冠心病患者血小板miR-223和miR-96差异表达与氯吡格雷反应性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:目前大量临床及实验研究显示“抗血小板药物抵抗”主要与血小板反应活性存在个体差异有关,因此需要对服用抗血小板药物的患者进行血小板反应活性的监测。但临床上对于血小板反应活性判定的各种实验诊断标准尚未达成一致。微小RNA (microRNA, miRNA)是一类在进化上高度保守的单链非编码小RNA,新近研究表明人血小板中含有miRNA,其表达谱差异与血小板功能密切相关,由此可影响疾病的易感性,特别是血小板反应活性的差异。因此本研究的目的是探讨冠心病患者血小板microRNA(miR-223, miR-96)表达水平与氯吡格雷反应性的关系,为抗血小板药物个体反应的差异性提供新的分子水平机制及人群研究证据。
     研究内容与方法:以不稳定型心绞痛(Unstable Angina Pectoris, UAP)患者为研究对象。记录患者的一般临床资料及用药情况;进行各项血细胞参数、生化参数的检验;进行心脏超声、踝-臂指数及臂踝脉搏波传导速度的检查;进行冠脉造影检查及必要的介入治疗。对冠脉病变进行Gensini评分及Syntax评分。以二磷酸腺苷(Adenosine Diphosphate, ADP)诱导的血小板聚集率和通过流式细胞术测定的血小板血管舒张剂刺激磷蛋白(Vasodilator Stimulated Phosphoprotein, VASP)磷酸化水平,判断患者在服用氯吡格雷后血小板反应活性的情况。以CD45免疫磁珠去除富血小板血浆中残留的白细胞后,提取患者血小板中的miRNA,对与血小板P2Y12受体mRNA3'非编码区结合的miR-223,及与血小板小泡缔合性微管蛋白8(Vesicle-Associated Microtubule Protein8, VAMP8)表达调节相关的miR-96的表达进行实时定量聚合酶链反应(Real Time Polymerase Chain Reaction, real time PCR)分析。
     结果:①所有入选患者根据流式细胞术测定的VASP磷酸化水平即血小板反应指数(Platelet Reactivity Index, PRI)的中位数水平(56.55%)分成2组:A组<56.55%,18例,男9例,女9例;B组>55.66%,18例,男7例,女11例。②两组患者的年龄、性别构成、体重指数及药物使用情况无统计学差异(P>0.05)。两组患者的心血管疾病史、伴发疾病情况及入院时的血压、心率无统计学差异(P>0.05)。两组患者的心脏功能及结构、ABI、BaPWV、各项血细胞参数及生化参数均无统计学差异(P>0.05)。血小板聚集率两组间有统计学差异(36.64±15.24vs52.19±13.17,P=0.002)。③两组患者TIMI分级、Syntax评分及Gensim评分无统计学差异(P>0.05)。支架长度两组间有统计学差异(28.22±19.65vs12.39±15.47,P=0.011)。④PRI与血小板聚集率呈正相关(r=0.400,P=0.016)。支架长度与Syntax评分呈正相关(r=0.457,P=0.005)。支架长度与Gensim评分呈正相关(r=0.497,P=0.002)。Syntax评分与Gensim评分呈正相关(r=0.660,P=0.000)。⑤与A组比较,B组miR-223相对表达水平下调,有统计学差异(P=0.0398);B组miR-96相对表达水平有下调的趋势,但无统计学差异(P=0.073)。⑥miR-223相对表达水平与血小板聚集率间无相关性(r=0.0339,P=0.8513),与PRI呈负相关(r=-0.4045,P=0.0328);miR-96相对表达水平与血小板聚集率间无相关性(r=0.1473,P=0.4546),与PRI无相关性(r=-0.0186,P=0.9251)
     结论:本研究入选患者在服用双联抗血小板治疗后,血小板反应活性存在明显的个体差异,通过光比浊法检测的血小板聚集率与流式细胞术检测的VASP磷酸化程度的两种方法均可对治疗后血小板反应活性进行评估,两者具有一定的相关性。可将两种评估方法结合在一起评价冠心病患者抗血小板治疗后血小板的反应活性。本研究中冠心病患者血小板miR-223的低表达与血小板高反应性之间存在联系,为抗血小板药物个体差异性提供了新的分子水平机制及人群研究证据。
Objectives:Currently, a large number of clinical trials and basic researches ascribed "anti-platelet drug resistance" to interindividual variation in platelet reactivity. Therefore it is necessary to monitor the platelet reactivity of patients who are taking anti-platelet drugs. However in clinical practice, the methods for determining the reactivity of platelet do not have a regular standard. MicroRNA (miRNA) is a class of non-coding RNA whose final product is a~22nt functional RNA molecule. Recent data indicated that human platelets contain miRNA, and their expression profile is closely related to platelet reactivity. Meanwhile this variance in miRNA expression profile could impact diseases'susceptibility, especially the heterogenicity of platelet reactivity. Therefore, the purpose of the present work is to investigate the relationship between platelet miRNA (miR-223, miR-96) expression and clopidogrel response in paticnts with coronary artery disease, which could provide novel molecular mechanism underlying inter-individual variability of platelet reactivity.
     Materials and Methods:Thirty-six patients with unstable angina pectoris were enrolled in the study. Main demographic and clinical characteristics of the study population were recorded. Patients'blood cell parameters and bio-chemical parameters were tested. We performed cardiac ultrasound, ankle-brachial index and brachial-ankle artery pulse wave velocity measurement to all patients. And all patients underwent coronary artery angiography (CAG) and received appropriate coronary artery interventional treatment. Gensini score and Syntax score were calculated according to quantitative CAG. Platelet reactivity after loading doses of clopidogrel was assessed with10μmol/L adenosine diphosphate (ADP)-induced light transmittance aggregometry and with vasodilator-stimulated phosphoprotein (VASP) phosphorylation assay by flow cytometric analysis.
     Because platelet preparations are often contaminated by leukocytes, and small amounts of residual leukocytes, which have much higher levels of RNA than platelets, may cause false detection of miRNA. We therefore carried out leukocyte depletion with anti-CD45conjugated magnetic beads according to the manufacturer's recommendations. Then we extracted miRNA in platelet. The expression analysis of miRNA-223which is band to3'UTR of platelet P2Y12receptor and miR-96which is related to platelet vesicle-associated microtubule protein8(VAMP8) expression regulation was performed using real time Polymerase Chain Reaction (real time PCR).
     Results:①All patients were divided into2groups by platelet reactivity index (PRI) median level (56.55%) which was assessed with VASP phosphorylation assay by flow cytometric analysis. Group A with PRI<56.55%, consisted of9male and9female. Group B with PRI>56.55%, consisted of7male,11female.②There was no statistical differences (P>0.05) in age, gender, body mass index and medications between two groups. There was no between-group statistical differences (P>0.05) in cardiovascular disease history, complications, blood pressure and heart rate when they were admitted to hospital. There was no statistical differences (P>0.05) interms of cardiac function, ABI, BaPWV, blood cell parameters and bio-chemical parameters. There was statistical differences (36.64±15.24vs52.19±13.17, P=0.002) in platelet aggregation rate between two groups.③There was no statistical differences (P>0.05) in TIMI grading, Syntax score and Gensim score. There is statistical differences (28.22±19.65vs12.39±15.47, P=0.011) in stents'length between two groups.④There was a positive correlation between PRI and platelet (r=0.400, P=0.016). There was a positive correlation between stents'length and Syntax score(r=0.457,P=0.005). There was a positive correlation between stents'length and Genism score (r=0.497, P=0.002). There was a positive correlation between Syntax score and Genism score (r=0.660,P=0.000).⑤Compared with A group, the relative expression of miR-223was down regulated with statistical differences (P=0.0398), while the expression of miR-96presented with down-regulated trend, no statistical difference was observed (P=0.073).⑥There was a negative correlation between the relative expression quantity of miR-223and PRI (r=-0.4045, P=0.0328). There was no correlation between the relative expression quantity of miR-96and PRI (r=-0.0186, P=0.9251)
     Conclusions:The present work for the first time demonstrated that heterogenicity of human platelet response to clopidogrel is correlated with expression pattern of platelet microRNA. Sepcifially, down-regulation of miR-223is associated with a blunted response to clopidogrel (increased platelet reactivity index measured by VASP phosphorylation) in CHD patients. Our results may provide novel molecular mechanism underlying inter-individual response to anti-platetlet drugs, and would be helpful for individualized drug dosing in clinical practice.
引文
[1]Yang ZJ, Liu J, Ge JP, et al. Prevalence of cardiovascular disease risk factor in the Chinese population:the 2007-2008 China National Diabetes and Metabolic Disorders Study[J]. Eur Heart J,2012,33(2):213-20.
    [2]卫生部心血管病防治研究中心北京.中国心血管病报告2010[M].北京:人民卫生出版社,2011:1-141.
    [3]Franco M, Cooper RS, Bilal U, et al. Challenges and opportunities for cardiovascular disease prevention[J]. Am J Med,2011,124(2):95-102.
    [4]Ueno M, Kodali M, Tello-Montoliu A, et al. Role of platelets and antiplatelet therapy in cardiovascular disease[J]. J Atheroscler Thromb,2011,18(6): 431-42.
    [5]Uchida Y, Mori F, Ogawa H, et al. Impact of anticoagulant therapy with dual antiplatelet therapy on prognosis after treatment with drug-eluting coronary stents[J]. J Cardiol,2010,55(3):362-9.
    [6]Hudson PA, Kim MS, Carroll JD. Coronary ischemia and percutaneous intervention[J]. Cardiovasc Pathol,2010,19(1):12-21.
    [7]Serruys PW, de Jaegere P, Kiemeneij F, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group[J]. N Engl J Med,1994, 331(8):489-95.
    [8]Mehta SR, Yusuf S, Peters RJ, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention:the PCI-CURE study[J]. Lancet,2001, 358(9281):527-33.
    [9]Beinart SC, Kolm P, Veledar E, et al. Long-term cost effectiveness of early and sustained dual oral antiplatelet therapy with clopidogrel given for up to one year after percutaneous coronary intervention results:from the Clopidogrel for the Reduction of Events During Observation (CREDO) trial[J]. J Am Coll Cardiol,2005,46(5):761-9.
    [10]van Werkum JW, Heestermans AA, de Korte FI, et al. Long-term clinical outcome after a first angiographically confirmed coronary stent thrombosis: an analysis of 431 cases[J]. Circulation,2009,119(6):828-34.
    [11]van Werkum JW, Heestermans AA, Zomer AC, et al. Predictors of coronary stent thrombosis:the Dutch Stent Thrombosis Registry[J]. J Am Coll Cardiol,2009,53(16):1399-409.
    [12]Gurbel PA, Tantry US. Aspirin and clopidogrel resistance:consideration and management[J]. J Interv Cardiol,2006,19(5):439-48.
    [13]Maree AO, Fitzgerald DJ. Variable platelet response to aspirin and clopidogrel in atherothrombotic disease[J]. Circulation,2007,115(16):2196-207.
    [14]Gurbel PA, Bliden KP, Guyer K, et al. Platelet reactivity in patients and recurrent events post-stenting:results of the PREPARE POST-STENTING Study[J]. J Am Coll Cardiol,2005,46(10):1820-6.
    [15]Michelson AD. Platelet function testing in cardiovascular diseases[J]. Circulation,2004,110(19):e489-93.
    [16]De Miguel A, Ibanez B, Badimon JJ. Clinical implications of clopidogrel resistance[J]. Thromb Haemost,2008,100(2):196-203.
    [17]Farid NA, Payne CD, Small DS, et al. Cytochrome P4503A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently[J]. Clin Pharmacol Ther.2007,81(5):735-41.
    [18]Siller-Matula JM, Huber K, Christ G, et al. Impact of clopidogrel loading dose on clinical outcome in patients undergoing percutaneous coronary intervention: a systematic review and meta-analysis[J]. Heart,2011,97(2):98-105.
    [19]Wang ZJ, Zhou YJ, Liu YY, et al. Impact of clopidogrel resistance on thrombotic events after percutaneous coronary intervention with drug-eluting stent[J]. Thromb Res,2009,124(1):46-51.
    [20]Serebruany VL, Steinhubl SR, Berger PB, et al. Variability in platelet responsiveness to clopidogrel among 544 individuals[J]. J Am Coll Cardiol,2005,45(2):246-51.
    [21]Nguyen TA, Diodati JG, Pharand C. Resistance to clopidogrel:a review of the evidence[J]. J Am Coll Cardiol,2005,45(8):1157-64.
    [22]Momary KM, Dorsch MP, Bates ER. Genetic causes of clopidogrel nonresponsiveness:which ones really count?[J]. Pharmacotherapy,2010,30(3): 265-74.
    [23]Feher G, Feher A, Pusch G, et al. The genetics of antiplatelet drug resistance[J]. Clin Genet,2009,75(1):1-18.
    [24]Miao J, Liu R, Li Z. Cytochrome P-450 polymorphisms and response to clopidogrel[J]. N Engl J Med,2009,360(21):2250-1.
    [25]Collet JP, Hulot JS, Pena A, et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction:a cohort study[J]. Lancet,2009,373(9660):309-17.
    [26]Beer JH, Pederiva S, Pontiggia L. Genetics of platelet receptor single-nucleotide polymorphisms:clinical implications in thrombosis[J]. Ann Med,2000,32 Suppl 1(10-4.
    [27]Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem,2010,79(351-79.
    [28]Bartel DP. MicroRNAs:target recognition and regulatory functions[J]. Cell,2009,136(2):215-33.
    [29]Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans[J]. Science,2001,294(5543):862-4.
    [30]Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Res,2009,19(1):92-105.
    [31]Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science,2008, 320(5880):1185-90.
    [32]Lanet E, Delannoy E, Sormani R, et al. Biochemical evidence for translational repression by Arabidopsis microRNAs[J]. Plant Cell,2009,21(6):1762-8.
    [33]Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing[J]. Cell,2008,132(1):9-14.
    [34]Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells[J]. Curr Opin Cell Biol.2009, 21(3):452-60.
    [35]Vasudevan S, Tong Y, Steitz JA. Cell-cycle control of microRNA-mediated translation regulation[J]. Cell Cycle,2008,7(11):1545-9.
    [36]Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation[J]. Science,2007,318(5858):1931-4.
    [37]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell,2004,116(2):281-97.
    [38]Ts'ao CH. Rough endoplasmic reticulum and ribosomes in blood platelets[J]. Scand J Haematol,1971,8(2):134-40.
    [39]Warshaw AL, Laster L, Shulman NR. Protein synthesis by human platelets[J]. J Biol Chem,1967,242(9):2094-7.
    [40]Roth GJ, Hickey MJ, Chung DW, et al. Circulating human blood platelets retain appreciable amounts of poly (A)+RNA[J]. Biochem Biophys Res Commun,1989,160(2):705-10.
    [41]Bugert P, Dugrillon A, Gunaydin A, et al. Messenger RNA profiling of human platelets by microarray hybridization[J]. Thromb Haemost,2003,90(4): 738-48.
    [42]Gnatenko DV, Dunn JJ, McCorkle SR, et al. Transcript profiling of human platelets using microarray and serial analysis of gene expression [J]. Blood,2003,101(6):2285-93.
    [43]Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis[J]. Proc Natl Acad Sci U S A,2006,103(13):5078-83.
    [44]Georgantas RW,3rd, Hildreth R, Morisot S, et al. CD34+hematopoietic stem-progenitor cell microRNA expression and function:a circuit diagram of differentiation control[J], Proc Natl Acad Sci U S A,2007,104(8):2750-5.
    [45]Lu J, Guo S, Ebert BL, et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyteprogenitors[J]. Dev Cell,2008,14(6):843-53.
    [46]Opalinska JB, Bersenev A, Zhang Z, et al. MicroRNA expression in maturing murine megakaryocytes[J]. Blood,2010,116(23):e128-38.
    [47]Bruchova H, Yoon D, Agarwal AM, et al. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis[J]. Exp Hematol,2007,35(11):1657-67.
    [48]Bruchova H, Merkerova M, Prchal JT. Aberrant expression of microRNA in polycythemia vera[J]. Haematologica,2008,93(7):1009-16.
    [49]Landry P, Plante I, Ouellet DL, et al. Existence of a microRNA pathway in anucleate platelets[J]. Nat Struct Mol Biol,2009,16(9):961-6.
    [50]Hayward CP, Pai M, Liu Y, et al. Diagnostic utility of light transmission platelet aggregometry:results from a prospective study of individuals referred for bleeding disorder assessments[J]. J Thromb Haemost,2009,7(4):676-84.
    [51]Bray PF. Platelet hyperreactivity:predictive and intrinsic properties[J]. Hematol Oncol Clin North Am,2007,21(4):633-45, v-vi.
    [52]Yee DL, Sun CW, Bergeron AL, et al. Aggregometry detects platelet hyperreactivity in healthy individuals[J]. Blood,2005,106(8):2723-9.
    [53]Nagalla S, Shaw C, Kong X, et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity[J]. Blood,2011,117(19):5189-97.
    [54]Kondkar AA, Bray MS, Leal SM, et al. VAMP8/endobrevin is overexpressed in hyperreactive human platelets:suggested role for platelet microRNA[J]. J Thromb Haemost,2010,8(2):369-78.
    [55]Flaumenhaft R. Molecular basis of platelet granule secretion[J]. Arterioscler Thromb Vasc Biol,2003,23(7):1152-60.
    [56]Polgar J, Chung SH, Reed GL. Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion[J]. Blood,2002,100(3):1081-3.
    [57]Osman A, Falker K. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes[J]. Platelets,2011,22(6):433-41.
    [58]Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, et al. Variability in individual responsiveness to clopidogrel:clinical implications, management, and future perspectives[J]. J Am Coll Cardiol,2007.49(14):1505-16.
    [59]Michelson AD. Platelet function testing in cardiovascular diseases[J]. Hematology,2005; 10 Suppl 1(132-7.
    [60]Sibbing D, Byrne RA, Bernlochner I, et al. High platelet reactivity and clinical outcome-fact and fiction[J]. Thromb Haemost.2011,106(2):191-202.
    [61]Aradi D, Komocsi A, Vorobcsuk A, et al. Prognostic significance of high on-clopidogrel platelet reactivity after percutaneous coronary intervention: systematic review and meta-analysis[J]. Am Heart J,2010,160(3):543-51.
    [62]Gurbel PA, Becker RC, Mann KG, et al. Platelet function monitoring in patients with coronary artery disease[J]. J Am Coll Cardiol,2007,50(19): 1822-34.
    [63]Aleil B, Ravanat C, Cazenave JP, et al. Flow cytometric analysis of intraplatelet VASP phosphorylation for the detection of clopidogrel resistance in patients with ischemic cardiovascular diseases[J]. J Thromb Haemost.2005, 3(1):85-92.
    [64]Wenger NK.2011 ACCF/AHA focused update of the guidelines for the management of patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction (updating the 2007 Guideline):highlights for the clinician[J]. Clin Cardiol,2012,35(1):3-8.
    [65]中国高血压防治指南修订委员会.中国高血压防治指南(2005年修订本)[J].J Clin Pathol,2005,13(5):40-42.
    [66]Yamashina A, Tomiyama H, Arai T, et al. Brachial-ankle pulse wave velocity as a marker of atherosclerotic vascular damage and cardiovascular risk[J]. Hypertens Res,2003,26(8):615-22.
    [67]Resnick HE, Lindsay RS, McDermott MM, et al. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality:the Strong Heart Study[J]. Circulation,2004,109(6):733-9.
    [68]Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease[J]. Am J Cardiol.1983,51(3):606.
    [69]Sianos G, Morel MA, Kappetein AP, et al. The SYNTAX Score:an angiographic tool grading the complexity of coronary artery disease[J]. Eurolntervention,2005,1(2):219-27.
    [70]van Werkum JW, Kleibeuker M, Mieremet N, et al. Evaluation of the platelet response to clopidogrel with light transmittance aggregometry:peak aggregation or late aggregation?[J]. J Thromb Haemost,2007,5(4):884-6.
    [71]Gachet C. ADP receptors of platelets and their inhibition[J]. Thromb Haemost,2001,86(1):222-32.
    [72]Bonello L, Camoin-Jau L, Arques S, et al. Adjusted clopidogrel loading doses according to vasodilator-stimulated phosphoprotein phosphorylation index decrease rate of major adverse cardiovascular events in patients with clopidogrel resistance:a multicenter randomized prospective study[J]. J Am Coll Cardiol,2008,51(14):1404-11.
    [73]Cuisset T, Frere C, Quilici J, et al. High post-treatment platelet reactivity identified low-responders to dual antiplatelet therapy at increased risk of recurrent cardiovascular events after stenting for acute coronary syndrome[J]. J Thromb Haemost,2006,4(3):542-9.
    [74]Cuisset T, Cayla G, Frere C, et al. Predictive value of post-treatment platelet reactivity for occurrence of post-discharge bleeding after non-ST elevation acute coronary syndrome. Shifting from antiplatelet resistance to bleeding risk assessment?[J]. EuroIntervention,2009,5(3):325-9.
    [75]Steimle AE. Antiplatelet therapy for ischemic heart disease[J]. N Engl J Med,2004,350(20):2101-2; author reply 2101-2.
    [76]Lange RA, Hillis LD. Antiplatelet therapy for ischemic heart disease[J]. N Engl J Med,2004,350(3):277-80.
    [77]Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation[J]. J Clin Invest,2004,113(3):340-5.
    [78]Gurbel PA, Bliden KP, Hayes KM, et al. The relation of dosing to clopidogrel responsiveness and the incidence of high post-treatment platelet aggregation in patients undergoing coronary stenting[J]. J Am Coll Cardiol.2005,45(9): 1392-6.
    [79]Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, et al. High clopidogrel loading dose during coronary stenting:effects on drug response and interindividual variability[J]. Eur Heart J,2004? 25(21):1903-10.
    [80]Gurbel PA, Tantry US. Drug insight:Clopidogrel nonresponsiveness[J]. Nat Clin Pract Cardiovasc Med,2006.3(7):387-95.
    [81]Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal [J]. Nature,1962,194(927-9.
    [82]Platelet aggregation:Part Ⅱ Some results from a new method of study[J]. J Clin Pathol,1962,15(5):452-5.
    [83]Harrison P, Frelinger AL,3rd, Furman MI, et al. Measuring antiplatelet drug effects in the laboratory[J]. Thromb Res,2007,120(3):323-36.
    [84]Cuisset T, Frere C, Quilici J, et al. High post-treatment platelet reactivity is associated with a high incidence of myonecrosis after stenting for non-ST elevation acute coronary syndromes[J]. Thromb Haemost,2007,97(2):282-7.
    [85]Gurbel PA, Antonino MJ, Bliden KP, et al. Platelet reactivity to adenosine diphosphate and long-term ischemic event occurrence following percutaneous coronary intervention:a potential antiplatelet therapeutic target[J]. Platelets,2008,19(8):595-604.
    [86]Frcrc C, Cuisset T, Quilici J, et al. ADP-induced platelet aggregation and platelet reactivity index VASP are good predictive markers for clinical outcomes in non-ST elevation acute coronary syndrome[J]. Thromb Haemost,2007,98(4):838-43.
    [87]Bonello L, Paganelli F, Arpin-Bornet M, et al. Vasodilator-stimulated phosphoprotein phosphorylation analysis prior to percutaneous coronary intervention for exclusion of postprocedural major adverse cardiovascular events[J]. J Thromb Haemost,2007,5(8):1630-6.
    [88]Siller-Matula JM, Panzer S, Jilma B. Reproducibility and standardized reporting of the vasodilator-stimulated phosphoprotein phosphorylation assay[J]. Platelets,2008,19(7):551-4.
    [89]Varenhorst C, James S, Erlinge D, et al. Assessment of P2Y(12) inhibition with the point-of-care device VerifyNow P2Y12 in patients treated with prasugrel or clopidogrel coadministered with aspirin[J]. Am Heart J,2009, 157(3):562 e1-9.
    [90]de Miguel Castro A, Diego Nieto A, Perez de Prado A. Letter by de Miguel Castro et al regarding article, "cardiovascular death and nonfatal myocardial infarction in acute coronary syndrome patients receiving coronary stenting are predicted by residual platelet reactivity to ADP detected by a point-of-care assay:a 12-month follow-up"[J]. Circulation,2009,120(13):e98; author reply e99.
    [91]Marcucci R, Gori AM, Paniccia R, et al. Cardiovascular death and nonfatal myocardial infarction in acute coronary syndrome patients receiving coronary stenting are predicted by residual platelet reactivity to ADP detected by a point-of-care assay:a 12-month follow-up[J]. Circulation.2009,119(2): 237-42.
    [92]Paniccia R, Antonucci E, Gori AM, et al. Different methodologies for evaluating the effect of clopidogrel on platelet function in high-risk coronary artery disease patients[J]. J Thromb Haemost,2007,5(9):1839-47.
    [93]Bidet A, Jais C, Puymirat E, et al. VerifyNow and VASP phosphorylation assays give similar results for patients receiving clopidogrel, but they do not always correlate with platelet aggregation[J]. Platelets,2010,21(2):94-100.
    [94]Ong AT, Serruys PW, Mohr FW, et al. The SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery (SYNTAX) study: design, rationale, and run-in phase[J]. Am Heart J,2006,151(6):1194-204.
    [95]Dawkins KD, Morel MA, Serruys PW. Counting the score:the SYNTAX Score and coronary risk[J]. Eurolntervention.2009,5(1):33-5.
    [96]Capodanno D, Miano M, Cincotta G, et al. EuroSCORE refines the predictive ability of SYNTAX score in patients undergoing left main percutaneous coronary intervention[J]. Am Heart J,2010,159(1):103-9.
    [97]Serruys PW, Onuma Y, Garg S, et al. Assessment of the SYNTAX score in the Syntax study [J]. Eurolntervention,2009,5(1):50-6.
    [98]Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans[J]. Cell,1993,75(5):855-62.
    [99]van Rooij E. The art of microRNA research[J]. Circ Res,2011.108(2):219-34.
    [100]Small EM, Frost RJ, Olson EN. MicroRNAs add a new dimension to cardiovascular disease[J]. Circulation,2010,121(8):1022-32.
    [101]Xie C, Zhang J, Chen YE. MicroRNA and vascular smooth muscle cells[J]. Vitam Horm,2011,87(321-39.
    [102]Sharma D, Li G, Xu G, et al. Atrial remodeling in atrial fibrillation and some related microRNAs[J]. Cardiology,2011,120(2):111-21.
    [103]Wilbert ML, Yeo GW. Genome-wide approaches in the study of microRNA biology[J]. Wiley Interdiscip Rev Syst Biol Med,2011,3(5):491-512.
    [104]Friedman JM, Jones PA. MicroRNAs:critical mediators of differentiation, development and disease[J]. Swiss Med Wkly,2009,139(33-34):466-72.
    [105]Pothof J, Verkaik NS, van IW, et al. MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response[J]. EMBO J,2009,28(14): 2090-9.
    1. Collins, FS, Morgan, M., Patrinos, A. The Human Genome Project:Lessons from Large-Scale Biology [J]. Science.2003,300(5617):286-290.
    2. Grimwood J, Gordon LA, Olsen A, et al. The DNA sequence and biology of human chromosome 19 [J]. Nature.2004,428(6982):529-35.
    3. Gupta P, Lee KH. Genemics and proteomics in process development:opportunities and challenges [J]. Trends Biotechnol,2007,25(7):324-330.
    4. Berman DM, Bosenberg MW, Orwant RL, et al. Investigative pathology:leading the post-genomic revolution [J]. Lab Invest,2012,92(1):4-8.
    5. Dorn GW. Genetics of common forms of heart failure [J]. Curr Opin Cardiol. 2011,26(3):204-208.
    6. Arnolds DE, Chu A, McNally EM, et al. The emerging genetic landscape underlying cardiac conduction system function [J]. Birth Defects Res A Clin Mol Tertol,2011,91(6):578-585.
    7. Patel RS, Ye S. Genetic determinants of coronary heart disease:new discoveries and insights from genome-wide association studies [J]. Heart,2011, 97(18):1463-1473.
    8. Fefer P, Matetzky S. The genetic basis of platelet responsiveness to clopidogrel. A critical review of the literature [J]. Thromb Haemost,2011,106(2):203-210.
    9. Van Wynsberghe PM, Chan SP, Slack FJ, et al. Analysis of microRNA expression and function [J]. Methods Cell Biol,2011,106:219-252.
    10. Xie C, Zhang J, Chen YE. MicroRNA and vascular smooth muscle cells [J]. Vitam Horm,2011,87:321-339.
    11. Sharma D, Li G, Xu G, et al. Atrial remodeling in atrial fibrillation and some related microRNAs [J]. Cardiology,2011,120(2):111-12.
    12. Wilbert ML, Yeo GW. Genome-wide approaches in the study of microRNA biology [J]. Wiley Interdiscip Rev Syst Biol Med,2011,3(5):491-512.
    13. Friedman JM, Jones PA. MicroRNAs:critical mediators of differentiation, development and disease [J]. Swiss Med Wkly,2009,139(33):466-472.
    14. Pager CT, Wehner KA, Fuchs G, et al. MicroRNA-mediated gene silencing [J]. Prog Mol Biol Transl Sci,2009,90:187-210..
    15. Asli NS, Pitulescu ME, Kessel M. MicroRNAs in organogenesis and disease [J]. Curr Mol Med,2008,8(8):698-710.
    16. Kukreja RC, Yin C, Salloum FN. MicroRNAs:new players in cardiac injury and protection [J]. Mol Pharmacol,2011,80(4):558-564.
    17. Latronico MV, Condorelli G. Therapeutic use of microRNAs in myocardial diseases [J]. Curr Heart Fail Rep,2011,8(3):193-197.
    18. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell,1993, 75(5):843-854.
    19. Alonso CR. A complex "mRNA degradation code"controls gene expression during animal development [J]. Trends Genet,2012,28(2):78-88.
    20. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs:novel biomarkers and extracellular communicators in cardiovascular disease [J]? Circ Res,2012, 110(3):483-495.
    21. Port JD, Sucharov C. Role of microRNAs in cardiovascular disease:therapeutic challenges and potentials [J]. J Cardiovasc Pharmacol,2010,56(5):444-453.
    22. Montgomery RL, van Rooij E. Therapeutic advances in MicroRNA targeting [J]. J Cardiovasc Pharmacol,2011,57(1):1-7.
    23. Haver VG, Slart RH, Zeebregts CJ, et al. Rupture of vulnerable atherosclerotic plaques:microRNAs conducting the orchestra [J]?.Trends Cardiovasc Med, 2010,20(2):65-71.
    24. Wang Z. The role of microRNA in cardiac excitability [J]. J Cardiovasc Pharmacol,2010,56(5):460-470.
    25. Kartha RV, Subramanian S. MicroRNAs in cardiovascular diseases:biology and potential clinical applications [J]. J Cardiovasc Transl Res.2010,3(3):256-270.
    26. Frost RJ, van Rooij E. miRNAs as therapeutic targets in ischemic heart disease [J]. J Cardiovasc Transl Res,2010.3(3):280-289.
    27. Lee SJ, Jiko C, Yamashita E, et al. Selective nuclear export mechanism of small RNAs [J]. Curr Opin Struct Biol.2011.21(1):101-108.
    28. Kim YK, Heo I, Kim VN. Modifications of small RNAs and their associated proteins [J]. Cell,2010,143(5):703-709.
    29. Sioud M. Promises and challenges in developing RNAi as a research tool and therapy [J]. Methods Mol Biol,2011,703:173-187.
    30. Fjose A, Zhao XF. Inhibition of the microRNA pathway in zebrafish by siRNA [J]. Methods Mol Biol,2010,629:239-255.
    31. Begemann G. MicroRNAs and RNA interference in zebrafish development [J]. Zebrafish,2008,5(2):111-119.
    32. Lennox KA, Behlke MA. Chemical modification and design of anti-miRNA oligonucleotides[J]. Gene Ther.2011,18(12):1111-1120.
    33. Huijser P, Schmid M. The control of developmental phase transitions in plants [J]. Development,2011,138(19):4117-4129.
    34. Le Trionnaire G, Grant-Downton RT, Kourmpetli S, et al. Small RNA activity and function in angiosperm gametophytes [J]. J Exp Bot,2011,62(5):1601-1610.
    35. Mayer G, Miiller J, Lunse CE. RNA diagnostics:real-time RT-PCR strategies and promising novel target RNAs [J]. Wiley Interdiscip Rev RNA,2011,2(1):32-41.
    36. Janga SC, Vallabhaneni S. MicroRNAs as post-transcriptional machines and their interplay with cellular networks [J]. Adv Exp Med Biol.2011,722:59-74.
    37. Pascale A, Govoni S. The complex world of post-transcriptional mechanisms:is their deregulation a common link for diseases? Focus on ELAV-like RNA-binding proteins [J]. Cell Mol Life Sci,2012,69(4):501-517.
    38. Sotillo E, Thomas-Tikhonenko A. Shielding the messenger (RNA): microRNA-based anticancer therapies [J]. Pharmacol Ther,2011,131 (1):18-32.
    39. D'Alessandra Y, Pompilio G, Capogrossi MC. MicroRNAs and myocardial infarction [J]. Curr Opin Cardiol,2012,27(3):228-235.
    40. Boettger T, Braun T. A new level of complexity:the role of microRNAs in cardiovascular development [J]. Circ Res.2012,110(7):1000-1013.
    41. Kaufman EJ, Miska EA. The microRNAs of Caenorhabditis elegans [J]. Semin CellDev Biol,2010,21(7):728-737.
    42. Abbott AL. Uncovering new functions for microRNAs in Caenorhabditis elegans [J]. Curr Biol.2011,21(17):R668-R671.
    43. Hayes GD, Riedel CG, Ruvkun G. The Caenorhabditis elegans SOMI-1 zinc finger protein and SWI/SNF promote regulation of development by the mir-84 microRNA [J]. Genes Dev,2011,25(19):2079-2092.
    44. Schanen BC, Li X. Transcriptional regulation of mammalian miRNA genes [J]. Genomics,2011,97(1):1-6.
    45. Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs:Association with disease and potential use as biomarkers [J]. Crit Rev Oncol Hematol,2011, 80(2):193-208.
    46. Jamaluddin MS, Weakley SM, Zhang L, et al. miRNAs:roles and clinical applications in vascular disease [J]. Expert Rev Mol Diagn,2011,11 (1):79-89.
    47. Davis-Dusenbery BN, Hata A. Mechanisms of control of microRNA biogenesis [J]. J Biochem,2010,148(4):381-392.
    48. Kumarswamy R, Lyon AR, Volkmann I, et al. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway [J]. Eur Heart J,2012,33(9):1067-1075.
    49. Yin VP, Lepilina A, Smith A, et al. Regulation of zebrafish heart regeneration by miR-133 [J]. Dev Biol,2012,365(2):319-327.
    50. van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure [J]. Proc Natl Acad Sci U S A,2006,103(48):18255-18260.
    51. Satoh M, Minami Y, Takahashi Y, et al. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy [J]. J Card Fail,2010,16(5):404-410.
    52. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs:biomarkers or mediators of cardiovascular diseases [J]? Arterioscler Thromb Vasc Biol,2011, 31(11):2383-2390.
    53. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis [J]. Nature,2005, 436(7048):214-220.
    54. Zhao Y, Ransom JF, Li A, Vedantham V, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2 [J]. Cell,2007, 129(2):303-317.
    55. Townley-Tilson WH, Callis TE, Wang D. MicroRNAs 1,133, and 206:critical factors of skeletal and cardiac muscle development, function, and disease [J]. Int J Biochem Cell Biol,2010,42(8):1252-1255.
    56. Malizia AP, Wang DZ. MicroRNAs in cardiomyocyte development [J]. Wiley Interdiscip Rev Syst Biol Med,2011,3(2):183-190.
    57. Han M, Toli J, Abdellatif M. MicroRNAs in the cardiovascular system [J]. Curr Opin Cardiol,2011,26(3):181-189.
    58. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis [J]. Circ Res,2007, 101(1):59-68.
    59. Zhang Q, Kandic I, Kutryk MJ. Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease [J]. Biochem Biophys Res Commun,2011,405(1):42-46.
    60. Wu WH, Hu CP, Chen XP, Zhang WF, Li XW, Xiong XM, Li YJ. MicroRNA-130a mediates proliferation of vascular smooth muscle cells in hypertension [J]. Am J Hyper tens,2011,24(10):1087-1093.
    61. Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis [J]. Cardiovasc Res,2008,79(4):581-588.
    62. Wu WH, Hu CP, Chen XP, et al. MicroRNA-130a mediates proliferation of vascular smooth muscle cells in hypertension [J]. Am J Hypertens,2011, 24(10):1087-1093.
    63. Nicoli S, Knyphausen CP, Zhu LJ,et al. miR-221 is required for endothelial tip cell behaviors during vascular development [J]. Dev Cell.2012,22(2):418-429.
    64. Kuehbacher A, Urbich C, Dimmeler S. Targeting microRNA expression to regulate angiogenesis [J]. Trends Pharmacol Sci,2008,29(1):12-15.
    65. Chen JJ, Zhou SH. Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway [J]. Cardiol J,2011, 18(6):675-681.
    66. Hu S, Huang M, Li Z. et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease [J]. Circulation,2010,122(11):S124-S131.
    67. Naga Prasad SV, Duan ZH, Gupta MK, et al. Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks [J]. JBiol Chem,2009,284:27487-27499.
    68. Johann Bauersachs, Thomas Thum. Biogenesis and Regulation of Cardiovascular MicroRNAs [J]. Circulation Research,2011,109:334-347.
    69. Jian-Fu Chen, Elizabeth P. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure [J]. Proc Natl Acad Sci USA,2008,105(6): 2111-2116.
    70. van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure [J]. Proc Natl Acad Sci US A,2006,103(48):18255-18260.
    71. Soliman A, Kee P. Experimental models investigating the inflammatory basis of atherosclerosis [J]. Curr Atheroscler Rep,2008,10(3):260-271.
    72. Rautou PE, Vion AC, Amabile N, et al. Microparticles, vascular function, and atherothrombosis [J]. Cire Res,2011,109(5):593-606.
    73. Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1 [J]. Proc Natl Acad Sci USA, 2008,105(5):1516-1521.
    74. Ryan M O'Connell, Konstantin D Taganov, Mark P Boldin, et al. MicroRNA-155 is induced during the macrophage inflammatory response [J]. Proc Natl Acad Sci USA,2007,104(5):1604-1609.
    75. Esau C, Davis S, Murray SF, Yu XX, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting [J]. Cell Metab,2006, 3(2):87-98
    76. Martin MM, Buckenberger JA, Jiang J, et al. The human angiotensin Ⅱ type 1 receptor+1166 A/C polymorphism attenuates microrna-155 binding [J]. J Biol Chem,2007,282(33):24262-24269.
    77. Fang Y, Shi C, Manduchi E, et al. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro [J]. Proc Natl Acad Sci US A,2010,107(30):13450-13455.
    78. Ito T, Yagi S. Yamakuchi M. MicroRNA-34a regulation of endothelial senescence [J]. Biochem Biophys Res Commun,2010,398(4):735-740.
    79. Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1 [J]. Am J Physiol Endocrinol Metab,2010,299(1):E110-E116.
    80. Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis [J]. Proc Natl Acad Sci U S A,2008,105(36):13421-13426.
    81. Luan S, Sun L, Huang F. MicroRNA-34a:a novel tumor suppressor in p53-mutant glioma cell line U251 [J]. Arch Med Res,2010,41(2):67-74.
    82. Staszel T, Zapala B, Polus A, et al. Role of microRNAs in endothelial cell pathophysiology [J]. Pol Arch Med Wewn,2011,121 (10):361-366.
    83. Hermeking H. The miR-34 family in cancer and apoptosis [J]. Cell Death Differ, 2010,17(2):193-199.
    84. Ghosh HS. The anti-aging, metabolism potential of SIRT1 [J]. Curr Opin Investig Drugs,2008,9(10):1095-1102.
    85. Ota H. Eto M, Ogawa S, et al. SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis [J]. J Atheroscler Thromb, 2010,17(5):431-435.
    86. Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulatorl [J]. Am J Physiol Endocrinol Metab,2010,299(1):E110-E116.
    87. Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulatorl [J]. Circulation, 2009,120(15):1524-1532.
    88. Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation [J]. Circ Res,2007,100(11):1579-1588.
    89. Liu X, Cheng Y, Zhang S, et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia [J]. Circ Res,2009,104(4):476-478.
    90. Lin Y, Liu X, Cheng Y, et al. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells [J]. J Biol Chem,2009,284(12):7903-7913.
    91. Cheng Y, Liu X, Yang J, et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation [J]. Circ Res,2009,105(2):158-166.
    92. Zhang C. MicroRNA-145 in vascular smooth muscle cell biology:a new therapeutic target for vascular disease[J]. Cell Cycle,2009,8(21):3469-3473.
    93. Thum T, Chau N, Bhat B, et al. Comparison of different miR-21 inhibitor chemistries in a cardiac disease model [J]. J Clin Invest.2011,121 (2):461-462.
    94. Cai B, Pan Z, Lu Y. The roles of microRNAs in heart diseases:a novel important regulator [J]. Curr Med Chem,2010,17(5):407-411.
    95. Silvestri P, Di Russo C, Rigattieri S, et al. MicroRNAs and ischemic heart disease: towards a better comprehension of pathogenesis, new diagnostic tools and new therapeutic targets[J]. Recent Pat Cardiovasc Drug Discov,2009,4(2):109-118.
    96. Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M. The miR-29 family:genomics, cell biology, and relevance to renal and cardiovascular injury [J]. Physiol Genomics, 2012,44(4):237-244.
    97. Ye Y, Perez-Polo JR, Qian J, Birnbaum Y. The role of microRNA in modulating myocardial ischemia-reperfusion injury [J]. Physiol Genomics,2011, 43(10):534-542.
    98. van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis [J]. Proc Natl Acad Sci USA,2008,105(35):13027-13032.
    99. Shan ZX, Lin QX, Fu YH, et al. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction[J]. Biochem Biophys Res Commun,2009, 381(4):597-601.
    100. Shan ZX, Lin QX, Deng CY, et al miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes [J]. FEBS Lett, 2010,584(16):35923-600.
    101. Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor:implications for a role of microRNAs in myocardial matrix remodeling [J]. Circ Res,2009,104(2):170-178.
    102. Belevych AE, Sansom SE, Terentyeva R, et al. MicroRNA-1 and-133 increase arrhythmogen esis in heart failure by dissociating phosphatase activity from RyR2 complex [J]. PLoS One,2011,6(12):e28324.
    103. Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis [J]. Proc Natl Acad Sci USA,2006,103:5078-5083.
    104. Georgantas RW Ⅲ, Hildreth R, Morisot S, et al. CD34+hematopoietic stem-progenitor cell microRNA expression and function:a circuit diagram of differentiation control [J]. Proc Natl Acad Sci USA,2007,104:2750-2755.
    105. Lu J, Guo S, Ebert BL, et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors [J]. Dev Cell,2008,14:843-853.
    106. Opalinska JB, Bersenev A, Zhang Z, et al. MicroRNA expression in maturing murine megakaryocytes [J]. Blood,2010,116:e128-e138.
    107. Bruchova H, Yoon D, Agarwal AM, et al. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis [J]. Exp Hematol,2007,35: 1657-1667.
    108. Bruchova H, Merkerova M, Prchal JT. Aberrant expression of microRNA in polycythemia vera [J]. Haematologica,2008,93:1009-1016.
    109. Landry P, Plante I, Ouellet DL, et al. Existence of a microRNA pathway in anucleate platelets [J]. Nat Struct Mol Biol,2009,16:961-966.
    110. Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2 [J]. Nat Med,2007,13(4):486-491.
    111. Wark AW, Lee HJ, Corn RM. Multiplexed detection methods for profiling microRNA expression in biological samples [J]. Angew Chem Int Ed Engl,2008, 47(4):644-652.
    112. de Planell-Saguer M, Rodicio MC. Analytical aspects of microRNA in diagnostics:a review [J]. Anal Chim Acta,2011,699(2):134-152.
    113. Li W, Ruan K. MicroRNA detection by microarray [J]. Anal Bioanal Chem, 2009,394(4):1117-1124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700