妊娠期间歇性低氧、束缚及其复合应激对子代大鼠HPA轴水平和类焦虑样行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命早期所处环境的不良因素对生后个体正常生理功能发育产生重要影响,已经引起医学界的广泛重视。流行病学调查、临床实践和实验研究发现,母体妊娠和胎儿期内外环境的不利因素对子代各种生理功能发育产生严重影响,甚至导致多种疾病或增高疾病易感性。HPA轴是由下丘脑-垂体-肾上腺所组成的神经内分泌网络,参与机体各种生理功能和对应激反应的调节,在神经内分泌、免疫、自主神经功能以及行为反应等方面具有重要作用。妊娠母体应激影响子代HPA轴功能,HPA轴功能的异常是生后个体生理功能异常和诱发疾病的基础。
     妊娠低氧或缺氧是临床常见的病理生理现象,诸如呼吸窒息、哮喘、梗塞、心血管系统疾病、贫血、高血压、脐带梗塞、胎盘体积过小、子宫血流量降低、吸烟嗜酒以及在高海拔低氧环境居住,都会导致母体氧供应不足,造成组织器官氧供应量降低。由于妊娠母体所处社会环境、家庭和经济状况种种危机,都可以形成心理应激或诱发焦虑、抑郁和精神分裂,进而影响妊娠母体生理功能,妊娠母体生理性或病理性低氧和心理应激对胎儿和子代的生理功能发育产生明显影响,因此研究妊娠缺氧或低氧并复合心理应激对子代不同发育期HPA轴功能和行为学研究具有重要的理论意义和临床应用价值。
     本研究建立了一种妊娠母体应激模型,即将妊娠母鼠自受孕之日起(EO),至开始分娩(E21)的整个妊娠期,全时程(21天)给予间歇性低氧(Hypo,10.8%O_2)、束缚(Res)以及低氧+束缚(Hypo+Res)复合应激,每天4小时,观察生后子代处于青春前期、后期和成年期HPA轴功能和类焦虑样行为反应。首先研究了其对新生大鼠出生体重和生后子代体重增重的影响。其次,研究了其对青春前期(生后35天,P35)和青春后期(P63)子代HPA轴基础水平和应激水平的影响,并比较了妊娠母体应激和非应激对不同发育阶段的子代HPA轴水平变化的差异。最后,研究了其对成年子代(P120)HPA轴基础水平和行为反应的影响。
     实验研究采用免疫组织化学法(IHC)检测下丘脑室旁核(PVN)促肾上腺皮质激素释放激素(CRH)、CRH受体Ⅰ型(CRHR1)以及CRH受体Ⅱ型(CRHR2)蛋白水平的变化;采用激光共聚焦免疫荧光法检测下丘脑PVN区CRH/CRHR1、尿皮素Ⅰ(UCNⅠ)/CRHR1、CRH/CRHR2以及尿皮素Ⅲ(UCNⅢ)/CRHR2的共表达,检测了脑干蓝斑(LC)区CRH/CRHR1的共表达;原位杂交(ISH)和RT-PCR检测腺垂体CRHR1 mRNA和CRHR2 mRNA的表达水平;十字迷宫(EPM)检测成年期子代类焦虑样行为的发生;高效液相色谱法(HPLC)检测脑干LC组织去甲肾上腺素(NE)和多巴胺(DA)的水平;放射免疫分析法(RIA)测定血浆促肾上腺皮质激素(ACTH)的水平;荧光法测定血浆皮质酮(CORT)的水平。
     实验结果:
     1.妊娠期间歇性低氧、束缚及其复合应激对新生大鼠出生体重和生后体重增重的影响
     妊娠期间歇性低氧、束缚及其复合应激对新生动物出生率及性别比无显著影响,但复合应激显著降低新生大鼠出生体重。妊娠母体复合应激导致生后早期(生后1周,P7)雄性子代体重增长显著降低,这种变化一直持续到出生后第3周(P21),此后渐至对照组水平,雌性4周后才至对照组水平。
     2.妊娠期间歇性低氧、束缚及其复合应激对青春前期(生后35天)和青春后期(生后63天)子代大鼠HPA轴基础水平的影响
     2.1青春前期
     妊娠期间歇性低氧、束缚及其复合应激对青春前期子代雄性大鼠下丘脑PVN区CRH蛋白基础水平无显著影响。但低氧组和束缚组CRHR1和CRHR2蛋白基础水平,垂体CRHR1 mRNA基础水平均显著低于对照组。低氧组和复合应激组垂体CRHR2 mRNA基础水平显著降低,束缚组无明显变化。复合应激组血浆CORT基础水平显著降低,而低氧组和束缚组无显著变化。
     2.2青春后期
     妊娠期间歇性低氧、束缚及其复合应激后,青春后期子代雄性大鼠下丘脑PVN区CRH和CRHR2蛋白基础水平无显著变化。复合应激组CRHR1蛋白基础水平显著降低。低氧组垂体CRHR1 mRNA的基础水平显著降低。低氧组和束缚组垂体CRHR2 mRNA基础水平均显著降低,而复合应激组显著增加,且显著高于低氧组和束缚组。复合应激组血浆ACTH基础水平显著高于对照组和低氧组,而低氧组和束缚组无明显变化。低氧、束缚及复合应激组血浆CORT的基础水平显著升高。
     3.妊娠期间歇性低氧、束缚及其复合应激对青春前期(生后35天)和青春后期(生后63天)子代大鼠HPA轴应激水平的影响
     3.1青春前期
     妊娠期间歇性低氧、束缚及其复合应激没有改变青春前期子代雄性大鼠下丘脑PVN区CRH蛋白应激水平。束缚组子代下丘脑PVN区CRHR1蛋白应激水平显著增加,复合应激组子代CRHR1蛋白应激水平显著降低,低氧组子代CRHR2蛋白应激水平显著增加,而束缚组和复合应激组子代无显著变化。
     妊娠母体应激后,子代垂体CRHR1 mRNA的应激水平显著降低。低氧组子代垂体CRHR2 mRNA应激水平显著增加。子代相应应激后,各处理组血浆CORT水平显著增加。
     3.2青春后期
     妊娠期间歇性低氧、束缚及其复合应激后,青春后期子代雄性大鼠下丘脑PVN区CRH蛋白应激水平显著降低。子代下丘脑PVN区CRHR1蛋白应激水平和对照组相比无显著差异。复合应激组子代下丘脑PVN区CRHR2蛋白应激水平显著增加,而低氧组和束缚组无变化。
     妊娠母体复合应激组子代垂体CRHR1 mRNA应激水平显著降低,而低氧组无显著变化。低氧组子代垂体CRHR2 mRNA应激水平显著高于对照组,束缚组和复合应激组子代与对照组相比无显著变化。子代相应应激后,血浆ACTH和CORT水平均显著升高。
     4.妊娠期应激和非应激对青春前期(生后35天)和青春后期(生后63天)子代大鼠HPA轴应激水平的比较
     4.1青春前期
     子代给予相应的应激后,妊娠期间歇性束缚组和复合应激组子代下丘脑PVN区CRH蛋白水平显著低于非应激对照组(None-PS)中相应的束缚组和复合应激组。束缚组子代CRHR1蛋白水平显著升高,而低氧组子代显著低于None-PS中相应的应激组。
     低氧组子代垂体CRHR1 mRNA应激水平显著低于None-PS组中的低氧组,而复合组子代显著高于None-PS组中的复合组。束缚组子代垂体CRHR2 mRNA应激水平显著高于None-PS组中的束缚组。
     4.2青春后期
     妊娠期复合应激后,复合应激组青春后期子代雄性大鼠下丘脑PVN区CRH蛋白应激水平显著低于None-PS组中相应复合应激组。子代下丘脑PVN区CRHR1蛋白应激水平显著低于None-PS组中相应应激组。复合应激组子代下丘脑PVN区CRHR2蛋白应激水平显著增加,而低氧组和束缚组无变化。
     妊娠母体低氧组子代垂体CRHR1 mRNA应激水平显著低于None-PS组中相应低氧组。复合应激组子代垂体CRHR2 mRNA应激水平显著高于None-PS组中复合应激组。相应应激后,复合应激组子代血浆ACTH水平显著高于None-PS处理中复合应激组。
     5.妊娠期间歇性低氧、束缚及其复合应激提高成年期子代大鼠HPA轴基础水平和诱导类焦虑样行为
     妊娠母体应激后,子代成年雄性大鼠HPA轴活性显著增加,下丘脑PVN区CRH和CRHR1蛋白表达水平显著升高,而CRHR2显著降低。激光共聚焦免疫荧光检测显示,复合应激组子代下丘脑PVN区存在CRH/CRHR1、UCNⅠ/CRHR1、CRH/CRHR2以及UCNⅢ/CRHR2高度共表达,脑干LC区中存在CRH/CRHR1高度共表达。子代腺垂体CRHR1 mRNA和CRHR2 mRNA、血浆ACTH和CORT水平以及肾上腺重量(%BW)均显著增加。子代脑干LC组织NE和DA水平显著增加,复合应激组显著高于低氧组和束缚组。应激组雄性子代出现类焦虑样行为,复合应激组更加明显。
     结论:
     1.妊娠期间歇性低氧+束缚复合应激导致新生大鼠出生体重和生后早期子代大鼠体重增长降低。
     2.妊娠期间歇性低氧、束缚及其复合应激降低青春前期但升高青春后期子代HPA轴基础水平。
     3.妊娠期间歇性低氧、束缚及其复合应激提高了成年子代雄性大鼠HPA轴活性,提高脑干LC组织NE和DA水平,诱导产生类焦虑样行为,复合应激作用更显著。此作用可能与PVN区CRH/CRHR1、UCNⅠ/CRHR1、CRH/CRHR2和UCNⅢ/CRHR2以及脑干LC区中CRH/CRHR1共存和激活,并分别驱动HPA轴和交感神经系统相关。提示CRH神经元可能通过其CRHR1和CRHR2两型受体,共同整合调节自身合成和分泌。
The early life adverse environments pose a profound effect on physiological function of fetus and offspring. There are epidemiological investigations and clinic researchs suggest maternal stress has an effect on the endocrine function and behavioral response of offspring, induces disorders or susceptibility to diseases. HPA axis is a nerve-endocrine network which consists of hypothalamic, pituitary and adrenal, involved in the regulation of a varity of physiological function and stress response and plays an important role in neuroendocrine, immune, autonomic nerve and behavioral response. Pregnancy stresses influences the physiological function of HPA axis in offspring, dysfunction of HPA axis is associated with the abnormal physiological function of offspring.
     Pregnant maternal hypoxia stress is a common clinical pathological and physiological phenomenon. For example, apnea, asthma, infarct, cardiovascular disease, anemia, hypertension, umbilical occlusion, little placental, uterus blood flow decrease, smoking, drinking, and live in the high altitude that oxygen supply is deficient for pregnant animal and oxygen concentration decrease in organ and tissue, which will have an impact on the fetus and offspring, and eventually induced pathological symptom and abnormal behavioral response in offspring.
     In this study, we established a model that the pregnant rats were given simulated intermittent normobaric hypoxia (5 km, 10.8% O_2) (Hypo), restraint (Res) and combination of both (Hypo+Res) throughout the pregnant period, 4 hours per day. We examined the change of the body weight gain in postnatal early rats, basal level of HPA axis and the level of response to stress in early (P35) and late puberty (P65) male rats; and anxiety-like behavior of adult (P120) male rats. The protein of CRH, CRHR1 and CRHR2 in the hypothalamic PVN were detected by immunohistochemistry (IHC). The colocalization of CRH family in PVN and locus ceruleus (LC) of brain stem was studied by confocal immunofluroscence. CRHR1 mRNA and CRHR2 mRNA in pituitary were measured by in situ hybridization (ISH) and reverse-transcript polymerase chain reaction (RT-PCR). The elevated-plus maze (EPM) was applied to test the anxiety-like behavior and the high performance liquid chromatography (HPLC) was applied to measure noradrenaline (NE) and dopamine (DA) in LC of brain stem, and levels of plasma ACTH and CORT were measured by radioimmunoassay (RIA) and fluorimetric method respectively.
     Results:
     1. Effects of pregnancy intermittent Hypo, Res and Hypo+Res on the birth weight and body weight gain of rats offspring.
     The birth weight was significantly decreased in rat offspring after pregnancy intermittent Hypo, Res and Hypo+Res. There was no change on the maternal body weight gain, gestation length, litter size or proportion of male and females. The body weight gain of male rat offspring was significantly decreased in postnatal 1-2 w and female was inl-3w after pregnancy intermittent Hypo, Res and Hypo+Res. After that it returned to the control. The body weight of the male was higher than that of the female.
     2. Effects of pregnancy intermittent Hypo, Res and Hypo+Res on basal levels of HPA axis in early and late puberty rats.
     2.1 Early puberty (P35)
     There was no change of the basal levels of CRH peptides in PVN of early puberty male rats after pregnancy intermittent Hypo, Res and Hypo+Res. Compared with control or Hypo+Res group, basal levels of CRHR1 and CRHR2 peptides were significantly decreased in Hypo and Res groups. The basal levels of CRHR1 mRNA in pituitary were significantly decreased among all stress groups, CRHR2 mRNA was significantly decreased in Hypo and Hypo+Res groups, but was no change in Res group. Compared with control, CORT basal level in Hypo+Res group was significantly decreased, but was no change in Hypo or Res group.
     2.2 Late puberty (P65)
     There was no change of the basal levels of CRH or CRHR1 peptides in PVN of late puberty male rats after pregnancy intermittent Hypo, Res and Hypo+Res. Compared with control or Hypo group, the basal levels of CRHR1 or CRHR2 peptides were markedly decreased in Hypo+Res. Compared with control, Res or Hypo+Res group, the basal levels of CRHR1 mRNA in pituitary were significantly decreased in Hypo, CRHR2 mRNA was significantly decreased in Hypo or Res, but a significant increase in Hypo+Res (vs. control). ACTH basal levels were significantly increased in Hypo+Res (vs. control or Hypo group), CORT basal levels were significantly increased among Hypo, Res or Hypo+Res group compared with controls.
     3. Effects of pregnancy intermittent Hypo, Res and Hypo+Res on the HPA axis activity after stress in early and late puberty rats.
     3.1 Early puberty There was no change of the levels of CRH peptides in PVN of early puberty male rats offspring after exposed to the corresponding stress (vs. control). The levels of CRH peptides in PVN of Res and Hypo+Res groups were both markedly decreased (vs. corresponding group in None-PS). CRHR1 peptides levels in Res group were significantly increased (vs. control or corresponding group in None-PS). CRHR1 peptides levels in Hypo+Res group were significant decreased (vs. control). CRHR2 peptides levels in Hypo group were significantly increased (vs. control), but there was change for Res or Hypo+Res group.
     CRHR1 mRNA in pituitary was significantly decreased in Hypo, Res and Hypo+Res group (vs. control). CRHR1 mRNA was significantly decreased in Hypo group, but increased in Hypo+Res group (vs. corresponding group in None-PS). CRHR2 mRNA were significantly increased in Hypo group (vs. control) and Res group (vs. corresponding group in None-PS). Plasma CORT levels were significantly increased after stress exposure (vs. controls).
     3.2 Late puberty
     Pregnancy intermittent Hypo, Res or Hypo+Res exposure significantly decreased the levels of CRH peptides in PVN of late puberty male rats. CRH peptides levels in Hypo+Res group were markedly decreased (vs.corresponding group in None-PS). Although there was no change in Hypo, Res or Hypo+Res group (vs.control), CRHR1 peptides levels were significantly increased (vs. corresponding group in None-PS). CRHR2 peptides levels in Hypo+Res group were significantly increased (vs. control), but there was no change in Hypo or Res group.
     CRHR1 mRNA in pituitary was significantly decreased in Hypo+Res group and a trend for Res group (vs. control). CRHR2 mRNA was significantly increased in Hypo group (vs. control or corresponding group in None-PS) and Hypo+Res group (vs. corresponding group in None-PS). Plasma ACTH levels were greatly increased in Hypo and Res group (vs. control) and Hypo+Res group (vs. control or corresponding group in None-PS). Plasma CORT levels were significantly increased (vs. control).
     4. Comparison of HPA axis reactivity of early and late puberty rat offspring in pregnancy stress and none-pregnacy stress (none PS)
     4.1 Early puberty (P35)
     CRH peptides in PVN of Res and Hypo+Res groups were significantly decreased (vs. the corresponding group None-PS). CRHR1 peptides in Res group were significantly increased, and decreased in Hypo group (vs. the corresponding group in None-PS). CRHR1 mRNA in pituitary were significantly decreased in Hypo, and increased in Hypo+Res group (vs. the corresponding group in None-PS). CRHR2 mRNA in Hypo group were significantly increased (vs. control), and increased in Res group (vs. the corresponding group in None-PS).
     4.2 Late puberty (P65)
     CRH peptides in PVN of late puberty male rats were significantly decreased after pregnancy intermittent Hypo+Res stress (vs. the corresponding group in None-PS). CRHR1 peptides were significantly decrease in all groups (vs. None-PS); and CRHR2 peptides in Hypo+Res group were enhanced (vs. the corresponding group in None-PS), but was no change in Hypo or Res group. CRHR1 mRNA in pituitary were significantly decreased in Hypo group (vs. None-PS), and CRHR2 mRNA in Hypo+Res group were significant increased (vs. the corresponding group in None-PS). Plasma ACTH levels in Hypo+Res group were markedly increased (vs. the corresponding group in None-PS).
     5. Effects of pregnancy intermittent Hypo, Res and Hypo+Res on the anxiety-like behavior in adult male rats (P120).
     Pregnancy intermittent Hypo, Res or Hypo+Res exposure affects the HPA axis and behavior in adult male rats. CRH and CRHR1 protein in PVN of the hypothalamus significantly increased, but CRHR2 significantly decreased. By confocal immunofluroscence, CRH and CRHR1, UCN I and CRHR2, CRH and CRHR2, UCN III and CRHR2 in PVN of the hypothalamus, and CRH and CRHR1 in LC were colocalized in Hypo+Res group. Pituitary CRHR1 and CRHR2 mRNA were markedly enhanced in PS (pregnancy stress) offspring. Plasma ACTH, CORT levels and adrenal weight were significantly increased (vs.control). Also, the norepinephrine and dopamine levels significantly increased in the locus coeruleus, the highest level was in Hypo+Res offspring. Pregnancy intermittent Hypo, Res or Hypo+Res significantly increased anxiety-like behavior of adult male rats, the percentage of open arm entries in the elevated-plus maze test markedly decreased in rats offspring from all stressed groups.
     Conclusion:
     1. Pregnancy intermittent Hypo, Res or combination of both decreases the birth weight and body weight gain in postnatal early life.
     2. Pregnancy intermittent Hypo, Res or combination of both decrease HPA axis basal activity in early puberty, but increase in late puberty rat offspring.
     3. Pregnancy intermittent Hypo, Res or combination of both alter the CRFR1 in the PVN as well as the drive on the cascade of responses of the HPA axis, resulting in an increase of anxiety-like behavior in adult male rat offspring. The colocalization of CRH and CRHR1, UCN I and CRHR2, CRH and CRHR2, UCN III and CRHR2 in PVN of the hypothalamus, and CRH and CRHR1 in LC in Hypo+Res group are involved in the proceeding, and it maybe drive from HPA axis and NE-sympathetic nerve system. The results indicate that CRH regulates its synthesis and release through integration of CRHR1 and CRHR2 in offspring after pregnancy intermittent Hypo, Res or combination of both.
引文
Arai,M.,Assil,I.Q.and Abou-Samra,A.B.(2001).Characterization of three corticotropinreleasing factor receptors in catfish:a novel third receptor is predominantly expressed in pituitary and urophysis.Endocrinology 142,446-454.
    Askew,E.W.(2002).Work at high altitude and oxidative stress:antioxidant nutrients.Toxicology 180,107-119.
    Bale,T.L.,Picetti,R.,Contarino,A.,Koob,G.F.,Vale,W.W.and Lee,K.F.(2002).Mice deficient for both corticotropin-releasing factor receptor 1(CRHR1)and CRHR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior.J.Neurosci.22,193-199.
    Barker,D.J.(2003).The developmental origins of adult disease,Eur.J.Epidemiol.18,733-736.
    Bogoch,Y.,Biala,Y.N.,Linial,M.and Weinstock,M.(2007).Anxiety induced by prenatal stress is associated with suppression of hippocampal genes involved in synaptic function.J.Neurochem.101,1018-1030.
    Boksa,P.(2004).Animal models of obstetric complications in relation to schizophrenia.Brain Res.Rev.45,1-17.
    Bosch,O.J.,Musch,W.,Bredewold,R.,Slattery,D.A.and Neumann,I.D.(2007).Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring:implications for postpartum mood disorder.Psychoneuroendocrino.32,267-278.
    Chen,X.Q.,Dong,J.,Niu,C.Y.,Fan,J.M.and Du,J.Z.(2007).Effects of hypoxia on glucose,insulin,glucagon and modulation by CRHR1 in the rat.Endocrinology.148,3271-3278.
    Chung,S.,Son,G.H.,Park,S.H.,Park,E.,Lee,K.H.,Geum,D.and Kim,K.(2005).Differential adaptive responses to chronic stress of maternally stressed male mice offspring.Endocrinology 146,3202-3210.
    Contarino,A.,Dellu,F.,Koob,G.F.,Smith,G.W.,Lee,K.F.et al.(2000).Dissociation of locomotor activation and suppression of food intake induced by CRH in CRHR1-deficient mice.Endocrinology 141,2698-2702.
    De Grauw,T.J.,Myers,R.E.and Scott,W.J.(1986).Foetal growth retardation in rats from different levels of hypoxia.Biol.Neonate 49,85-89.
    Du,J.Z.(1998).The brain CRH during hypoxia.In Committee of the 3rd World Congress on Mountain Medicine and Altitude physiology:Progress in mountain medicine and high altitude physiology(ed.H.Ohno,T.Kobayashi,S.Nasuyama and M.Nakashima),pp.416-417.Matsumoto:Press.
    Gotzand,A.A.and Stefanski,V.(2007).Psychosocial maternal stress during pregnancy affects serum corticosterone,blood immune parameters and anxiety behaviour in adult male rat offspring.Physiol.Behav.90,108-115.
    Hainsworth,R.,Drinkhill,M.J.and Rivera-Chira,M.(2007).The autonomic nervous system at high altitude.Clin.Auton.Res.17,13-19.
    Igosheva,N.,Klimova,O.,Anishchenko,T.and GIover,V.(2004).Prenatal stress alters cardiovascular responses in adult rats.J.Physiol.557(1),273-285.
    Igosheva,N.,Taylor,P.D.,Poston,L.and Glover,V.(2007).Prenatal stress in the rat results in increased blood pressure responsiveness to stress and enhanced arterial reactivity to neuropeptide Y in adulthood.J. Physiol. 582(1), 665-674.
    Jin, D., He, P., You, X., Zhu, X., Dai, L., He, Q., Liu, C., Hui, N., Sha, J. and Ni, X. (2007).Expression of corticotropin-releasing hormone receptor type 1 and type 2 in human pregnant myometrium. Reprod Sci. 14(6), 568-577.
    Joseph, V., Mamet, J., Lee, F., Dalmaz, Y. and Van Reeth, O. (2002). Prenatal hypoxia impairs circadian synchronisation and response of the biological clock to light in adult rats. J. Physiol.543, 387-395.
    Lewis, K., Li, C., Perrin, M. H., Blount, A. and Kunitake, K. et al. (2001). Identification of urocortin III, an additional member of the Corticotrophin-releasing factor (CRH) family with high affinity for the CRH2 receptor. Proc. Natl. Acad.Sci. USA 98, 7570-7575.
    Louey, S., and Thornburg, K. L. (2005). The prenatal environment and later cardiovascular disease. Early Hum. Dev. 81, 745-751.
    Lovenberg, T. W., Chalmers, D. T., Liu, C. and De Souza, E. B. (1995). CRH2 alpha and CRH2 beta receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. Endocrinology 136, 4139-4142.
    Matthews, S. G. (2002). Early programming of the hypothalamo-pituitary-adrenal axis. Trends Endocrin. Met. 13(9), 373-380.
    Murphy, V. E., Smith, R., Giles, W. B. and Clifton, V. L. (2006). Endocrine regulation of human fetal growth: The role of the mother, placenta, and fetus. Endocr. Rev. 27, 141-169.
    Nyakas, C., Buwalda, B. and Luiten, P. G. (1996). Hypoxia and brain development. Prog.Neurobiol. 49, 1-51.
    Okosi, A., Brar, B. K., Chan, M., Souza, L. D., Smith, E., Stephanou, A. S., Latchman, D. S.,Chowdry, H. S.and Knight, R. A. (1998). Expression and protective effects of urocortin in cardiac Myocytes. Neuropeptides 32, 167-171.
    Perrin, M., Donaldson, C., Chen, R., Blount, A. and Berggren, T. et al. 1995 Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc. Natl. Acad. Sci. USA 92:2969-73.
    Phillips, D. I. W. (2007). Programming of the stress response: a fundamental mechanism underlying the long-term effects of the fetal environment? J. Intern. Med. 261, 453-460.
    Raff, H., Cullinan, W. E. and Jacobson, L. (2007). Augmented hypothalamic corticotrophin -releasing hormone expression and corticosterone responses to stress in adult rats exposed to perinatal hypoxia. J. Neuroendocr. In press.
    Reyes, T. M., Lewis, K., Perrin, M. H., Kunitake, K. S., Vaughan, J., Arias, C. A., Hogenesch,J. B., Gulyas, J., Rivier, J. and Vale, W. W. (2001). Urocortin II: a member of the corticotrophin-releasing factor (CRH) neuropeptide family that is selectively bound by type 2 CRH receptors. Proc. Natl. Acad. Sci. USA 98, 2843-2848.
    Richardson, H. N., Zorrilla, E. P., Mandyam, C. D. and Rivier, C. L. (2006). Exposure to repetitive versus varied stress during prenatal development generates two distinct anxiogenic and neuroendocrine profiles in adulthood. Endocrinology 147, 2506-2517.
    Samuelsson, A. M., Ohrn, I., Dahlgren, J., Eriksson, E., Angelin, B., Folkow, B. and Holmang, A. (2004). Prenatal exposure to interleukin-6 results in hypertension and increased hypothalamic-pituitary-adrenal axis activity in adult rats. Endocrinology 145, 4897-4911.
    Smith, G. W., Aubry, J. M., Dellu, F., Contarino, A., Bilezikjian, L. M., Gold, L. H., Chen, R.,Marchuk, Y., Hauser, C., Bentley, C. A. et al. (1998). Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20,1093-1102.
    Spina, M., Merlo-Pich, E., Chan, R. K., Basso, A. M., Rivier, J. (1996). Appetite suppressing effects of urocortin, a CRH-related neuropeptide. Science 273,1561-1564.
    Timpl, P., Spanagel, R., Sillaber, I., Kresse, A., Reul, J. M., Stalla, G. K., Blanquet, V.,Steckier, T., Holsboer, F. and Wurst, W. (1998). Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat. Genet. 19,162-166.
    Vale, W., Spiess, J., Rivier, C. and Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213,1394-1397.
    Vallee, M., Mayo, W., Dellu, F., Le Moal, M., Simon, H. and Maccari, S. (1997). Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J. Neurosci. 17, 2626-2636.
    
    Vaughan, J., Donaldson, C, Bittencourt, J., Perrin, M. H., Lewis, K., Sutton, S., Chan, R.,Turnbull, A. V., Lovejoy, D., Rivier, C. et al. (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378,287-292.
    
    Wang, T. Y., Chen, X. Q., Du, J. Z., Xu, N. Y., Wei, C. B. and Vale, W. (2004). Corticotropin-releasing factor receptor type 1 and 2 mRNA expression in the rat anterior pituitary is modulated by intermittent hypoxia, cold and restraint. Neuroscience 128,111-119.
    
    WHO. (1996). World Health Statistics Annual 1995. World Health Organization, Geneva.
    
    Xu, J. F., Chen, X. Q., Du, J. Z. and Wang, T. Y. (2005). CRH receptor type 1 mediates continual hypoxia-induced CRH peptide and CRH mRNA expression increase in hypothalamic PVN of rats. Peptides 26,639-646.
    Barbazanges,A.,Piazza,P.V.,Moal,M.L.and Maccari,S.(1996).Maternal glucocorticoid secretion mediates long-term effects of prenatal stress.J.Neurosci.16,3943-3949.
    Barker,D.J.(2004).The developmental origins of adult disease.J.Am.Coll.Nutr.23,588-595.
    Boksa,P.(2004).Animal models of obstetric complications in relation to schizophrenia.Brain Res.Rev.45,1-17.
    Burguera,B.,Mutuals,C.,Penalva,A.,Dieguez,C.and Casanueva,F.F.(1990).Dual and selective actions of glucocorticoids upon basal and stimulated growth hormone release in man.Neuroendocrino.51,51-58.
    Butler,G.,Fernette,B.,Blanchard,S.,Angel,E.,Tankosic,P.,Maccari,S.and Butler,A.(2005).Antenatal glucocorticoids blunt the functioning of the hypothalamic-pituitary-adrenal axis of neonates and disturb some behaviors in juveniles.Neuroscience 133,221-230.
    Chen,X.Q.,Dong,J.,Niu,C.Y.,Fan,J.M.and Du,J.Z.(2007).Effects of hypoxia on glucose,insulin,glucagon and modulation by CRHR1 in the rat.Endocrinology 148,3271-3278.
    Chung, S., Son, G. H., Park, S. H., Park, E., Lee, K. H., Geum, D. and Kim, K. (2005).Differential adaptive responses to chronic stress of maternally stressed male mice offspring.Endocrinology 146, 3202-3210.
    Darnaudery, M., Perez-Martin, M., Belizaire, G., Maccari, S. and Garcia-Segura, L. M.(2006). Insulin-like growth factor 1 reduces age-related disorders induced by prenatal stress in female rats. Neurobio. Aging 27,119-127.
    De Grauw, T. J., Myers, R. E. and Scott, W. J. (1986). Foetal growth retardation in rats from different levels of hypoxia. Biol. Neonate 49, 85-89.
    Fowden, A. L., Giussani, D. A. and Forhead, A. J. (2006). Intrauterine programming of physiological systems: causes and consequences. Physiology 21(1), 29-37.
    Gao, L., He, P., Sha, J., Liu, C., Dai, L., Hui, N. and Ni, X. (2007). Corticotropin-releasing hormone receptor type 1 and type 2 mediate differential effects on 15-hydroxy prostaglandin dehydrogenase expression in cultured human chorion trophoblasts. Endocrinology 148(8),3645-3654.
    Gluckman, P. D., Hanson, M. A. (2004). Living with the past: evolution, development and patterns of disease. Science 305,1733-1736.
    Hobel, C. and Culhane, J. (2003). Role of psychosocial and nutritional stress on poor pregnancy outcome.J. Nutr. 133,1709-1717.
    Jin, D., He, P., You, X., Zhu, X., Dai, L., He, Q., Liu, C., Hui, N., Sha, J. and Ni, X. (2007).Expression of corticotropin-releasing hormone receptor type 1 and type 2 in human pregnant myometrium. Reprod Sci. 14(6), 568-577.
    Kapoor, A. and Matthews, S. G. (2005). Short periods of prenatal stress affect growth, behaviour and hypothalamo-pituitary-adrenal axis activity in male guinea pig offspring. J. Physiol. 566,967-977.
    Lesage, J., Blondeau, B., Grino, M., Breant, B. and Dupouy, J. P. (2001). Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology 142, 1692- 1702.
    Mairesse, J., Lesage, J., Breton, C., Breant, B., Hahn, T., Darnaudery, M., Dickson, S. L.,Seckl, J., Blondeau, B., Vieau, D. et al. (2007). Maternal stress alters endocrine function of the feto-placental unit in rats Am. J. Physiol. Endocrinol. Metab. 292, 1526-1533.
    Mitsugi, N., Arita, J. and Kimura, F. (1990). Effects of intracerebroventricular administration of growth hormone-releasing factor and corticotropin-releasing factor on somatostatin secretion into rat hypophysial portal blood. Neuroendocrin. 51, 93-96.
    Murphy, V. E., Smith, R., Giles, W. B. and Clifton, V. L. (2006). Endocrine regulation of human fetal growth: The role of the mother, placenta, and fetus. Endocr. Rev. 27,141-169.
    Nyakas, C., Buwalda, B. and Luiten, P. G. (1996). Hypoxia and brain development. Prog.Neurobiol. 49,1-51.
    Petraglia, F., Volpe, A., Genazzani, R., Rivier, J., Sawchenko, P. E. and Vale, W. (1990).Neuroendocrinology of the human placenta. Front Neuroendocrinol. 11, 6-37.
    Raff, H., Jacobson, L. and Cullinan, W. E. (2007). Augmented hypothalamic corticotrophin- releasing hormone mRNA and corticosterone responses to stress in adult rats exposed to perinatal hypoxia. J Neuroendocrionl. 19:907-912.
    Reznikov, A. G., Nosenko, N. D. and Tarasenko, L. V. (1999). Prenatal stress and glucocorticoid: effects on the developing gender-related brain. J. Steroid. Biochem. Mol. Biol.69,109-115.
    Roland, E. H., Poskitt, K., Rodriguez, E., Lupton, B. A. and Hill, A. (1998). Perinatal hypoxic-ischemic thalamic injury: clinical features and neuroimaging. Ann. Neurol. 44,161-166.
    Sandman, C. A., Wadhwa, P. D., Chicz-DeMet, A., Dunkel-Schetter, C. and Porto, M.(1997).Maternal stress, HPA activity, and fetal-infant outcome. Ann. N. Y. Acad. Sci. 814,266-275.
    Seckl, J. R. (1997). Glucocorticoids, feto-placental 11 beta-hydroxysteroid dehydrogenase type 2,and the early life origins of adult disease. Steroids 62, 89-94.
    Szuran, T. F., Pliska, V., Pokorny, J. and Welzl, H. (2000). Prenatal stress in rats: effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiol.Behav. 71, 353-62.
    Vallee, M., Mayo, W., Dellu, F., Le Moal, M., Simon, H. and Maccari, S. (1997). Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring:correlation with stress-induced corticosterone secretion. J. Neurosci. 17,2626-2636.
    Wang, T. Y., Chen, X. Q., Du, J. Z., Xu, N. Y., Wei, C. B. and Vale, W. (2004). Corticotropin-releasing factor receptor type 1 and 2 mRNA expression in the rat anterior pituitary is modulated by intermittent hypoxia, cold and restraint. Neuroscience 128,111-119.
    Van den Hove, D. L. A., Steinbusch, H. W. M., Scheepens, A., Van de Berg, W. D. J.,Kooiman, L. A. M., Boosten, B. J. G, Prickaerts, J. and Blanco, C. E. (2006). Prenatal stress and neonatal rat brain development. Neuroscience 137,145-155.
    Williams, M. T., Davis, H. N., McCrea, A. E. and Hennessy, M. B. (1998). The distribution of radiolabeled corticotropin-releasing factor in pregnant rats: an investigation of placental transfer to the fetuses. Int. J. Dev. Neurosci. 16, 229-234.
    Zagron, G. and Weinstock, M. (2006). Maternal adrenal hormone secretion mediates behavioural alterations induced by prenatal stress in male and female rats. Behav. Brain Res.175,323-328.
    Zornberg, G. L., Buka, S. L. and Tsuang, M.T. (2000). Hypoxicischemia-related fetal/neonatal complications and risk of schizophrenia and other nonaffective psychoses: a 19-year longitudinal study.Am. J. Psychiat. 157,196-202.
    Austin,M.P.,Leader,L.R.and Reilly,N.(2005).Prenatal stress,the hypothalamic-pituitary-adrenal axis,and fetal and infant neurobehaviour.Early Hum.Dev.81,917-926.
    Burlet,G.,Fernette,B.,Blanchard,S.,Angel,E.,Tankosic,P.,Maccari,S.and Burlet,A.(2005).Antenatal glucocorticoids blunt the functioning of the hypothalamic-pituitary-adrenal axis of neonates and disturb some behaviors in juveniles.Neuroscience 133,221-230.
    Chung,S.,Son,G.H.,Park,S.H.,Park,E.,Lee,K.H.,Geum,D.and Kim,K.(2005).Differential adaptive responses to chronic stress of maternally stressed male mice offspring.Endocrinology 146,3202-3210.
    Cratty,M.S.,Ward,H.E.,Johnson,E.A.,Azzaro,A.J.and Birkle,D.L.(1995).Prenatal stress increases corticotropin-releasing factor(CRF)content and release in rat amygdala minces.Brain Res.675,297-302.
    Dent,G.W.,Okimoto,D.K,Smith,M.A.and Levine,S.(2000).Stress-induced alterations in corticotropin-releasing hormone and vasopressin gene expression in the paraventricular nucleus during ontogeny.Neuroendocrinology 71,333-342.
    Fujioka,T.,Sakata,Y.,Yamaguchi,K.,Shibasaki,T.,Kato,H.and Nakamura,S.(1999).The effects of prenatal stress on the development of hypothalamic paraventricular neurons in fetal rats.Neuroscience 92,1079-1088.
    Hayashi,A.,Nagaoka,M.,Yamada,K.,Ichitani,Y.,Miake,Y.and Okado,N.(1998).Maternal stress induces synaptic loss and developmental disabilities of offspring maternal stress.Int.J.Dev.Neurosci.16,209-216.
    Hogan,B.,Costantini,F.and Lacy,E.(1986).Manipulating the mouse embryo.New York:Cold Spring Harbor Laboratory Press
    Kapoor,A.,Dunn,E.,Kostaki,A.,Andrews,M.H.Stephen,G.and Matthews,S.G.(2006).Fetal programming of hypothalamo-pituitary-adrenal function:prenatal stress and glucocorticoids.J.Physiol.572(1),31-44.
    Ladefoged,O.,Hougaard,K.S.,Hass,U.,Sorensen,I.K.,Lund,S.P.,Svendsen,G.W.and Lam,H.R.(2004).Effects of combined prenatal stress and toluene exposure on apoptotic neurodegeneration in cerebellum and hippocampus of rats.Basic.Clin.Pharmacol.Toxicol.94,169-176.
    Levine,S.,(2001).Primary social relationships influence the development of the hypothalamic-pituitary-adrenal axis in the rat.Physiol.Behav.73,255-260.
    Matthews,S.G.(2002).Early programming of the hypothalamo-pituitary-adrenal axis.Trends Endocrinol.Met.13(9),373-380.
    Nyakas, C., Buwalda, B. and Luiten, P. G. (1996). Hypoxia and brain development. Prog.Neurobiol. 49,1-51.
    Raff, H., Jacobson, L. and Cullinan, W. E. (2007). Augmented hypothalamic corticotrophin-releasing hormone mRNA and corticosterone responses to stress in adult rats exposed to perinatal hypoxia. J Neuroendocrionl. 19:907-912.
    Schmidt, M., Enthoven, L., van der Mark, M.., Levine, S., de Kloet, E. R. and Oitzl, M. S.(2003). The postnatal development of the hypothalamic-pituitary-adrenal axis in the mouse. Int.J. Devl Neurosci. 21,125-132.
    Szuran, T. F., Plislka, V., Pokorny, J. and Welzl, H. (2000). Prenatal stress in rats: effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiol.Behav. 71, 353-362.
    Vallee, M., Mayo, W., Dellu, F., Le Moal, M., Simon, H. and Maccari, S. (1997). Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring:correlation with stress-induced corticosterone secretion. J. Neurosci. 17, 2626-2636.
    Van den Hove, D. L. A., Steinbusch, H. W. M., Scheepens, A., Van de Berg, W. D. J.,Kooiman, L. A. M., Boosten, B. J. G, Prickaerts, J. and Blanco, C. E. (2006). Prenatal stress and neonatal rat brain development. Neuroscience 137,145-155.
    Weinstock, M. (2005). The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav. Immun. 19, 296-308.
    Xu, J. F., Chen, X. Q., Du, J. Z. and Wang, T. Y. (2005). CRH receptor type 1 mediates conti nual hypoxia -induced CRH peptide and CRH mRNA expression increase in hypothalamic PVN of rats. Peptides 26, 639-646.
    Bosch,O.J.,Musch,W.,Bredewold,R.,Slattery,D.A.and Neumann,I.D.(2007).Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring:implications for postpartum mood disorder.Psychoneuroendocrino.32,267-278.
    Burlet,G.,Fernette,B.,Blanchard,S.,Angel,E.,Tankosic,P.,Maccari,S.and Burlet,A.(2005).Antenatal glucocorticoids blunt the functioning of the hypothalamic-pituitary-adrenal axis of neonates and disturb some behaviors in juveniles.Neuroscience 133,221-230.
    Chen,X.Q.,Du,J.Z.and Wang,Y.S.(2004).Regulation of hypoxia-induced release of corticotropin-releasing factor in the rat hypothalamus by norepinephrine.Regul.Pept.119,221-228.
    Chung,S.,Son,G.H.,Park,S.H.,Park,E.,Lee,K.H.,Geum,D.and Kim,K.(2005).Differential adaptive responses to chronic stress of maternally stressed male mice offspring.Endocrinology 146,3202-3210.
    Darnaudery,M.,Perez-Martin,M.,Belizaire,G.,Maccari,S.and Garcia-Segura,L.M.(2006).Insulin-like growth factor 1 reduces age-related disorders induced by prenatal stress in female rats.Neurobiol.Aging 27,119-127.
    Du,J.Z.(1998).The brain CRH during hypoxia.In:Ohno H,Kobayashi T,Nasuyama S,Naka shima M,editors.Progress in mountain medicine and high altitude physiology.Matsumoto:Press Committee of the 3rd World Congress on Mountain Medicine and Altitude physiology.p.416-417.
    Fride, E., Dan, Y., Feldon, J., Halevy, G. and Weinstock, M. (1986). Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats. Physiol. Behav. 37, 681-687.
    Fujioka, T., Sakata, Y., Yamaguchi, K., Shibasaki, T., Kato, H. and Nakamura, S. (1999).The effects of prenatal stress on the development of hypothalamic paraventricular neurons in fetal rats. Neuroscience 92,1079-1088.
    Gomez, F., Houshyar, H. and Dallman, M. F. (2002). Marked regulatory shifts in gonadal,adrenal, and metabolic system responses to repeated restraint stress occur within a 3-week period in pubertal male rats. Endocrinology 143, 2852-2862.
    Gomez, F., Manalo, S. and Dallman, M. F. (2004). Androgen-sensitive changes in regulation of restraint-induced adrenocorticotropin secretion between early and late puberty in male rats.Endocrinology 145, 59-70.
    Hayashi A, Nagaoka M, Yamada K, Ichitani Y, Miake Y, Okado N 1998 Maternal stress induces synaptic loss and developmental disabilities of offspring maternal stress. Int J Dev Neurosci 16:209-16
    Kippin, T. E., Cain, S. W., Masum, Z. and Ralph, M. R. (2004). Neural stem cells show bidirectional experience-dependent plasticity in the perinatal mammalian brain. J. Neurosci.24,2832-2836.
    Koehl, M., Darnaudery, M., Dulluc, J., Van Reeth, O., Le Moal, M. and Maccari, S. (1999).Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosterone receptors in adult rats of both gender. J. Neurobiol. 40,302-315.
    Koenig, J. I., Elmer, G. I., Shepard, P. D., Lee, P. R., Mayo, C., Joy, B., Hercher, E., Brady,D. L. (2005). Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav. Brain Res. 156, 251-261.
    Ladefoged, O., Hougaard, K. S., Hass, U., Sorensen, I. K., Lund, S. P., Svendsen, G. W. and Lam, H. R. (2004). Effects of combined prenatal stress and toluene exposure on apoptotic neurodegeneration in cerebellum and hippocampus of rats. Basic. Clin. Pharmacol.Toxicol. 94,169-176.
    Nishio, H., Tokumo, K. and Hirai, T. (2006). Effects of perinatal stress on the anxiety-related behavior of the adolescence mouse. Int. J. Devl. Neurosci. 24, 263 -268.
    Raff, H., Jacobson, L. and Cullinan, W. E. (2007). Augmented hypothalamic corticotrophin-releasing hormone mRNA and corticosterone responses to stress in adult rats exposed to perinatal hypoxia. J Neuroendocrionl. 19:907-912.
    Richardson, H. N., Zorrilla, E. P., Mandyam, C. D. and Rivier, C. L. (2006). Exposure to repetitive versus varied stress during prenatal development generates two distinct anxiogenic and neuroendocrine profiles in adulthood. Endocrinology 147, 2506-2517.
    Shoener, J. A., Baig, R. and Page, K. C. (2006). Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats. Am. J.Physiol.Regul. Integr. Comp. Physiol. 290,1366-1373.
    Samuelsson, A. M., Ohen, I., Dahlgren, J., Eriksson, E., Angelin, B., Folkow, B. and Holmang, A. (2004). Prenatal exposure to interleukin-6 results in hypertension and increased hypolamic-pituitary-adrenal axis activity in adult rats. Endocrinology 145, 4897-4911.
    Vallee, M., Mayo, W., Dellu, F., Le Moal, M., Simon, H. and Maccari, S. (1997). Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring:correlation with stress-induced corticosterone secretion. J. Neurosci. 17, 2626-2636.
    Van den Hove, D. L. A., Steinbusch, H. W. M., Scheepens, A., Van de Berg, W. D. J.,Kooiman, L. A. M., Boosten, B. J. G, Prickaerts, J. and Blanco, C. E. (2006). Prenatal stress and neonatal rat brain development. Neuroscience 137,145-155.
    Viau, V., Bingham,B., Davis, J., Lee, P. and Wong, M. (2005). Gender and puberty interact on the stress-induced activation of parvocellular neurosecretory neurons and corticotropin-releasing hormone messenger ribonucleic acid expression in the rat. Endocrinology 146,137-146.
    Wang, T. Y.,Chen, X. Q., Du, J. Z., Xu, N. Y., Wei, C. B. and Vale, W. W. (2004). CRHR1 and CRHR2 mRNA expression in the rat anterior pituitary is modulated by intermittent hypoxia,cold and restraint. Neuroscience 128,111-119.
    Xu, J. F., Chen, X. Q., Du, J. Z. and Wang, T. Y. (2005). CRH receptor type 1 mediates conti nual hypoxia -induced CRH peptide and CRH mRNA expression increase in hypothalamic PVN of rats.Peptides 26,639-646.
    Zagron,G.and Weinstock,M.(2006).Maternal adrenal hormone secretion mediates behavioural alterations induced by prenatal stress in male and female rats.Behav.Brain Res.175,323-328.
    Antoni, F. A. (1986). Hypothalamic control of ACTH secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocr. Rev. 7, 351-378.
    Bale, T. L., Contarino, A., Smith, G. W., Chan, R., Gold, L. H., Sawchenko, P. E., Koob, G.F., Vale, W. W. and Lee, K. F. (2000). Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat. Genet. 24,410-414.
    Bale, T. L., Picetti, R., Contarino, A., Koob, G. F., Vale, W. W. and Lee, K. F. (2002). Mice deficient for both corticotropin-releasing factor receptor 1 (CRHR1) and CRHR2 have an impaired stress response and display sexually dichotomous anxiety-like behavior. J. Neurosci.22,193-199.
    Berridge, C. W. and Dunn, A. J. (1989). Restraint-stress-induced changes in exploratory behavior appear to be mediated by noradrenaline-stimulated release of CRH. J. Neurosci. 9,3513-3521.
    Bogoch, Y., Biala, Y. N., Linial, M. and Weinstock, M. (2007). Anxiety induced by prenatal stress is associated with suppression of hippocampal genes involved in synaptic function. J.Neurochem. 101,1018-30.
    Bosch, O. J., Musch, W., Bredewold, R., Slattery, D. A. and Neumann, I. D. (2007). Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring:implications for postpartum mood disorder. Psychoneuroendocrino. 32, 267-278.
    Bowman, R. E., MacLusky, N. J., Sarmiento, Y., Frankfurt, M., Gordon, M. and Luine, V.N. (2004). Sexually dimorphic effects of prenatal stress on cognition, hormonal responses, and central neurotransmitters. Endocrinology 145, 3778-3787.
    Chalmers, D. T., Lovenberg, T. W. and De Souza, E. B. (1995). Localization of novel corticotropin-releasing factor receptor (CRH2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRH R1 receptor mRNA expression. J. Neurosci. 15, 6340-6350.
    Chen, X. Q., Du, J. Z. and Wang, Y. S. (2004). Regulation of hypoxia-induced release of corticotropin-releasing factor in the rat hypothalamus by norepinephrine. Regul. Pept. 119,221-228.
    Chen, X. Q., Dong, J., Niu, C. Y., Fan, J. M. and Du, J. Z. (2007). Effects of hypoxia on glucose, insulin, glucagon and modulation by CRHR1 in the rat. Endocrinology.148,3271-3278.
    Chung, S., Son, G. H., Park, S. H., Park, E., Lee, K. H., Geum, D. and Kim, K. (2005).Differential adaptive responses to chronic stress of maternally stressed male mice offspring.Endocrinology 146, 3202-3210.
    Curtis, A. L., Grigoradis, D. E., Page, M. E., Rivier, J. and Valentino, R. J. (1994).Pharmacological comparison of two corticotropin-releasing factor antagonists: in vivo and in vitro studies. J. Pharmacol. Exp. Ther. 268,359-365.
    Curtis, A. L., Bethea, T. and Valentino, R. J. (2006). Sexually dimorphic responses of the brain norepinephrine system to stress and corticotropin-releasing factor. Neuropsychopharmacol. 31,544.554.
    
    de Vries, A., Holmes, M. C., Heijnis, A., Seier, J. V., Heerden, J., Louw, J., Wolfe- Coote, S.,Meaney, M. J., Levitt, N. S. and Seckl, J. R. (2007). Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J. Clin. Invest. 117,1058-1067.
    
    Du, J. Z. (1998). The brain CRH during hypoxia. In Committee of the 3rd World Congress on Mountain Medicine and Altitude physiology: Progress in mountain medicine and high altitude physiology (ed. H. Ohno, T. Kobayashi, S. Nasuyama and M. Nakashima), pp.416-417.Matsumoto: Press.
    
    Jedema, H. P. and Grace, A. A. (2004). Corticotropin-releasing hormone directly activates noradrenergic neurons of the locus ceruleus recorded in vitro. J. Neurosci. 24, 9703-9713.
    
    Koenig, J. I., Elmer, G. I., Shepard, P. D., Lee, P. R., Mayo, C., Joy, B., Hercher, E. and Brady,D. L. (2005). Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia.Behav. Brain Res. 156 (2), 251-261.
    
    Konishi, S., Kasagi, Y., Katsumata, H., Minami, S. and Imaki, T. (2003). Regulation of corticotropin-releasing factor (CRH) type-1 receptor gene expression by CRH in the hypothalamus. Endocr. J. 50, 21-36.
    Lemaire, V., Taylor, G T. and Mormede, P. (1997). Adrenal axis activation by chronic social stress fails to inhibit gonadal function in male rats. Psychoneuroendocrino. 22,563-573.
    Mullen, M. B., Zimmermann, S., Siilaber, I., Hagemeyer, T. P., Deussing, J. M., Timpl, P.,Kormann, M. S., Droste, S. K., Kuhn, R., Reul, J. M. et al. (2003). Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat. Neurosci. 6,1100-1107.
    Palkovits, M. and Brownstein, M. J. (1983). Microdissection of brain areas by the punch technique. In Brain microdissection technique ( ed. A. C. Cuello), pp. 1-36. New York: Wiley.
    
    Pellow, S., Chopin, P., File, S. E. and Briley, M. (1985). Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Meth. 14,149-167.
    Raff, H., Jacobson, L. and Cullinan, W. E. (2007). Augmented hypothalamic corticotrophin-releasing hormone mRNA and corticosterone responses to stress in adult rats exposed to perinatal hypoxia. J Neuroendocrionl. 19:907-912.
    Reyes, B. A., Valentino, R. J., Xu, G and Van Bockstaele, E. J. (2005). Hypothalamic projections to locus coeruleus neurons in rat brain. Eur. J. Neurosci. 22,93-106.
    Reyes, B. A. S., Valentino, R. J. and Van Bockstaele, E. J. (2008). Stress-induced intracellular trafficking of corticotropin-releasing factor receptors in rat locus coeruleus neurons.Endocrinology 149:122-130.
    Richardson, H. N., Zorrilla, E. P., Mandyam, C. D. and Rivier, C. L. (2006). Exposure to repetitive versus varied stress during prenatal development generates two distinct anxiogenic and neuroendocrine profiles in adulthood. Endocrinology 147, 2506-2517.
    Samuelsson, A. M., Ohrn, I., Dahlgren, J., Eriksson, E., Angelin, B., Folkow, B. and Holmang, A. (2004). Prenatal exposure to interleukin-6 results in hypertension and increased hypothalamic-pituitary-adrenal axis activity in adult rats. Endocrinology 145, 4897-4911.
    Sauvage, M. and Steckler, T. (2001). Detection of corticotropin-releasing hormone receptor 1 immunoreactivity in cholinergic, dopaminergic and noradrenergic neurons of the murine basal forebrain and brainstem nuclei-potential implication for arousal and attention. Neuroscience 104,643-652.
    Smagin, G. N. and Dunn, A. J. (2000). The role of CRH receptor subtypes in stress-induced behavioural responses. Eur. J. Pharmacol. 405,199-206.
    Smith, G. W., Aubry, J. M., Dellu, F., Contarino, A., Bilezikjian, L. M., Gold, L. H., Chen, R.,Marchuk, Y., Hauser, C., Bentley, C. A. et al. (1998). Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20,1093-1102.
    Stratakis, C. A. and Chrousos, G. P. (1995). Neuroendocrinology and pathophysiology of the stress system.Ann. NY. Acad. Sci. 771,1-18.
    Timpl, P., Spanagel, R., Siilaber, I., Kresse, A., Reul, J. M., Stalla, G. K., Blanquet, V.,Steckler, T., Holsboer, F. and Wurst, W. (1998). Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat. Genet. 19,162-166.
    Thompson, W. R. (1957). Influence of prenatal maternal anxiety on emotionality in young rats.Science 125,698-699.
    Vallee, M., Mayo, W., Dellu, F., Le Moal, M., Simon, H. and Maccari, S. (1997). Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring:correlation with stress-induced corticosterone secretion. J. Neurosci. 17, 2626-2636.
    Wang, T. Y., Chen, X. Q., Du, J. Z., Xu, N. Y., Wei, C. B. and Vale, W. (2004). Corticotropin-releasing factor receptor type 1 and 2 mRNA expression in the rat anterior pituitary is modulated by intermittent hypoxia, cold and restraint. Neuroscience 128,111-119.
    Wilcoxon, J. S. and Redei, E. E. (2007). Maternal glucocorticoid deficit affects hypothalamic-pituitary-adrenal function and behavior of rat offspring. Horm. Behav. 51, 321-327.
    Xu, J. F., Chen, X. Q., Du, J. Z. and Wang, T. Y. (2005). CRH receptor type 1 mediates continual hypoxia-induced CRH peptide and CRH mRNA expression increase in hypothalamic PVN of rats. Peptides 26, 639-646.
    Zeng, J., Kitayama, I., Yoshizato, H., Zhang, K. and Okazaki, Y. (2003). Increased expression of corticotropin-releasing factor receptor mRNA in the locus coeruleus of stress-induced rat model of depression. Life Sci. 73,1131-1139.
    Barker,D.J.(2003).The developmental origins of adult disease.Eur.J.Epidemiol.18,733-736.
    Beguin,P.C.,Joyeux-Faure,M.,Godin-Ribuot,D.,Levy,P.and Ribuot,C.(2005).Acute intermittent hypoxia improves rat myocardium tolerance to ischemia.J.Appl.Physiol.99,1064-1069.
    Boksa,P.(2004).Animal models of obstetric complications in relation to schizophrenia.Brain Res.Rev.45,1-17.
    Bosch,O.J.,Musch,W.,Bredewold,R.,Slattery,D.A.and Neumann,I.D.(2007).Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring:implications for postpartum mood disorder.Psychoneuroendocrino.32,267-278.
    Bowman,R.E.,MacLusky,N.J.,Sarmiento,Y.,Frankfurt,M.,Gordon,M.and Luine,V.N.(2004).Sexually dimorphic effects of prenatal stress on cognition,hormonal responses,and central neurotransmitters.Endocrinology 145,3778-3787.
    Brar,B.K,Stephanou,A.,Okosi,A.,Lawrence,K.M.and Knight,R.A.et al.(1999).CRH -like peptides protect cardiac myocytes from lethal ischaemic injury.Mol.Cell Endocrinol.158,55-63.
    Brar,B.K.,Jonassen,A.K.,Stephanou,A.S.,Santilli,G.,Railson,J.E.,Knight,R.A.,Yellon,D.M.,Latchman,D.S.(2000).Urocortin protects against ischemic and reperfusion injury via a MAP-kinase dependent pathway.J.Biol.Chem.275,8508-8514.
    Burlet,G.,Fernette,B.,Blanchard,S.,Angel,E.,Tankosic,P.,Maccari,S.and Burlet,A.(2005).Antenatal glucocorticoids blunt the functioning of the hypothalamic-pituitary-adrenal axis of neonates and disturb some behaviors in juveniles.Neuroscience 133,221-230.
    Chanalaris,A.,Lawrence,K.M.,Stephanou,A.,Knight,R.D.,Hsu,S.Y.,Hsueh,A.J.W.and Latchman,D.S.(2003).Protective effects of the urocortin homologues stresscopin(SCP)and stresscopin-related peptide(SRP)against hypoxia/reoxygenation injury in rat neonatal car diomyocytes.J.Mol.Cell.Cardiol.35,1295-1305.
    Chapillon,P.,Patin,V.,Roy,V.,Vincent,A.and Caston,J.(2002).Effects of pre-and postnatal stimulation on developmental,emotional,and cognitive aspects in(?)odents.Dev. Psychobiol. 41, 373-387.
    Chen, X. Q., Xu, N. Y., Du, J. Z., Wang, Y. and Duan, C. (2005). Corticotropin-releasing factor receptor subtype 1 and somatostatin modulating hypoxia-caused downregulated mRNA of pituitary growth hormone and upregulated mRNA of hepatic insulin-like growth factor-I of rats.Mol. Cell, Endocrinol. 242(1-2), 50-58.
    Chen, L., Lu, X. Y., Li, J., Fu, J. D., Zhou, Z. N. and Yang, H. T. (2006). Intermittent hypoxia protects cardiomyocytes against ischemia-reperfusion injury-induced alterations in Ca~(2+) homeostasis and contraction via the sarcoplasmic reticulum and Na/Ca~(2+) exchange mechanisms.Am.J. Physiol. Cell Physiol. 290,1221-1229.
    Chen, X. Q., Dong, J., Niu, C. Y., Fan, J. M. and Du, J. Z. (2007). Effects of hypoxia on glucose, insulin, glucagon and modulation by CRHR1 in the rat. Endocrinology. 148(7),3271-3278.
    Chung, S., Son, G. H., Park, S. H., Park, E., Lee, K. H., Geum, D. and Kim, K. (2005).Differential adaptive responses to chronic stress of maternally stressed male mice offspring.Endocrinology 146, 3202-3210.
    Cratty, M. S., Ward, H. E., Johnson, E. A., Azzaro, A. J. and Birkle, D. L. (1995). Prenatal stress increases corticotrophin-releasing factor (CRH) content and release in rat amygdale minces. Brain Res. 675, 297-302.
    Darnaudery, M., Perez-Martin, M., Belizaire, G., Maccari, S. and Garcia-Segura, L. M.(2006). Insulin-like growth factor 1 reduces age-related disorders induced by prenatal stress in female rats. Neurobio. Aging 27,119-127.
    DeBold, C. R., Sheldon, W. R., DeCherney, G. S., Jackson, R. V., Alexander, A. N., et al.(1984). Arginine vasopressin potentiates adrenocorticotropin release induced by ovine corticotrophin-releasing factor. J. Clin. Invest. 73, 533-538.
    De Grauw, T. J., Myers, R. E. and Scott, W. J. (1986). Foetal growth retardation in rats from different levels of hypoxia. Biol. Neonate 49, 85-89.
    Dieni, S. and Rees, S. (2003). Dendritic morphology is altered in hippocampal neurons following prenatal compromise. J. Neurobiol. 55, 41-52.
    Ding, H. L., Zhu, H. F., Dong, J. W., Zhu, W. D., Yang, W. W., Yang, H. T. and Zhou, Z. N.(2005). Inducible nitric oxide synthase contributes to intermittent hypoxia against ischemia/reperfusion injury. Acta Pharmacologica. Sinica 26 (3), 315-322.
    Dobbing, J. and Sands, J. (1979). Comparative aspects of the brain growth spurt. Early. Hum.Dev. 3, 79-83.
    Du, J. Z. (1998). The brain CRH during hypoxia.In: Ohno H, Kobayashi T,Nasuyama S, Naka shima M, editors. Progress in mountain medicine and high altitude physiology.Matsumoto:Press Committee of the 3rd World Congress on Mountain Medicine and Altitude physiology.p.416-417.
    Duncan, G. E., Sheitman, B. B. and Lieberman, J. A. (1999). An integrated view of physiological models of schizophrenia. Brain Res. Rev. 29, 250-64.
    Edwards, H. E. and Burnham, W. M. (2001). The impact of corticosteroids on the developing animal. Pediatr. Res. 50, 433-440.
    Erisman, S., Carnes, M., Takahashi, L. K. and Lent, S. J. (1990). The effects of stress on plasma ACTH and corticosterone in young and aging pregnant rats and their fetuses. Life Sci.47,1527-1533.
    Fowden, A. L., Giussani, D. A. and Forhead, A. J. (2006). Intrauterine programming of physiological systems: causes and consequences. Physiology 21(1), 29-37.
    Fox, M. W., Anderson, R. E. and Meyer, F. B. (1993). Neuroprotection by corticotropin releasing factor during hypoxia in rat brain. Stroke 24(7), 1072-1075.
    Fride, E., Dan, Y., Feldon, J., Halevy, G. and Weinstock, M. (1986). Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats. Physiol. Behav. 37,681-687.
    Fujioka, T., Sakata, Y., Yamaguchi, K., Shibasaki, T., Kato, H. and Nakamura, S. (1999).The effects of prenatal stress on the development of hypothalamic paraventricular neurons in fetal rats. Neuroscience 92, 1079-1088.
    
    Gao, L., He, P., Sha, J., Liu, C, Dai, L., Hui, N. and Ni, X. (2007). Corticotropin-releasing hormone receptor type 1 and type 2 mediate differential effects on 15-hydroxy prostaglandin dehydrogenase expression in cultured human chorion trophoblasts. Endocrinology 148(8),3645-3654.
    Gerardin, D. C., Pereira, O. C., Kempinas, W. G., Florio, J. C., Moreira, E. G. and Bernardi,M. M. (2005). Sexual behavior, neuroendocrine, and neurochemical aspects in male rats exposed prenatally to stress. Physiol. Behav. 84,97-104.
    Golan, H., Kashtuzki, I., Hallak, M., Sorokin, Y. and Huleihel, M. (2004). Maternal hypoxia during pregnancy induces fetal neurodevelopmental brain damage: partial protection by magnesium sulfate.J. Neurosci. Res.78, 430-441.
    Grino, M., Paulmyer-Lacroix, O., Anglade, G. and Oliver, C. (1995). Molecular aspects of the regulation of the hypothalamo-pituitary-adrenal axis during development in the rat. Ann. NY.Acad. Sci. 771,339-351.
    Grojean, S., Pourie, G., Vert, P. and Daval, J. L. (2003). Differential neuronal fates in the Ca1 hippocampus after hypoxia in newborn and 7-day-old rats: effects of pre-treatment with MK-801. Hippocampus 13,970-977.
    Hayashi, A., Nagaoka, M., Yamada, K., Ichitani, Y., Miake, Y. and Okado, N. (1998).Maternal stress induces synaptic loss and developmental disabilities of offspring maternal stress.Int. J. Dev. Neurosci. 16, 209-216.
    Heine, V. M., Maslam, S., Joels, M. and Lucassen, P. J. (2004). Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiol. Aging 25, 361-375.
    Jezova, D., Skultetyova, I., Makatsori, A., Moncek, F. and Duncko, R. (2002). Hypothalamo-pituitary-adrenocortical axis function and hedonic behavior in adult male and female rats prenatally stressed by maternal food restriction. Stress 5, 177-183.
    Jin, D., He, P., You, X., Zhu, X., Dai, L., He, Q., Liu, C., Hui, N., Sha, J. and Ni, X. (2007).Expression of corticotropin-releasing hormone receptor type 1 and type 2 in human pregnant myometrium. Reprod Sci. 14(6), 568-577.
    Joseph, V., Mamet, J., Lee, F., Dalmaz, Y. and Van Reeth, O. (2002). Prenatal hypoxia impairs circadian synchronisation and response of the biological clock to light in adult rats. J. Physiol.543, 387-395.
    Koehl, M., Darnaudery, M., Dulluc, J., Van Reeth, O., Le Moal, M. and Maccari, S. (1999).Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosterone receptors in adult rats of both gender. J. Neurobiol. 40, 302-315.
    Kapoor, A., Dunn, E., Kostaki, A., Andrews, M. H. Stephen, G. and Matthews, S. G. (2006).Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. J. Physiol. 572 (1), 31-44.
    Kippin, T. E., Cain, S. W., Masum, Z. and Ralph, M. R. (2004). Neural stem cells show bidirectional experience-dependent plasticity in the perinatal mammalian brain. J. Neurosci.24,2832-2836.
    Koenig, J. I., Elmer, G. I., Shepard, P. D., Lee, P. R., Mayo, C, Joy, B., Hercher, E. and Brady, D. L. (2005). Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav. Brain Res. 156, 251-261.
    Ladefoged, O., Hougaard, K. S., Hass, U., Sorensen, I. K., Lund, S. P., Svendsen, G. W. and Lam, H. R. (2004). Effects of combined prenatal stress and toluene exposure on apoptotic neurodegeneration in cerebellum and hippocampus of rats. Basic. Clin. Pharmacol. Toxicol. 94,169-176.
    Lemaire, V., Koehl, M., Le Moal, M. and Abrous, D. N. (2000). Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc. Natl.Acad. Sci. USA 97, 11032-11037.
    Lesage, J., Dufourny, L., Laborie, C., Bernet, F., Blondeau, B., Avril, I., Breant, B. and Dupouy, J. P. (2002). Perinatal malnutrition programs sympathoadrenal and hypothalamic—pituitary-adrenal axis responsiveness to restraint stress in adult male rats. J. Neuroendocrinol.14,135-143.
    Levine, S., (2001). Primary social relationships influence the development of the hypothalamic-pituitary-adrenal axis in the rat. Physiol. Behav. 73, 255-260.
    Liggins, G. C. (2000). The role of the hypothalamic-pituitaryadrenal axis in preparing the fetus for birth.Am. J. Obstet. Gynecol. 182, 475-477.
    Maccari, S., Piazza, P. V., Kabbaj, M., Barbazanges, A., Simon, H. and LeMoal, M. (1995).Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. J. Neurosci. 15, 110-116.
    Mairesse, J., Lesage, J., Breton, C, Breant, B., Hahn, T., Darnaudery, M., Dickson, S. L.,Seckl, J., Blondeau, B. and Vieau, D. et al. (2007). Maternal stress alters endocrine function of the feto-placental unit in rats Am. J. Physiol. Endocrinol. Metab. 292,1526-1533.
    Matthews, S. G. and Challis, J. R. (1995). Regulation of CRH and AVP mRNA in the developing ovine hypothalamus: effects of stress and glucocorticoids. Am. J. Physiol.268,E1096-E1107.
    Matthews, S. G. (2002). Early programming of the hypothalamo-pituitary-adrenal axis. Trends Endocrinol. Met. 13(9), 373-380.
    McCabe, L., Marash, D., Li, A. and Matthews, S. G. (2001). Repeated antenatal glucocorticoid treatment decreases hypothalamic corticotrophin releasing hormone mRNA but not corticosteroid receptor mRNA expression in the fetal guinea-pig brain. J. Neuroendocrinol. 13,425-431.
    McCormick, C. M., Smythe, J. W., Sharma, S. and Meaney, M. J. (1995). Sex-specific effects of prenatal stress on hypothalamic—pituitary—adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Dev. Brain Res. 84, 55-61.
    Murphy, V. E., Smith, R., Giles, W. B. and Clifton, V. L. (2006). Endocrine regulation of human fetal growth: The role of the mother, placenta, and fetus. Endocr. Rev. 27,141-169.
    Myers, D. A., Myers, T. R., Grober, M. S. and Nathanielsz, P. W. (1993). Levels of corticotropin-releasing hormone messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus and proopiomelanocortin mRNA in the anterior pituitary during late gestation in fetal sheep. Endocrinology 132, 2109-2116.
    Nemeroff, C. B., Widerlov, E., Bissette, G., Walleus, H., Karisson, I., Eklund, K., Kilts, C. D.,Loosen, P. T. and Vale, W. (1984). Elevated concentrations of CSF corticotropin-releasing factor -like immunoreactivity in depressed patients. Science 226,1342-1344.
    Nishio, H., Tokumo, K. and Hirai, T. (2006). Effects of perinatal stress on the anxiety-related behavior of the adolescence mouse. Int. J. Devl. Neurosci. 24, 263-268.
    Nyakas, C, Buwalda, B. and Luiten, P. G. (1996). Hypoxia and brain development. Prog.Neurobiol. 49,1-51.
    Ohkawa, T., Rohde, W., Takeshita, S., Dorner, G., Arai, K. and Okinaga, S. (1991a). Effect of an acute stress on the fetal hypothalamo—pituitary adrenal system in late gestational life of the rat. Exp. Clin. Endocrinol. 98,123-129.
    Ohkawa, T., Takeshita, S., Murase, T., Okinaga, S. and Arai, K. (1991b). The effect of an acute stress in late pregnancy on hypothalamic catecholamines of the rat fetus. Nippon Sanka Fujinka Gakkai Zasshi 43, 783-787.
    Okosi, A., Brar, B. K., Chan, M., Souza, L. D., Smith, E., Stephanou, A. S., Latchman, D. S.,Chowdry, H. S.and Knight, R. A. (1998). Expression and protective effects of urocortin in cardiac Myocytes. Neuropeptides 32, 167-171.
    Pacak, K. and Palkovits, M. (2001). Stressor specificity of central neuroendocrine responses:implications for stress-related disorders. Endocr. Rev. 22,502-548.
    Piazza, P. V., Rouge-Pont, F., Deroche, V., Maccari, S., Simon, H. and Le Moal, M. (1996).Glucocorticoids have state-dependent stimulant effects on the mesencephalic dopaminergic transmission. Proc. Natl. Acad. Sci. USA 93, 8716-8720.
    Raadsheer, F. C., Hoogendijk, W., Stain, F. C., Tilders, F. J. and Swaab, D. F. (1994).Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Clin. Neuroendorinol. 60,436-444.
    Raadsheer, F. C., Van Heerikhuize, J. J., Lucassen, P. J., Hoogendijk, W. J., Tilders, F. J.andSwaab, D. F. (1995). Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of Patients with Alzheimer's disease and depression.Am. J. Psychiatry 152,1372-1376.
    Raff, H., Jacobson, L. and Cullinan, W. E. (2007). Augmented hypothalamic corticotrophin-releasing hormone mRNA and corticosterone responses to stress in adult rats exposed to perinatal hypoxia. J Neuroendocrionl. 19:907-912.
    Rhees, R. W., Al-Saleh, H. N., Kinghorn, E. W., Fleming, D. E. and Lephart, E. D. (1999).Relationship between sexual behavior and sexually dimorphic structures in the anterior hypo thalamus in control and prenatally stressed male rats. Brain Res. Bull 50, 193-199.
    Rhodes, M. E. and Rubin, R. T. (1999). Functional sex differences ('sexual diergism') of central nervous system cholinergic systems, vasopressin, and hypothalamicpituitary-adrenal axis active ity in mammals: a selective review. Brain Res. Brain. Res. Rev. 30,135-152.
    Richardson, H. N., Zorrilla, E. P., Mandyam, C. D. and Rivier, C. L. (2006). Exposure to repetitive versus varied stress during prenatal development generates two distinct anxiogenic and neuroendocrine profiles in adulthood. Endocrinology 147, 2506-2517.
    Samuelsson, A. M., Ohen, I., Dahlgren, J., Eriksson, E., Angelin, B., Folkow, B. and Holmang, A. (2004). Prenatal exposure to interleukin-6 results in hypertension and increased hypolamic-pituitary-adrenal axis activity in adult rats. Endocrinology 145, 4897-4911.
    Sapolsky, R. M. and Meaney, M. J. (1986). Maturation of the adrenocortical stress response:neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res. 396,64-76.
    Schmidt, M., Enthoven, L., van der Mark, M., Levine, S., de Kloet, E. R. and Oitzl, M. S.(2003). The postnatal development of the hypothalamic-pituitary-adrenal axis in the mouse. Int.J. Devl Neurosci. 21,125-132.
    Setiawan, E., Owen, D., McCabe, L., Kostaki, A., Andrews, M. H. and Matthews, S. G.(2004).Glucocorticoids do not alter developmental expression of hippocampal or pituitary steroid receptor coactivator-1 and -2 in the late gestation fetal guinea pig. Endocrinology 145,3796-3803.
    Shoener, J. A., Baig, R. and Page, K. C. (2006). Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats. Am. J.Physiol.Regul. Integr. Comp. Physiol. 290,1366-1373.
    Szuran, T. F., Pliska, V., Pokorny, J. and Welzl, H. (2000). Prenatal stress in rats: effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiol.Behav. 71, 353-362.
    Thompson, W. R. (1957). Influence of prenatal maternal anxiety on emotionality in young rats.Science 15, 698-699.
    Van den Hove, D. L. A., Steinbusch, H. W. M., Scheepens, A., Van de Berg, W. D. J.,Kooiman, L. A. M., Boosten, B. J. G, Prickaerts, J. and Blanco, C. E. (2006). Prenatal stress and neonatal rat brain development. Neuroscience 137,145-155.
    Van de Kar, L. D. and Blair, M. L. (1999). Forebrain pathways mediating stressinduced hormone secretion. Front. Neuroendocrinol. 20,1-48.
    Vallee, M., Mayo, W., Dellu, F., Le Moal, M., Simon, H. and Maccari, S. (1997). Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring:correlation with stress-induced corticosterone injection. J. Neurosci. 17, 2626-2636.
    Velazquez-Moctezuma, J., Salazar, E. D.and Rueda, M. L. C. (1993). The effect of prenatal stress on adult sexual behavior in rats depends on the nature of the stressor. Physiol. Behav. 53,443-448.
    
    Viau, V. and Meaney, M. J. (1996). The inhibitory effect of testosterone on hypothalamic-pituitary-adrenal responses to stress mediated by the medial preoptic area. J. Neurosci. 16,1866-1876.
    Viau, V. and Meaney, M. J. (2004). Testosterone-dependent variations in plasma and intrapitui tary corticosteroid binding globulin and stress hypothalamic-pituitary-adrenal activity in the male rat.7. Endocrinol. 181, 223-231.
    Viau, V. (2002). Functional cross-talk between the hypothalamic-pituitary-gonadal and-adrenalaxes.J. Neuroendocrinol. 14, 506-513.
    Wang, T. Y.,Chen, X. Q., Du, J. Z., Xu, N. Y., Wei, C. B. and Vale, W. W. (2004). CRHR1 and CRHR2 mRNA expression in the rat anterior pituitary is modulated by intermittent hypoxia,cold and restraint.Neuroscience 128,111-119.
    Wang, W., Ross, G M., Riopelle, R. J. and Dow, K. E. (2000). Sublethal hypoxia up-regulates corticotropin releasing factor receptor type 1 in fetal hippocampal neurons. Neuroreport 11(14),3123-3126.
    Ward, I. L. and Weisz, J. (1980). Maternal stress alters plasma testosterone in fetal males.Science 207, 328-329.
    Wadhwa, P. D. (2005). Psychoneuroendocrine processes in human pregnancy influence fetal development and health. Psychoneuroendocrino. 30, 724-743.
    Weinstock, M., Matlina, E., Maor, G. I., Rosen, H. and McEwen, B. S. (1992). Prenatal stress selectively alters the reactivity of the hypothalamic-pituitary-adrenal system in the female rat. Brain Res. 595,195-200.
    Weinstock, M., Poltyrev, T., Schorer-Apelbaum, D., Men, D. and McCarty, R. (1998). Effect of prenatal stress on plasma corticosterone and catecholamines in response to footshock in rats.Physiol. Behav. 64, 439-444.
    Xie, Y., Zhu, Y., Zhu, W. Z., Chen, L., Zhou, Z. N., Yuan, W. J. and Yang, H. T. (2005). Role of dual-site phospholamban phosphorylation in intermittent hypoxia-induced cardioprotection against ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 288, H2594-H2602.
    Xu, J. F., Chen, X. Q., Du, J. Z. and Wang, T. Y. (2005). CRH receptor type 1 mediates conti nual hypoxia -induced CRH peptide and CRH mRNA expression increase in hypothalamic PVN of rats. Peptides 26, 639-646.
    
    Xu, J. F., Chen, X. Q. and Du, J. Z. (2006). CRH receptor type 1 mediates continual hypoxia-induced changes of immunoreactive prolactin and prolactin mRNA expression in rat pituitary.Horm. Behav. 49(2), 181-189.
    Yaka, R., Salomon, S., Matzner, H. and Weinstock, M. (2007). Effect of varied gestational stress on acquisition of spatial memory, hippocampal LTP and synaptic proteins in juvenile male rats. Behav. Brain Res. In press.
    Yan, X. X., Toth, Z., Schultz, L., Ribak, C. E. and Baram, T. Z. (1998). Corticotropin-releasing hormone (CRH)-containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin. Hippocampus 8, 231-243.
    Yao, M. and Denver, R. J., (2007). Regulation of vertebrate corticotropin-releasing factor genes,Gen. Comp. Endocrinol. In press.
    Yu, I. T., Lee, S. H., Lee, Y. S. and Son, H. (2004). Differential effects of corticosterone and dexamethasone on hippocampal neurogenesis in vitro. Biochem. Biophys. Res.Commun.317,484-490.
    Zagron, G. andd Weinstock, M. (2006). Maternal adrenal hormone secretion mediates behave-ioural alterations induced by prenatal stress in male and female rats. Behav. Brain. Res. 175,323-328.
    
    Zhang, Y., Yang, H. T. and Zhou, Z. N. (2007a). The cardioprotection of intermittent hypoxic adaptation. Acta Physiologica Sinica 59 (5), 601-613.
    Zhang, H., Yang, C. Y., Wang, Y. P., Wang, X., Cui, F., Zhou, Z. N. and Zhang, Y. (2007b).Effects of different modes of intermittent hypobaric hypoxia on ischemia/reperfusion injury in developing rat hearts. Acta Physiologica Sinica 59 (5), 660-666.
    Zhu, W. Z., Dong, J. W., Ding, H. L., Yang, H. T. and Zhou, Z. N. (2004). Postnatal development in intermittent hypoxia enhances resistance to myocardial ischemia /reperfusion in male rats. Eur. J. Appl. Physiol. 91, 716-722.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700