典型旅游城市Cd的环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以典型旅游城市杭州市为例,研究城市环境中Cd元素的环境地球化学特征,选择城市环境中的城市绿地土、街道尘埃和水-底泥样品为研究对象,为城市环境进行一次全面“体检”,分析了城市多介质中Cd的空间分布特征,探讨了介质中Cd背景情况,利用多元统计分析的因子分析法获知介质中元素组合特征和物源性,分析了土尘介质中Cd的化学形态特征,并以苔藓作为环境指示剂研究了地表大气环境中Cd的生物可利用性。最后以杭州市的农业活动为研究对象,研究蔬菜根系土和蔬菜的Cd含量特征和联系。通过如上分析,得出以下几点认识:
     1.城市各环境介质中Cd的含量特征和背景值研究等表明,杭州市不同区域均出现一定程度的Cd污染超标。城市表层绿地土(0-20cm)Cd的含量:江南城区(0.11mg/kg)<主城区(0.18 mg/kg)<半山区(0.21mg/kg),其中位于主城区的西湖风景区为:0.12mg/kg;街道尘埃:主城区(1.53mg/kg)<江南城区(2.00mg/kg)<半山区(2.11mg/kg),西湖风景区为1.11mg/kg;水样:江南城区(0.0002mg/L)<主城区(0.0003 mg/L)<半山区(0.0020 mg/L),底泥:江南城区(0.37 mg/kg)<主城区(0.65 mg/kg)<半山区(1.15 mg/kg)。城市蔬菜根系土耕作层(0-20cm):Cd含量的均值表现为江南城区(0.13mg/kg)、主城区(0.19mg/kg)、半山区(0.29mg/kg)依次上升。三个区多种介质Cd含量均大致表现为:江南城区<主城区<半山区。
     根据国家土壤环境质量二级标准(0.3mg/kg)和地表水环境质量Ⅰ级标准(0.001mg/L)来衡量介质的污染超标情况,江南城区:绿地土和水样介质超标率为0%,底泥超标34.7%。主城区:绿地土浅层和深层超标率12.31%和9.24%,水样超标率1.8%,底泥超标率47.2%。半山区:绿地土浅层和深层超标率13.95%和9.3%,水样超标73%(其中9.5%超Ⅳ类水标准,包括7.1%的超V类水标准,此两类超过了农田灌溉水质标准限值0.005mg/L),底泥超标率50%。街道尘埃的Cd含量全部超过土壤环境质量标准,但Cd含量在江南城区、主城区和半山区依次上升。相比而言,街道尘埃、底泥和半山区的水样污染情况较严重。对于蔬菜根系土,依照国家土壤质量标准值0.30mg/kg为参照依据,江南城区表层和深层土壤超标率均为0%;主城区表层超标率为0%,深层超标率为6.7%;半山区表层超标22.2%,深层超标率为5.6%,且均低于三类土壤标准(1.0mg/kg).
     研究得出杭州市绿地土Cd元素自然背景值为0.10mg/kg,底泥自然背景为0.14mg/kg,街道尘埃背景值为1.39mg/kg。西湖风景区绿地土Cd含量(0.12mg/kg)与杭州市沉积母质Cd含量(0.12mg/kg)、城市绿地土自然背景值(0.10mg/kg)较为相近,且西湖区街尘Cd含量(1.11mg/kg)与所得街尘背景值(1.39mg/kg)亦接近。这说明绿地土和底泥母质与沉积母质来源一致,西湖风景区可能与原始特征接近,受到人为污染相对最少。街道尘埃中的Cd含量具备高含量可能是一个普遍现象,与世界多个城市的对比发现,杭州市的街尘Cd污染相对尚轻,Cd含量特征可能与城市的发展背景有关。
     2.由所得自然背景值和沉积母质Cd含量可知,第一环境所产生的Cd元素未超过国家土壤质量标准,不会造成自然污染,因而杭州市的Cd污染主要是由第二环境人为产物释放叠加致超标所致。绿地土和底泥中外来Cd的多少主要直接与所处环境有关,在半山区受人为影响最大,主城区次之,江南城区相对最低。对于街尘而言,由于其超细的粒径特征(<0.75μm),较易通过交通、风力等作用在空气中再悬浮而出现二次迁移,在动力环境相对较低的环境下沉降,形成Cd含量再分配的现象,结果导致街尘Cd含量大致表现为:厂区>居民区≈公园>交通区≈商业区>风景区。因子分析和背景值计算结果表明,杭州市街尘和底泥中Cd元素受到人为干扰较大,绿地土次之,而介质中外来Cd的来源可能与工厂作业和交通相关的活动等有关。
     3.由街道尘埃、底泥和蔬菜根系土中Cd的化学形态可知,街道尘埃中可活动态(非残渣态(Cd约占88%,底泥中约85%,蔬菜根系土则约为87.5%。这其中弱酸可提取态Cd在底泥中的百分含量最高,占全量约53%,蔬菜根系土为42%,街道尘埃为38%。这表明城市环境介质中Cd的化学活性较强,向食物链转移的潜在危害较大。在半山区的水体-底泥Cd含量关系中也说明半山区的底泥Cd有极高的化学活性。
     4.苔藓和蔬菜中的Cd含量分析结果表明,环境中Cd已经产生了现实危害性,全区苔藓和蔬菜中均出现不同程度的Cd负荷。苔藓中Cd含量:主城区(1.02mg/kg)>江南城区(0.90mg/kg)>半山区(0.77mg/kg)。其含量与环境特征关系较大:公园社区>交通区≈商业区>居民区>厂区>风景区,反映了近地表空间的大气环境质量,与街尘Cd的分布较为一致,均与周围动力环境等因素有关。相关性分析也表明,厂区苔藓Cd含量较低与厂区街尘弱酸提取态Cd含量较低有关。
     在不同种蔬菜中叶菜类(0.22mg/kg)>根茎类(0.18mg/kg)>瓜果类(0.17mg/kg),其可能表明瓜果类、根茎类和叶菜类蔬菜吸收土壤Cd的能力依次增强。叶菜类蔬菜Cd含量表现为:江南城区(0.29mg/kg)>半山区(0.22 mg/kg)>主城区(0.17 mg/kg),根据国家食品卫生标准Cd的限值规定,江南城区叶菜类超标77.8%,平均超标1.7倍,最高超标3.5倍。主城区叶菜类超标25%,平均超标1.23倍,最高超标1.3倍。半山区叶菜类超标35.3%,平均超标2.5倍,最高超标4.1倍;根茎类超标55.6%,平均超标2.8倍,最高超标5.5倍;瓜果类超标54.5%,平均超标5.7倍,最高超标12.8倍。这表明杭州市蔬菜均存在一定程度的Cd污染,情况较严峻。对比分析蔬菜中Cd含量与根系土中Cd含量以及根系土中Cd的化学形态分量的相关性均不明显,这说明除了根系土中Cd的化学活性外,植物对土壤中Cd的吸收可能还与植物的基因等因素有关。
In this study, Hangzhou city was took as a case study of typical tourist city for understand the environment geochemistry of Cd. Environmental materials of urban green land soil, street dust, water and bottom mud samples were collected for a comprehensive environmental health check of Cd in the city. Cd spatial distribution and background of materials were analyzed to check the current status of contamination, factor analysis method were applied to understand the association of elements as well as its sources, chemical partitioning analysis of Cd in soil, dust and mud was conducted to investigate its chemical activity and potential harm, in the meanwhile, bioindicator moss was chose to study the bioavailability of Cd in airborne particulate. And then, vegetable cultivation in Hangzhou was studied including Cd concentration in root soil and vegetables, chemical partitioning of Cd in root soil and its connection with Cd in vegetables. The above analysis comes to following understanding:
     1.The concentration of Cd and its background in various environmental materials indicates that some parts of Hangzhou loaded with Cd exceeded the environmental quality standard value, which suggests the Cd contamination in environment. The Cd content trend in urban surface layer (0~20cm) of green land soil samples:Jiangnan City (suburb area) (0.11mg/kg)     According to the national soil environmental quality 2nd level standard value 0.3mg/kg, about 0% urban green land soil samples in Jiangnan city exceed the limit, while Downtown accounts for 12.31% in topsoil (0~5cm) and 9.24% in subsurface soil (15~20) samples, as well as Banshan for 13.95% in topsoil and 9.3% in subsurface soil samples. In the meantime, bottom mud samples in Jiangnan, Downtown and Banshan accounts for 34.7%,47.2% and 50% exceed the limit, respectively. All of the street dust samples exceed the limit. In comparison with environmental quality standards for surface water (1st type limit 0.001mg/L), about 0% water samples in Jiangnan, 1.8% in Downtown, and 73% (including 9.5% exceed typeⅣlimit, in which 7.1% exceed typeⅤlimit. This two type of water exceed the national irrigation water limit value of Cd) in Banshan exceed typeⅠlimit. The data indicates that street dust, bottom mud, and the water in Banshan were serious polluted. Still, according to soil standard value 0.3mg/kg, about 0% surface (0~20cm) and deep (20~40cm) layer of vegetable root soil of Jiangnan exceed the limit, while accounts for 0% surface and 6.7% deep layer in Downtown, and accounts for 22% surface and 22.2% deep layer in Banshan exceed the limit, furthermore, all of the root soil below theⅢlimit (1.0mg/kg).
     Results suggest that the natural background value of Cd of urban green land soil surface layer (0~20cm) is 0.10mg/kg, the bottom mud is 0.14mg/kg, and the street dust is 1.39mg/kg. The mean Cd concentration of urban green soil surface layer in West Lake Scenic is 0.12mg/kg, which is close to sedimentary parent material (0.12mg/kg) and the suggested background value of urban green land soil surface layer. Moreover, the mean Cd content of street dust (1.11mg/kg) in West Lake Scenic is close to the suggested background value of street dust. These may explain that the parent material of urban green land soil and bottom mud is consistent with sedimentary parent material, and the West Lake Scenic is more likely close to original status, relatively less polluted by human. The elevated Cd content of street dust might be a common phenomenon, however, the Cd content of street dust in Hangzhou is much less than other developed cities, and the Cd content level might related to development background of the city.
     2.By the suggested natural background value of Cd and the geochemistry background value of Cd of sedimentary parent material, the Cd released by the first environment of Hangzhou city does not exceed the national soil quality 2nd level standard value 0.3mg/kg, which means the first environment couldn't cause natural pollution, and the Cd pollution of Hangzhou city comes mainly from the superposition of Cd released by the second environment caused by anthropogenic sources tills to exceed the quality standards. The superposition of Cd to urban green land soil and bottom mud is directly related to anthropogenic sources, which led to Banshan industrial area been affected most seriously, and follows with Downtown of Hangzhou, the Jiangnan city is affetcted relatively lowest. As for street dust samples, due to its fine particle size (<0.75μm), it could be re-suspended by dynamic like wind and vehicles, and be transported again, then deposit in peaceful environment. These process led to Cd.content trend in street dust samples as:factory area>residential area≈park> traffic area≈commercial area> scenic area. The factor analysis and calculation of background value reveals that urban green land soil, street dust, and bottom mud samples were loaded with anthropogenic Cd, and the sources may be attributed to factory, traffic and its relevant activities.
     3.The chemical partitioning analysis reveals a high chemical mobility of Cd in street dust, bottom mud and vegetable root soil samples.88% street dust total Cd content were bound in non-residue phases, while 85% for bottom mud and 87.5% for vegetable root soil, in which highest mobile phase Cd (acetic acid extractable phase) percentage were highest, and bottom mud, root soil and street dust accounts for 53%,42% and 38% respectively. It reveals that high mobility of Cd in environment of Hangzhou, and might pose a high risk potential to human. The relationship of Cd content between water and bottom mud samples also shows that Cd of water and bottom mud in Banshan have a high chemical mobile characteristic.
     4. The Cd concentration of moss and vegetables reveals that the pollution has resulted in real bioavailability, the samples in Banshan, Downtown and Jiangnan area were loaded Cd. For moss samples, Downtown (1.02mg/kg)> Jiangnan (0.90mg/kg)> Banshan (0.77mg/kg). The content level is related to environment characteristic:park>traffic area≈commercial area> residential area> factory area> scenic area, reflecting the near-surface atmospheric environmental quality, and this distribution pattern is consistent with street dust samples. The correlation analysis also explained that one of the reasons that the lower Cd content of moss in factory area may be attributed to the lower accounts of acetic acid extractable Cd of street dust in factory area.
     In different types of vegetables, Cd content trend as:Leaf vegetables (0.22mg/kg)> Rootstalk vegetables (0.18mg/kg)> Fruit vegetables (0.17mg/kg). It might indicated that the absorptive capacity of Cd of vegetables follows the same trend. The Cd content trend of leaf vegetables, Jiangnan (0.29mg/kg)> Banshan (0.22mg/kg)> Downtown (0.17mg/kg). According to national food hygiene limits for Cd,77.8% leaf vegetable samples in Jiangnan exceed the limit (average 1.7 times of the limit, and the maximum to 3.5 times of the limit). The leaf vegetable in Downtown accounts for 25%(average 1.23 times, and maximum to 1.3 times). In Banshan area, the leaf vegetable accounts for 35.3%(average 2.5 times, and maximum to 5.5 times), the rootstalk vegetables accounts for 55.6%(average 2.8 times, and maximum to 5.5 times), and the fruit vegetables accounts for 54.4%(average 5.7 times, and maximum to 12.8 times). These suggest that vegetables in Hangzhou are serious polluted with Cd element. The correlation analysis among Cd content of leaf vegetables, total Cd content of root soil and Cd chemical partitioning content of root soil were not significantly correlated, indicating that except for Cd chemical mobility in soil, the gene of plant could also be one of the reasons to affect the intake of Cd in plant-soil system.
引文
[1]Cadmium. Wikipedia[EB/OL]. http://en.wikipedia.org/wiki/Cadmium#cite_ref-3. Accessed 12 Jan.2010.
    [2]Lansche, Arnold M. Minerals Yearbook 1956:Cadmium.United States Geological Surv ey[EB/OL]. http://digicoll.library.wisc.edu/cgi-bin/EcoNatRes/EcoNatRes-idx?type=turn&en tity=EcoNatRes.MinYB1956v1.p0289&id=EcoNatRes.MinYB1956v1&isize=XL&q1=cadmi um, viewed 12 Jan.2010.
    [3]USGS Commodity Report cadmium. United States Geological Survey[EB/OL]. http://mi nerals.usgs.gov/minerals/pubs/commodity/cadmium/, viewed 12 Jan.2010.
    [4]Cadmium. United States Geological Survey, Wikipedia[EB/OL].http://en.wikipedia.org/wi ki/Image:Cadmium_-_world_production_trend.svg, viewed 12 Jan.2010.
    [5]林年丰.医学环境地球化学[M].吉林:吉林科学技术出版社,1999,221-225.
    [6]E. Callender. Heavy Metals in the Environment-Historical Trends[M]. (in) Treatise on Geochemistry, Volume 9. Elsevier,2007, Chapter 9.03, p.67~105.
    [7]张秀芝.冀东沿海地区土壤镉富集成因及其生物有效性研究[D].武汉:中国地质大学(武汉),2007,1-5.
    [8]赵宾.江汉平原冲积带Cd高值分布特征及其成因[D].武汉:中国地质大学(武汉),2008,1-5.
    [9]赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素[J].生态环境,2005,14(2):282~286.
    [10]王云,魏复盛等.土壤环境元素化学[M].北京:中国环境科学出版社,1995,58~59.
    [11]Taylor J, De Woskin R, Ennever F K. Toxicological profile for cadmium[R]. Atlanta(GA):US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry,1999:3~65.
    [12]李航,肖唐付,双燕等.云南金顶超大型铅锌矿区镉的水地球化学研究[J].地球化学,36(6):633~637.
    [13]王济,王世杰,欧阳自远.贵阳市浅表层土壤中镉的环境地球化学基线研究[J].环境科学,28(6):1344~1348.
    [14]王学松,秦勇.利用对数正态分布图解析徐州城市土壤中重金属元素来源和确定地球化学背景值[J].地球化学,2007,36(1):98-102.
    [15]张秀芝,杨志宏,马忠社.地球化学背景与地球化学基准[J].地质通报,2006,25(5):626~629.
    [16]常静,刘敏,李先华等.上海地表灰尘重金属污染的健康风险评价[J].中国环境科学,2009,29(5):548~554.
    [17]S.M. Charlesworth, J.A. Lees. The distribution of heavy metals in deposited urban dus ts and sediments, Coventry, England[J]. Environmental Geochemistry and Health,1999, 21:97~115.
    [18]N.S. Duzgoren-Aydin, C.S.C. Wong, A. Aydin, et al. Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China[J].Environmental Geochemistry and Health,2006,28:375-391.
    [19]Achilleas Christoforidis, Nikolaos Stamatis. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece[J].Geoderma,2009, 151:257~263.
    [20]J.R. Miller, K.A. Hudson-Edwards, P.J. Lechler, et al. Heavy metal contamination of water, soil and produce within riverine communities of the Rio Pilcomayo basin, Bolivia[J]. Science of the Total Environment,2004,320:189-209.
    [21]L. Ferreira-Baptista, E. De Miguel. Geochemistry and risk assessment of street dust in Luanda, Angola A tropical urban environment[J]. Atmospheric Environment,2005,39,4 501~4512.
    [22]王美青,章明奎.杭州市城郊土壤重金属含量和形态的研究[J].环境科学学报,2002,22(5):603~608.
    [23]常静,刘敏,许世远等.上海城市降雨径流污染时空分布与初始冲刷效应[J].地理研究,2006,25(6):994~1002.
    [24]常静,刘敏,侯立军等.城市地表灰尘的概念、污染特征与环境效应[J].应用生态学报,2007,18(5):1153~1158.
    [25]常静,刘敏,李先华等.上海城市地表灰尘重金属污染累积过程与影响因素[J].环境科学,2008,29(12):3483~3488.
    [26]常静,刘敏,李先华等.上海城市地表灰尘重金属污染粒级效应与生物有效性[J].环境科学,2008,29(12):3489~3495.
    [27]常静,刘敏,李先华等.城市地表灰尘-降雨径流系统重金属生物有效性研究[J].环境科学,2009,30(8):2241~2247.
    [28]Charlesworth S M, Lees J A. The transport of particulate-associated heavy metals from source to deposit in the urban environment, Coventry, UK [J]. Science of the Total Environment,1999,235(1):351~353.
    [29]崔悦宏,依艳丽,张大庚等.水分和碳酸钙对土壤Cd形态的影响[J].安徽农业科学,2007,35(9):2674~2676.
    [30]王凯荣,张玉烛,胡荣桂.不同土壤改良剂对降低重金属污染土壤上水稻糙米铅镉含量的作用[J].农业环境科学学报,2007,26(2):476~481.
    [31]肖思思,李恋卿,潘根兴等.持续淹水和干湿交替预培养对2种水稻土中Cd形态分配及高丹草Cd吸收的影响[J].环境科学,2006,27(2):351~355.
    [32]黄凤球,纪雄辉,鲁艳红等.不同工业废弃物对稻田土壤中镉铅生物有效性及其形态的影响[J].农业环境科学学报,2007,26(4):1316~1321.
    [33]邱媛,管东生,陈华等.惠州市植物叶片和叶面降尘的重金属特征[J].中山大学学报(自然科学版),2007,46(6):98~102.
    [34]Renuka P. Sankaran. Cadmium and zinc transport and accumulation in two plant species and the associated risk of dietary exposure to animals[D]. USA:Southern Illinois University Carbondale,2005,1~95.
    [35]Saud Sebayle AL-Harbi. Effect of soil properties on sorption and mobility of cadmium in selected aridisols and andisols[D]. USA:The Uuniversity of Arizona,1999,1~157.
    [36]梁彦秋,刘婷婷,铁梅等.镉污染土壤中镉的形态分析及植物修复技术研究[J].环境科学与技术,2007,30(2):57~58.
    [37]范文宏,姜维,王宁.硫酸盐还原菌修复污染土壤过程中镉的地球化学形态分布变化[J].环境科学学报,2008,28(11):2291~2298.
    [38]British Geological Survey. World mineral production 2004-08[M]. Keyworth, Nottingham: British Geological Survey,2010,15~16.
    [39]Anon. British Geological Survey[EB/OL]. http://en.wikipedia.org/wiki/File:2005cadmium. PNG,viewed,2010,March,16.
    [40]成杭新,杨忠芳,奚小环等.长江流域沿江镉异常源追踪与定量评估的研究框架[J].地学前缘,2005,12(1):261~272.
    [41]冯艳红.苏南地区部分农村河道底泥的有机污染物和重金属的污染特征及风险分析[D].南京:南京农业大学,2007,33~52.
    [42]S. Rossini Oliva, A.J. Fernandez Espinosa. Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources[J]. Microchemical Journal,2007,86:131-139.
    [43]Rauret G., Lopez-Sanchez J.-F., Sahuquillo A. et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring,1999,1:57~61.
    [44]董岩翔,郑文,周建华等.浙江省土壤地球化学背景值[M].北京:地质出版社,2007,73~159.
    [45]中国环境监测总站.中国土壤背景值[M].北京:中国环境科学出版社,1999,p331.
    [46]李志洪,赵兰坡,窦森.土壤学[M].北京:化学工业出版社,农业科技出版中心,2005,9.
    [47]关连珠.普通土壤学[M].北京:中国农业大学,2007,3.
    [48]凌其聪,严森,鲍征宇.大型冶炼厂重金属环境污染特征及其生态效应[J].中国环境科学,2006,26(5):603~608.
    [49]周国华,马生明,喻劲松等.土壤剖面元素分布及其地质、环境意义[J].地质与勘探,2002,38(6):70~75.
    [50]W.H. Wang, M.H. Wong, S. Leharne, et al. Fractionation and Biotoxicity of Heavy Metals in Urban Dusts Collected from Hong Kong and London[J]. Environmental Geochemistry and Health,1998,20:185~198.
    [51]Gomeza B, Palaciosa M A. Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities[J]. Science of the Total Environment,2002,299:1~19.
    [52]Dixon S L, Gaitens J M, Jacobs D E, et al. U.S.Children's exposure to residential dust Lead,1999-2004:II.The contribution of Lead-contaminated dust to children's blood Lead levels.doi:10.1289/ehp.11918[J/OL].http://dx.doi.org/,2008-11-14.
    [53]Anju D.K. Banerjee. Heavy metal levels and solid phase speciation in street dusts of Delhi, India[J]. Environmental Pollution,2003,123:95~105.
    [54]Ferreira-Baptista L, De Miguel E. Geochemistry and risk assessment of street dust in Luanda, Angola:a tropical urban environment[J].Atmospheric Environment,2005,39:45 01~4512.
    [55]Y. B. Ho. Lead Contamination in Street Dust in Hong Kong[J].Bull. Environm. Contain. Toxicol.,1979,2:639~642.
    [56]W.X. Liu, X.D. Li, Z.G. Shen, et al. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary[J]. Environmental Pollution,2003,121:377-388.
    [57]Chao Yu, Qicong Ling, Sha Yan, et al. Cadmium contamination in various environmental materials in an industrial area, Hangzhou, China[J]. Chemical Speciation and Bioavailability 2010,22:35~42.
    [58]Li X.D., Wai O.W.H., Li Y.S., et al. Heavy metal distribution in sediment profiles of the Pearl River Estuary[J]. Applied Geochemistry,2000a,15,567~581.
    [59]Li X.D., Shen Z.G, Wai O.W.H., et al. Chemical partitioning of heavy metal contaminants in sediments of the Pearl River Estuary[J]. Chemical Speciation and Bioavailability,2000b,12, 17~25.
    [60]杜佩轩,田晖,韩永明.城市灰尘概念、研究内容与方法[J].陕西地质,2004,22(1):73~79.
    [61]Wang WH, Wong MH, Leharne S, et al. Fractionation and biotoxicity of heavy metals in urban dusts collected from HongKong and London[J]. Environmental Geochemistry and Health,1998,20:185~198.
    [62]Viklander M.. Particle size distribution and metal content in street sediments[J]. Journal of Environmental Engineering,1998,124 (8):761~766.
    [63]Xiangdong Li, Chi-sun Poon, Pui Sum Liu. Heavy metal contamination of urban soils and street dusts in Hong Kong[J]. Applied Geochemistry,2001,16:1361~1368.
    [64]Chon HT, Ahn JS, Jung MC. Seasonal variations and chemical forms of heavy metals in soils and dusts from the satellite cities of Seoul, Korea[J]. Environmental Geochemistry and Health,1998,20:77~86.
    [65]Zhang Mingkui, Wang Hao. Concentrations and chemical forms of potentially toxic metals in road-deposited sediments from different zones of Hangzhou, China[J]. Journal of Environmental Sciences,2009,21:625~631.
    [66]李章平,陈玉成,杨学春等.重庆市主城区街道地表物中重金属的污染特征[J].水土保持学报,2006,20(1):114~138.
    [67]杜佩轩,田晖,韩永明等.城市灰尘粒径组成及环境效应—以西安市为例[J].岩石矿物学杂志,2002,21(1):93~98.
    [68]Yim W.W.S., Nau P.S. Distribution of lead, zinc, copper and cadmium in dust from selected urban areas of Hong Kong[J]. Hong Kong Engineer,1987,7~14.
    [69]Chon H-T, Kim K-W, Kim J-Y. Metal contamination of soils and dusts in Seoul metropolitan city, Korea[J]. Environmental Geochemistry and Health 1995,17:139~46.
    [70]Fergusson JE, Ryan DE. The elemental composition of street dust from large and small urban areas related to city type, source and particle size[J]. Science of the Total Environment 1984;34:101~16.
    [71]Thornton I. Metal contamination of soils in urban areas[M]. In:Bullock P., Gregory P.J. (Eds.) Soils in the Urban Environment. Blackwell,1991,47~75.
    [72]Harrison RM, Laxen DPH, Wilson SJ. Chemical associations of lead,cadmium, copper and zinc in street dusts and roadside soils[J]. Environmental science and Technology, 1981,15(11):1376~83.
    [73]Rasmussen P.E., Subramanian K.S., Jessiman B.J. A multi-element profile of housedust in relation to exterior dust and soils in the city of Ottawa, Canada[J].Sci. Total Environ.2001,125~140.
    [74]Charlesworth S., Everett M., McCarthy R. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area:Birmingham and Coventry, West Midlands, UK[J]. Environment International,2003,29:563~573.
    [75]路永正.自然水体多相介质中重金属的分布及迁移转化特征[D].吉林:吉林大学,2006,5:1~15.
    [76]王学松,秦勇.利用对数正态分布图解析徐州城市土壤中重金属元素来源和确定地球化学背景值[J].地球化学,2007,36(1):98~102.
    [77]Siegal F R. Enviornmental Geochemistry of Potentially Toxic Metals[M]. Heidelberg: Springer,2002,1~92.
    [78]王雄军,赖健清,鲁艳红等.基于因子分析法研究太原市土壤重金属污染的主要来源[J].生态环境,2008,17(2):671~676.
    [79]严莎,凌其聪,严森等.城市工业区周边土壤-水稻系统中重金属的迁移累积特征[J].环境化学,2008,27(2):226~230.
    [80]D. Voutsa, C. Samara.Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas[J]. Atmospheric Environment,2002,36: 3583~3590.
    [81]朱维晃,杨元根,毕华等.海南土壤中Zn、Pb、Cu、Cd四种重金属含量及其生物有效性的研究[J].矿物学报,2004,24(3):239~244.
    [82]M. Pueyo, G. Rauret, D. Luck, et al. Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure[J]. J. Environ. Monit.,2001,3,243-250.
    [83]G. Rauret, J.-F. Lopez-Sanchez, A. Sahuquillo, et al. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content[J]. J. Environ. Monit.,2000,2,228~233
    [84]宋照亮,刘丛强,彭渤,等.逐级提取(SEE)技术及其在沉积物和土壤元素形态研究中的应用[J].地球与环境,2004,32(2):70~77.
    [85]Senol Kartal, Zeki Aydin, rife Tokalioglu. Fractionation of metals in street sediment samples by using the BCR sequential extraction procedure and multivariate statistical elucidation of the data[J]. Journal of Hazardous Materials,2006,132:80~89.
    [86]Maurizio Aceto, Ornella Abollino, Raffaele Conca, et al. The use of mosses as environmental metal pollution indicators[J].Chemosphere,2003,50:333~342.
    [87]J.A. Fernandez, A. Carballeira. Biomonitoring metal deposition in Galicia(NW Spain) with moss:factors affecting bioconcentration[J].Chemosphere,2002,46:535~542.
    [88]D Ceburnis,D. Valiulis. Investigation of absolute metal uptake efficiency from precipitation in moss[J].The Science of the Total Environment,1999,226:247~253.
    [89]Celine Siu Lan Lee, Xiangdong Li, Gan Zhang, et al. Biomonitoring of trace metals in the atmosphere using moss (Hypnum plumaeforme) in the Nanling Mountains and the Pearl River Delta, Southern China[J].Atmospheric Environment,2005,39:397~407.
    [90]M. Schintu, A. Cogoni, L. Durante. Moss (Bryum radiculosum) as a bioindicator of trace metal deposition around an industrialised area in Sardinia (Italy)[J].Chemosphere, 2005,60:610~618.
    [91]王敏,曹同,俞鹰浩等.苔藓与种子植物对不同化学元素富集能力的比较[J].上海师范大学学报(自然科学版),2007,36(5):67~73.
    [92]安丽,曹同,俞鹰浩.苔藓植物与环境重金属污染监测[J].生态学杂志,2006,25(2):201~206.
    [93]J.A. Fernandez, J.R. Aboal, J.A. Couto,et al. Moss bioconcentration of trace elements around a FeSi smelter:modelling and cellular distribution[J]. Atmospheric Environment,2004, 38:4319~4329.
    [94]R. Figueira, C. Sergioa, A.J. Sousa. Distribution of trace metals in moss biomonitors and assessment of contamination sources in Portugal[J], Environmental Pollution, 2002,118:153~163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700