modal of the plate is studied and another objection function for sound power optimization is proposed. This method can minimize the sound power peak value of a certain structural modal, but it just suit for the case that the modal is in very low frequencies.
     The layerwise linear of the laminated plates is assumed, and the displacements and transverse shear stresses in the interface of each layer are continuation. Then, the mechanical-electrical coupling model is deduced form Hamilton's principle and the second type piezoelectric equation, and then verified by two numerical example. Considering the relation of the circuit voltage and the current, the equation of the PZT shunt damping system is given. Some common shunt circuits are analyzed numerically.
     A closed-loop quasi-static energy cycle method is introduced to demonstrate the meaning of the general electromechanical coupling coefficient (GEMCC. Then, the relation of the damping energy dissipation capability and the GEMCC is analyzed. The SIMP model and the topology optimization method of the PZT composite plate are proposed. After that, Two structures are studied numerically. The total charge of the polarization surface is calculated also. Considering the design connectivity of the PZT patch, a bionic topology optimization is proposed based on the growth process of root system of plants. The optimization flow is then illustrated. The feasibility of the method is validated by numerical examples.
     Finally, the experimental validation is carried out for the plates with topology optimized PCLD treatments. The experimental results show that the proposed topology optimization is an efficient method for damped composite plates low noise design.
引文
[1j戴德沛.阻尼技术的工程应用.北京:清华大学出版社,1991.
    [2]孙庆鸿.振动与噪声的阻尼控制.北京:机械工业出版社,1993.
    [3]刘棣华.粘弹阻尼减振降噪应用技术.北京:宇航出版社,1990.
    [4]黄其柏.工程噪声控制学.武汉:华中科技大学出版社,1999.
    [5]E. M. Kerwin. Damping of flexural waves by a constrained viscoelastic layer. Journal of Acoustical Society of America,1959,31:952-962.
    [6]R. A. Ditaranto. Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. ASME Journal of Applied Mechanics,1965,32:881-6.
    [7]D. J. Mead, S. Markus. The forced vibration of a three-layer damped sandwich beam with arbitrary boundary conditions. AIAA Journal,1969,10:163-175.
    [8]M. D. Rao, S. He. Dynamic analysis and design of laminated composite beams with multiple damping layers. AIAA Journal,1993,31:736-745.
    [9]M. D. Rao. Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes, Journal of sound and vibration,2003,262(3): 457-474.
    [10]R. Plunkett, C. T. Lee. Length optimization of constrained viscoelastic layer damping, Journal of the Acoustical Society of America,1970,48(1):150-161.
    [11]P. J. Torvik, D. Z. Strickland. Damping Additions for plates using constrained viscoelastic layer, Journal of the Acoustical Society of America,1972,51(3):985-991.
    [12]A. Baz. Magnetic constrained layer damping. U.S. Patent Application,1997.
    [13]A. Baz, J. Ro. Vibration control of plates with active constrained layer damping. Smart Materials and Structures,1996,5:272-280.
    [14]I. Y. Shen. Hybrid damping through intelligent constrained layer treatments. Journal of Vibration and Acoustics,1994,116(2):341-349.
    [15]D. S. Nokes, F. C. Nelson. Constrained layer damping with partial coverage. Shock and Vibration Bulletin,1968,38(3):5-12.
    [16]A. K. Lall, N. T. Asnani, B. C. Nakra. Damping analysis of partially covered sandwich beams. Journal of Sound and Vibration,1998,123(2):247-259.
    [17]Y. P. Lu, G. C. Everstine. Vibrations of three layered damped sandwich plate composites, Journal of Sound and Vibration,1979,64(1):63-71.
    [18]C. D. Johnson, D. Kienholz. Finite element prediction of damping in structures with constrained viscoelastic layers. AIAA Journal,1981,20(9):1284-1290.
    [19]A. Y. T. Leung, B. Zhu, J. Zheng, H. Yang. Two-dimensional viscoelastic vibration by analytic Fourier p-elements. Thin-Walled Structures,2003,41:1159-1170.
    [20]Q. J. Zhang, M. G. Sainsbury. The galerkin element method applied to the vibration of rectangular damped sandwich plates. Computers and Structures,2000,71:717-730.
    [21]M. Alvelid, M. Enelund. Modelling of constrained thin rubber layer with emphasis on damping. Journal of Sound and Vibration,2007,300:662-675.
    [22]R. Lunden. Optimum design of viscoelastically damped sandwich panels. Journal of Sound and Vibration,1979,66:25-37.
    [23]A. K. Lall, B. C. Nakra, N. T. Asnani. Optimum design of viscoelastically damped sandwich panels. Engineering Optimization,1983,6:197-205.
    [24]J. Ro, A. Baz. Optimum placement and control of active constrained layer damping. In Proceedings of the SPIE,1998,3329:844-855.
    [25]Y. Chen, S. Huang. An optimal placement of CLD treatment for vibration suppression of plates, Journal of Mechanical Sciences,2002(44):1801-1821.
    [26]M. Alvelid. Optimal position and shape of applied damping material. Journal of Sound and Vibration,2008,310:947-965.
    [27]陈前,朱德懋.粘弹性结构动力学分析.振动工程学报,1989,2(3):42-51.
    [28]陈国平,钱振东.附加约束阻尼层后梁的振动分析.航空学报,1996,17(5):618-620.
    [29]钱振东,陈国平,朱德懋.约束阻尼层板的振动分析.南京航空航天大学学报,1997,29(5):517-522.
    [30]陈国平.粘性阻尼结构振动系统的实空间解耦和迭代求解.振动工程学报,2000,13:559-566.
    [31]H. Zheng, C. Cai, X. M. Tan. Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams. Journal of Mechanical Sciences,2002,44:1801-1821.
    [32]H. Zheng, C. Cai, G. Pau et al. Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. Journal of Sound and Vibration,2005,279:739-756.
    [33]蒋伟康,万泉,严莉等.轨道交通的约束阻尼钢轨吸振器技术研究与应用.振动与冲击,2009,28(10):78-80.
    [34]T. Liu, H. Hua, Z. Zhang. Robust control of plate vibration via active constrained layer damping. Thin-Walled Structures,2004,42:427-448.
    [35]R. L. Forward. Electronic damping of vibration in optical structures. Applied Optics, 1979,1:690-697;
    [36]N. W. Hagood, A. Von Flotow. Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration,1991, 146(2):243-268.
    [37]M. B. Ozer, T. J. Royston. Effect of piezoceramic hysteresis in passive and hybrid structural acoustic control. Proceedings of ASME 2001 DETC,1-10.
    [38]D. Chang, B. Liu, X. Li. An electromechanical low frequency panel sound absorber. Journal of Acoustic and Society of America,2010,128(2):639-645.
    [39]J. Kim, Y. C. Jung. Broadband noise reduction of piezoelectric smart panel featuring negative capacitive converter shunt circuit. Journal of the Acoustical Society of America,2006,120(4):2017-2025.
    [40]S. Y. Wu. Piezoelectric shunts with parallel R-L circuit for structural damping and vibration control. Smart Structures and Materials-Passive Damping and Isolation; Proceedings of SPIE,1996,2720:259-269.
    [41]S. Y. Wu. Method for multiple mode shunt damping of structural vibration using a single PZT transducer. Smart Structures and Materials-Smart Structures and Intelligent Systems; Proceedings of SPIE,1998,3327:159-168.
    [42]A. J. Fleming, S. Behrens, S. O. R. Moheimani. Reducing the inductance requirements of piezoelectric shunt damping systems. Smart Material and Structures,2003, 12:57-64.
    [43]A. J. Fleming, S. Behrens, S. O. R. Moheimani. Optimization and implementation of multimode piezoelectric shunt damping systems. IEEE/ASME Transactions on Mechatronics,2002,7:87-94.
    [44]D. Guyomar, A. Faiz, L. Petit, et al. Wave reflection and transmission reduction using a piezoelectric semi-passive nonlinear technique. Journal of Acoustical Society of America,2006,119:285-298.
    [45]Q. Lin, P. Ermanni. Semi-active damping of a clamped plate using PZT. International of Solids and Structures,2004,41:1741-1752.
    [46]H. S. Tzou, C. I. Tseng. Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems:A piezoelectric finite element approach. Journal of Sound and Vibration,1990,138:17-34.
    [47]S. K. Ha, C. Keilers, F. K. Chang. Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators. AIAA Journal,1992, 30:772-780.
    [48]K. Y. Lam, X. Q. Peng, G R. Liu, et al. A finite-element model for piezoelectric composite laminates. Smart Material and Structures,1997,6:583-591.
    [49]S. Y. Wang, S. T. Quek, K. K. Ang. Vibration control of smart piezoelectric composite plates. Smart Materials and Structures,2001,10:637-644.
    [50]S. Lee, J. Reddy, F. Rostam-Abadi. Transient analysis of laminated composite plates with embedded smart-material layers. Finite Elements in Analysis and Design,2004, 40:463-483.
    [51]X. Wu, C. Chen, Y. Shen, et al. A high order theory for functionally graded piezoelectric shells. International Journal of Solids and Structures,2002,39(20): 5325-5344.
    [52]B. Seba, J. Ni, B. Lohmann. Vibration attenuation using a piezoelectric shunt circuit based on finite element method analysis. Smart Materials and Structures,2006,15: 509-517.
    [53]C. Poizat, M. Sester. Finite element modeling of passive damping with resistively shunted piezocomposites. Computational Materials Science,2000,19:183-188.
    [54]J. Becker, O. Fein, M. Maess, L. Gaul. Finite element-based analysis of shunted piezoelectric structures for vibration damping. Computers and Structures,2006,84: 2340-2350.
    [55]A. Spadoni, M. Ruzzene, K. Cunefare. Vibration and Wave Propagation Control of Plates with Periodic Arrays of Shunted Piezoelectric Patches. Journal of Intelligent Material Systems and Structures,2009,20:979-990.
    [56]常道庆,刘碧龙,李晓东等.智能吸声控制中压电片位置的选取.声学技术,2007,26(5):978-979.
    [57]李凯翔,杨智春,孙浩等.压电分流阻尼系统中压电元件形状与布局优化.压电与声光,2008,30(2):183-186.
    [58]L. Zhao, H. S. Kim, J. Kim. Optimal design of smart panel using admittance analysis. Journal of Mechanical Science and Technology,2007,21:642-653.
    [59]Y. Lin, S. V. Venna. A novel method for piezoelectric transducers placement for passive vibration control of geometrically non-linear structures. Sensor Review,2008, 28:233-241.
    [60]J. Ducarne, O. Thomas, J. F. Deu. Placement and dimension optimization of shunted piezoelectric patches for vibration reduction. Journal of Sound and Vibration,2012, 331:3286-3303.
    [61]A. Belloli, P. Ermanni. Optimum placement of piezoelectric ceramic modules for vibration suppression of highly constrained structures. Smart Materials and Structures, 2007,16:1662-1671.
    [62]张文群,吴新跃,张萌.基于压电效应的噪声控制研究进展.声学技术,2008,27(4):577-583.
    [63]崔海涛.·压电智能悬臂梁的被动与主动振动控制研究:[博士论文].西安:西北工业大学,2004.
    [64]杨志春,孙浩,崔海涛.压电分流阻尼控制悬臂梁振动的参数优化分析.机械科学与技术,2005,24(5):730-733.
    [65]王建军,姚建尧,李其汉.分支电路压电阻尼系统的分析模型和基本特性.工程力学,2005,22(6):218-223.
    [66]刘莹.基于压电元件的被动振动控制优化设计与实现:[博士论文].南京理工大学,2006.
    [67]张文群,张萌,吴新跃.负电容分支电路压电分流阻尼特性研究.噪声与振动控制,2008,28(5):48-51.
    [68]常道庆,刘碧龙,李晓东等.具有压电分流电路薄板的吸声特性Ⅰ.理论分析.声学学报,2008,33(2):131-137.
    [69]W. Zheng, Y. Lei, Q. Huang et al. Improving low frequency performance of double-wall structure using piezoelectric transducer/loudspeaker shunt damping technologies. Journal of Low Frequency Noise, Vibration and Active Control,2012, 31(3):175-192.
    [70]U. Kirsch. Optimal topologies of structures. Applied Mechanics Review,1989,42: 223-239.
    [71]M. P. Bends(?)e, N. Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988,71:197-224.
    [72]K. Suzuki, N. Kikuchi. A homogenization method for shape and topology optimization. Computer Methods in Applied Mechanics and Engineering,1991,93:291-318.
    [73]B. Hassani, E. Hinton. Homogenization and structural topology optimization theory, practice and software. Springer, London,1999.
    [74]G. I. N. Rozvany, M. P. Bends(?)e, U. Kirsch. Layout optimization of structures. Applied Mechanics Reviews,1995,48(2):41-119.
    [75]A. Rietz. Sufficiency of a finite exponent in SIMP (Power law) method. Structural and Multidiscipline Optimization,2001,21:159-168;
    [76]G. I. N. Rozvany, M. Zhou, T. Birker. Generalized shape optimization without homogenization, Structural Optimization,1992,4:250-252.
    [77]M. Stople, K. Svanberg. An alternative interpolation schemes in topology optimization for minimum compliance topology optimization, Structural and Multidiscipline Optimization,2001,22:116-124.
    [78]G I. N. Rozvany. Aims, scope, history and unified terminology of computer-aided topology optimization. Structural and Multidiscipline Optimization,2001,21:90-108.
    [79]Y. M. Xie, G. P. Steven. A simple evolutionary procedure for structural optimization. Computers and Structures,1993,49(5):885-896.
    [80]Y. M. Michael, X. Wang, D, Guo. A level set for structural topology optimization. Computer Methods in Applied Mechanics and Engineering,2003,192:227-246.
    [81]Y. M. Yi, S. H. Park, S. K. Youn. Design of micro structures of viscoelastic composites for optimal characteristics. International Journal of Solids and Structures,2000,37: 4791-4810.
    [82]A. Al-Ajmi Mohammed. Homogenization and structural topology optimization of constrained layer damping treatments. Ph. D Dissertation, University of Maryland, 2004.
    [83]L. Zheng, R. Xie, Y. Wang et al. Topology optimization of constrained layer damping on plates using Method of Moving Asymptote(MMA) approach. Shock and Vibration, 2011,18:221-244.
    [84]S. Y. Kim, C. K. Mechefske, II Y. Kim. Optimal damping layout in a shell structure using topology optimization. Journal of Sound and Vibration,2013, In Press.
    [85]A. Lumsdaine, Topology optimization of constrained damping layers treatments. Proceeding of ASME International Mechanical Engineering Congress and Exp. LA, 2002
    [86]A. Lumsdaine, R. Pai. Design of constrained layer damping topologies. Proceeding of ASME International Mechanical Engineering Congress and Exp. Washington, DC, 2002.
    [87]R. Pai, A. Lumsdaine. Design and fabrication of optimal constrained layer damping topologies. Smart Structures and Materials-Passive Damping and Isolation; Proceedings of SPIE,2004,5386:438-449.
    [88]郭中泽,陈裕泽,邓克文等.基于ESO的约束阻尼板拓扑优化设计研究.机械设计,2006,23(10):3-5.
    [89]韦勇.阻尼结构的建模、识别和拓扑优化研究:[博士论文].南京航空航天大学,2006.
    [90]M.Ansari, A. Khajepour, E. Esmailzadeh. Application of level set method to optimal vibration control of plate structures. Journal of Sound and Vibration,2013,332: 687-700.
    [91]E. C. N. Silva, N. Kikuchi. Design of piezoelectric transducers using topology optimization. Smart Materials and Structures,1999,8:350-364.
    [92]M. Kogl, E. C. N. Silva. Topology optimization of smart structures:design of piezoelectric plate and shell actuators. Smart Materials and Structures,2005,14: 387-399.
    [93]P. H. Nakasone, E. C. N. Silva. Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. International of Intelligent Material Systems and Structures,2010,21:1627-1652.
    [94]Z. Kang, L. Tong. Integrated optimization of material layout and control voltage for piezoelectric laminated plates. International of Intelligent Material Systems and Structures,2008,19:889-904;
    [95]Z. Kang, X. Wang. Topology optimization of bending actuators with multilayer piezoelectric material. Smart Materials and Structures,2010,19:1-11.
    [96]Y. Ha, S. Cho. Design sensitivity analysis and topology optimization of eigenvalue problems for piezoelectric resonators. Smart Materials and Structures.2006,15: 1513-1524.
    [97]S. Y. Wang, K. Tai, T. Quek. Topology optimization of piezoelectric sensors/actuators for torsional vibration control of composite plates. Smart Materials and Structures, 2006,15:253-269.
    [98]Y. Li, X. Xin, N. Kikuchi et al. Optimal shape and location of piezoelectric materials for topology optimization of flextensional actuators. GECCO-2001:Proceeding of Genetic and Evolutionary Computation Conference,2001,1085-1090;
    [99]Z. Luo, L. Tong, J. Luo, et al. Design of piezoelectric actuators using a multiphase level set method of piecewise constants. Journal of Computational Physics,2009,228: 2643-2659.
    [100]B. Zheng, C. Chang, H. C. Gea. Topology optimization of energy harverting devices using piezoelectric materials. Structural and Multidiscipline Optimization,2009,38: 17-23.
    [101]C. J. Rupp, A. Evgrafov, K. Maute, et al. Design of piezoelectric energy harverting systems:a topology optimization approach based on multilayer plates and shells. International of Intelligent Material Systems and Structures,2009,20:1923-1939.
    [102]H. Sun, Z. Yang, K. Li et al. Vibration suppression of a hard disk drive actuator arm using piezoelectric shunt damping with a topology-optimized PZT transducer. Smart Materials and Structures,2009,18:1-13.
    [103]D. K. Rao. Frequency and loss factors of sandwich beams under various boundary conditions. Journal of Mechanical Engineering Science.1978,20(5):271-282.
    [104]X. Cao, H. P. Mleinek. Computational prediction and redesign for viscoelastically damped structures. Compluter Methods in Applied Mechanics and Engineering,1995, 125:1-16.
    [105]石银名,华宏星,李中付等.线性粘弹结构有限元模型的鲁棒降阶方法.振动与冲击,2001(20):16-19.
    [106]王明旭.复杂结构的阻尼减振理论及设计方法研究:[博士论文].南京航空航天大学,2010.
    [107]刘正山.非经典阻尼结构动力学模型缩聚方法研究:[博士论文].大连理工大学,2011.
    [108]M. I. Friswell, S. D. Garvey, J. E. T. Penny. Model reduction using dynamic and iterated IRS techniques. Journal of Sound and Vibration,1998; 211(1):123-132.
    [109]N. L. Pederson. Maximization of eigenvalues using topology optimization. Structural and Multidisciplinary Optimization,2000,20:2-11.
    [110]M. Zhou, G. I. N. Rozvany. DCOC:an optimality criteria method for large systems Part 1:theory. Structural Optimization,1992,5:12-25.
    [111]K. Svanberg. The method of moving asymptotes-a new method for structural optimization. International Journal for Numerical Methods in Engineering,1987,24: 359-373.
    [112]O. Sigmund, J. Petersson. Numerical instabilities in topology optimization:A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization,1998,16:68-75.
    [113]Z. D. Ma, N. Kikuchi, H. C. Cheng. Topological design for vibrating structures. Computer Methods in Applied Mechanics and Engineering,1995,121:259-280.
    [114]T. S. Kim, Y. Y. Kim. Mac-based mode-tracking in structural topology optimization. Computers and Structures,2000.74:375-383.
    [115]B. P. Wang. Improved approximate methods for computing eigenvector derivatives in structural dynamics, AIAA Journal,1990,29:1018-1020.
    [116]H. Zheng, C. Cai. Minimization of sound radiation from baffled beams through optimization of partial constrained layer damping treatment. Applied Acoustics,2004, 65(5):501-520.
    [117]J. Du, N. Olhoff. Topological design of vibrating structures with respect to optimum sound pressure characteristics in a surrounding acoustic medium. Structural and Multidisciplinary Optimization,2010,42:43-54.
    [118]Z. S. Xu, Q. B. Huang, Z. G. Zhao. Topology optimization of composite material plate with respect to sound radiation. Engineering Analysis with Boundary Elements, 2011,35:61-67.
    [119]S. J. Elliott, M. E. Johnson. Radiation modes and the active control of sound power. Journal of Acoustical Society of America,1993,94(4):2194-2204.
    [120]K. A. Cunefare, M. N. Currey, M. E. Johnson et al. The radiation efficiency grouping of free-space acoustic radiation modes. Journal of Acoustical Society of America,2001,109(1):203-215.
    [121]M. E. Johnson, S. J. Elliott. Active control of sound radiation using volume velocity cancellation. Journal of Acoustical Society of America,1995,98(4):2194-2204.
    [122]K. Naghshineh, G. H. Koopmann, A. D. Belegundu. Material tailoring of structures to achieve a minimun radiation condition. Journal of Acoustical Society of America, 1992,92(3):841-855.
    [123]A. Loredo, A. Plessy, A. E. Hafidi. Numerical vibroacoustic analysis of plates with constrained-layer damping patches. Journal of Acoustical Society of America,2011, 129(4):1905-1918.
    [124]E. H. Anderson, N. W. Hagood. Simultaneous piezoelectric sensing/actuation: analysis and application to controlled structures. Journal of sound and vibration,1997, 174(5):617-639.
    [125]C. D. M. Junior, A. Erturk, D. J. Inman. An electromechanical finite element model for piezoelectric energy harvester plates. Journal of Sound and Vibration,2009,327: 9-25.
    [126]A. Benjeddou, M. A. Trindade, R. Ohayon. A unified beam finite element model for extension and shear piezoelectric actuation mechanisms. Journal of Intelligent Material Systems and Structures,1997,8:1012-1025.
    [127]Y. Lim. Finite-element simulation of closed loop vibration of a smart plate under transient loading. Smart Materials and Structures,2003,12:272-286.
    [128]M. A. Trindade, A. Benjeddou. Effective electromechanical coupling coefficients of piezoelectric adaptive strucutres:Critical evaluation and optimization. Mechanics and Advanced Materials and Structures,2009,16:210-223.
    [129]C. Mattheck. Design in nature:Learning from trees. Berlin Heidelberg: Springer-verlag,1998.
    [130]丁晓红,林建中,山崎光悦.利用植物根系形态形成机理的加筋薄壳结构拓扑优化设计.机械工程学报,2008,44(4):201-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700