抑郁症负性偏向的脑电生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:根据抑郁症负性偏向产生的背-腹侧系统认知情绪交互作用模型,通过行为学和事件相关电位(ERPs)以及选择性五羟色胺再摄取抑制剂(SSRIs)抗抑郁治疗追踪研究,验证(1)抑郁症负性偏向产生机制是否为从上向下注意控制缺陷导致负性信息加工增益;(2)是否与五羟色胺(5-HT)功能低下具有相关性;同时探讨这种负性偏向的方向性和时间进程。
     方法:从行为学、神经电生理和药物治疗学三个层面的研究逐步验证理论模型和假设。研究1从行为学上初步探讨抑郁症认知控制损害和情绪偏向特征以及两者之间的关系、两者与抑郁症状的关联。17例首次发作抑郁症患者抗抑郁剂治疗前后,以及22名对照者完成连线测验、词语流畅性测验、持续操作测验、威斯康星卡片分类测验和Stroop色词干扰测验,以及情绪词选择任务。研究2从ERPs上探讨抑郁症负性偏向产生的脑电生理机制是否为从上向下注意控制缺陷导致负性信息加工增益。20例首次发作从未治疗抑郁症患者与20名对照者完成视觉三刺激语义oddball任务,并同时记录脑电,在该任务中正性和负性情绪词在不同组块中分别作为任务相关靶刺激和任务无关干扰刺激,中性词作为标准刺激。研究3通过选择性五羟色胺再摄取抑制剂(SSRIs)抗抑郁治疗前后的ERPs追踪研究,探讨抑郁症负性偏向的脑电生理机制与SSRIs抗抑郁治疗效应,即5.HT功能的关系。16例首次发作从未治疗抑郁症患者SSRIs治疗前和治疗9周后完成视觉三刺激语义oddball任务同时记录脑电。
     结果:(1)研究1行为学结果显示:首次发作抑郁症患者认知控制能力相关的测验成绩受损,情绪偏向以正性情绪加工损害为特征;情绪词选择指标与认知控制能力相关的测验成绩关联;正负性情绪词选择指标的变化对抑郁症状变化有不同预测作用。(2)研究2抑郁症与对照组ERPs比较结果显示:从上向下靶刺激加工条件下,抑郁症患者对正性刺激早期阶段注意调节和认知阶段的策略控制损害,表现为靶正性词诱发的前部P2波幅增加,N2波幅降低;在刺激导向的非靶干扰刺激条件下,抑郁症患者对负性刺激的早期抑制加工损害,表现为非靶负性词诱发的P2波幅增加,对照者则表现为对正性刺激的早期注意偏向。(3)研究3抑郁症SSRIs抗抑郁治疗9周后ERPs自身比较结果显示:在靶刺激加工条件下,SSRIs抗抑郁治疗后抑郁症患者对正性刺激的早期注意和认知控制增加,表现为靶正性词诱发的前部P2波幅降低,前部N2波幅增加;在非靶干扰刺激条件下,SSRIs抗抑郁治疗后抑郁症患者对负性刺激的早期抑制增加,表现为非靶负性词诱发的P2波幅降低,且治疗前靶正性词诱发的前部N2波幅与治疗后抑郁症状和负性思维评分显著负相关。
     结论:(1)抑郁症情绪偏向与认知控制损害存在关联。(2)在知觉和知觉后加工阶段,正性信息加工缺陷导致负性信息加工相对增益可能是抑郁症负性偏向的潜在机制;抑郁症负性偏向可能源于正性信息加工损害,而非负性信息加工增加;(3)抑郁症负性偏向始于知觉阶段,持续至知觉后认知阶段。(4)抑郁症负性偏向可能与5-HT功能低下相关,慢性应用SSRIs抗抑郁治疗具有提高对正性情绪刺激的皮质电生理反应,抑制对负性情绪刺激皮质反应,转变负性情绪偏向作用。(5)情绪词选择指标和正性靶刺激诱发的前部P2,N2,P3等ERPs成分有可能成为未来抑郁症诊断和疗效评价的客观指标。
     目的:通过对首次发作抑郁症患者治疗前后认知控制与情绪偏向的行为学研究,探讨(1)抑郁症认知损害与情绪偏向的特征;(2)认知控制损害与情绪偏向的关系,以及两者与抑郁症状的关联。
     方法:17例首次发作抑郁症患者抗抑郁剂治疗前后,以及22名对照者完成连线测验、词语流畅性测验、持续操作测验、威斯康星卡片分类测验、Stroop色词干扰测验,以及情绪词选择任务。
     结果:(1)认知测验:抑郁症组治疗前连线测验A和Stroop色词一致完成时间长于对照组,Stroop色词不一致120s内正确数小于对照组,治疗后与对照组差异均无统计学意义;抑郁症组治疗前后差异有统计学意义的认知测验有连线测验A和Stroop色词干扰测验。(2)情绪词选择任务:抑郁症组治疗前后正性词遗漏数均大于负性词遗漏数,治疗后正性词遗漏数小于治疗前,与对照组差异无统计学意义;治疗前后负性词遗漏数以及正负性词错判数与对照组差异均无统计学意义;正性词平均反应时治疗后短于治疗前,负性词平均反应时治疗前后差异无统计学意义。(3)治疗前后情绪词选择指标与涉及认知控制能力的连线测验B、威斯康星卡片分类测验、持续操作测验和Stroop色词测验成绩相关。(4)治疗前正性词遗漏数与抑郁症状和负性思维评分正相关,认知控制相关的认知测验成绩与抑郁症状和负性思维评分相关无统计学意义;治疗前后正、负性词遗漏数变化对抑郁症状评分变化有不同预测作用。
     结论:(1)抑郁症可能存在认知控制损害和以正性情绪加工损害为特征的情绪偏向;(2)情绪偏向与认知控制损害关联;(3)正负性情绪加工变化对抑郁症状改善可能有不同关联作用。
     目的:通过首次发作抑郁症对情绪信息加工的事件相关电位(ERPs)研究,验证抑郁症负性偏向产生机制是否为从上向下对于正性信息注意控制缺陷导致负性信息加工增益,以及这种负性偏向发生的时间进程和方向性,为抑郁症情绪认知控制障碍提供电生理证据。
     方法:20例首次发作从未治疗抑郁症患者与20名对照者完成视觉三刺激语义oddball任务,并同时记录脑电。在该oddball任务中正性和负性情绪词在不同组块中分别作为任务相关靶刺激和任务无关干扰刺激,中性词作为标准刺激。
     结果:(1)行为学数据:与对照组比较,抑郁症组正性词正确率显著降低,负性词正确率差异无显著意义;抑郁症组正性词正确率显著低于自身负性词正确率;反应时与对照组差异无显著意义。(2)ERPs数据:在靶刺激条件下,与对照组比较,抑郁症患者靶正性词诱发的前部P2(-160-260ms)波幅显著增高,前部N2(-260-430ms)波幅边界降低,后部N2波幅显著降低;靶负性词诱发的前部P2、N2波幅与对照组差异均无显著意义;正负性词之间的组内比较,抑郁症患者靶正性词诱发的前部N2波幅较靶负性词显著降低,靶负性词诱发的P3(-400-600ms)波幅较靶正性词显著降低,而对照者靶正性词诱发的前部P2(-210-260ms)波幅较靶负性词显著降低。在非靶干扰刺激条件下,与对照组比较,抑郁症患者非靶负性词诱发的前部P2(-160-210ms)波幅边界增高;正负性词之间的组内比较显示,对照者非靶正性词诱发的前部P2(-160-210ms)波幅较非靶负性词边界增大。抑郁症患者前部N2潜伏期较对照组显著延迟。此外,抑郁症患者右侧顶枕区正性词诱发的P1(-70-130ms)潜伏期较自身负性词显著延迟。(3)ERP成分与抑郁症状和负性思维的关系:靶正性词诱发的额-中央区P2、N2波幅、非靶负性词诱发的额-中央区P2波幅(-160-210ms)与汉密尔顿抑郁评分(HAMD)和自动思维(ATQ)评分显著正相关。
     结论:电生理数据证实(1)在知觉和知觉后加工阶段,正性信息加工缺陷导致负性信息相对增益可能是抑郁症负性偏向的潜在机制;抑郁症负性偏向可能源于正性信息加工损害,而非负性信息加工增加;(2)抑郁症负性偏向始于知觉阶段,持续至知觉后阶段。(3)正性目标刺激诱发的前部P2,N2,P3等ERPs成分有可能成为未来抑郁症诊断检测的客观指标。
     目的:通过对从未治疗首次发作抑郁症患者治疗前和选择性五羟色胺再摄取抑制剂(SSRIs)抗抑郁治疗9周后ERPs追踪研究,探讨抑郁症负性偏向脑电生理机制与SSRIs治疗效应的关系,进一步验证认知情绪交互作用模型,并为抗抑郁剂治疗反应和疗效提供客观指标。
     方法:16例首次发作从未治疗抑郁症患者治疗前和SSRIs抗抑郁治疗9周后完成视觉三刺激语义oddball任务同时记录脑电。
     结果:(1)抑郁症患者治疗有效率为87.5%,汉密尔顿抑郁量表(HAMD)总分减分率75%。(2)行为学数据:抑郁症治疗9周后正性词正确率较治疗前显著提高,负性词正确率边界提高;治疗后正性词正确率边界低于负性词正确率;治疗后反应时显著短于治疗前。(3)ERPs数据:在靶刺激条件下,与治疗前相比,治疗后靶正性词诱发的前部P2(-160-260ms)波幅显著降低、前部N2(-260-430ms)波幅显著增大、P3(-400-600ms)波幅边界降低,靶负性词诱发的前部P2、前部N2、P3波幅与治疗前差异均无显著意义;在非靶干扰刺激条件下,与治疗前相比,治疗后非靶负性词诱发的前部P2(-210-260ms)波幅显著降低,非靶正性词诱发的前部P2波幅边界降低。前部N2潜伏期治疗后较治疗前显著缩短,右侧顶枕区正性词P1潜伏期治疗后较治疗前显著缩短,而负性词P1潜伏期治疗后与治疗前差异无显著意义。(4)抑郁症组治疗前靶正性词诱发的前部N2波幅与治疗后汉密尔顿抑郁评分(HAMD)和自动思维(ATQ)评分显著负相关。
     结论:(1)抑郁症负性偏向可能与5-HT功能低下有关;(2)SSRIs慢性治疗效应具有提高正性情绪刺激的皮质电生理反应,抑制负性情绪刺激的皮质反应,改变负性情绪偏向作用;(3)正性目标刺激诱发的前部N2成分有可能成为未来抗抑郁剂治疗效应的客观评价指标。
Objective:Based on dorsal-ventral model of cognitive emotional interaction in major depression, we aimed to test (1) whether a negativity bias resultes from deficient top-down attentional control causing gain control of negative emotional information, and (2) the correlation between low serotonin (5-HT) function and negativity bias, and to explore the directionality and temporal specificity of such bias in major depression by behavioral performance and event-related potentials (ERPs) in a longitudinal study.
     Methods:The model and hypothesis were tested step by step from three domains of behavior, neurophysiology and pharmatherapeutics. Study 1 investigated the characteristics of impaired cognitive control and emotional bias, and their relationships, as well as both impaired cognitive control and emotional bias related with depression symptoms in major depressive disorder (MDD).17 first-episode MDD patients and 22 healthy controls performed cognitive tests of Trial Making, Verbal Fluency, Continuous Performance Test, the Wisconsin Card Sorting Test (WCST), and Stroop Color Word Test, as well as the visual choice tasks of Chinese emotional words. After 9-week antidepressants treatment,17 MDD patients were re-administered these tasks. Study 2 explored whether neurophysiological mechanisms of a negativity bias occur as a result of deficient top-down attentional control causing gain control of negative emotional information in MDD.20 nonmedicated patients with a first episode of unipolar MDD and 20 matched controls complete a visual three-stimulus semantic oddball task while electroencephalogram (EEG) activity was recorded. In the tasks, each of the positive and negative categories served in separate runs as task-relevant target or task-irrelevant nontarget, and neutral category as standard. Study 3 investigated the relationship of electroencephaphysiological mechanisms of the negativity bias and selective serotonin re-uptake inhibitors(SSRIstreatment effects. 16 nonmedicated patients with a first episode of unipolar MDD at initial time and after 9-week treatment with SSRIs, and 20 matched controls complete a visual three-stimulus semantic oddball task while electroencephalogram (EEG) activity was recorded.
     Results:(1) Study 1 showed that first episode MDD patients had impaired performance associated with cognitive control, and the emotional bias was characteristics of impaired processing of positive emotion, and there was a correlation of the choice index of emotion words and the performance associated with cognitive controls. The change of the choice index of positive and negative emotion words predicted the change of depressive symptoms differently. (2) Study 2 showed in the target condition, MDD patients had impaired attentional modulation of positive stimuli at early stage and impaired strategic controls of positive stimuli during later cognitive processing, reflected by enhanced anterior P2 and reduced N2 amplitude elicited by target positive stimuli. In nontarget condition, MDD patients showed impaired inhibition of negative stimuli at early stage, reflected by enhanced P2 amplitude to nontarget negative stimuli. (3) Study 3 showed that in target condition, there was enhanced attention modulation to positive stimuli at early stage and enhanced cognitive controls of positive stimuli at later cognitive stages after 9-week treatment with SSRIs, reflected by decreased anterior P2 amplitude and enhanced anterior N2 amplitude to target positive stimuli across time. In nontarget condition, the ablility of inhibition of negative stimuli was enhanced after treatment with SSRIs, reflected by reduced anterior P2 to nontarget negative stimuli across time. Anterior N2 amplitude to target positive stimuli at initial time was negatively associated with depressive symptoms and negative thoughts after treatment.
     Conclusions:(1) There is a correlation of emotional bias and impaired cognitive controls in MDD; and (2) the potential mechanism of negativity bias in major depression may be deficits of attentional control on positive stimuli causing relative gain control of negative stimuli at perceptual and post-perceptual stages, and the negativity bias may stem from impaired processing of positive emotional information rather than an enhanced processing of negative emotional information; and (3) the negativity bias onsets at perceptual stage and lasts until post-perceptual stages; and (4)negativity bias might be associated with low 5-HT, and SSRIs treatment effects have the role of improvement of positive emotional processing and the ablility of inhibition of negative stimuli, causing the shift of negativity bias; (5) The choice index of emotion word and the ERPs index of anterior P2 and the N2 elicited by target positive stimuli might provide an objective index for MDD in the diagnosis, the treatment response of antidepressant and prognosis in the future.
     Objective:We aimed to test (1) the characteristics of impaired cognitive control and emotional bias; and (2) the relationships of impaired cognitive control and emotional bias, and their correlation with depressive symptoms using the peformance of cognitive tests and the choice tases of emotional words in first-episode major depressive disorder (MDD) at initial time and after treatment.
     Methods:17 first-episode MDD patients and 22 healthy controls performed cognitive tests of Trial Making, Verbal Fluency, Continuous Performance Test (CPT), the Wisconsin Card Sorting Test (WCST), and Stroop Colour Word Test as well as the visual choice tasks of Chinese emotional words. After 9-week antidepressants treatment,17 patients were re-administered the tasks.
     Results:(1) Cognitive tests:At initial assessment, MDD patients required more time on Trial Making A and Stroop Test-congruent than controls, and performed fewer correct numbers on Stroop Test-incongruent than controls. At follow-up, MDD patients did not differ from controls on cognitive tests. In MDD patients, cognitive tests of Trial Making A and Stroop Test had statistical significance in the comparson across initial time and follow-up. (2) Chinese emotional words choice tasks:MDD patients made more errors of omission during positive than negative block before and after treatment. At follow-up, fewer errors of omission were found during positive block relative to the initial time in MDD patients, and no difference was found on errors of omission during positive block compared to controls. No difference was found on errors of omission during negative block across time in depressed patients and across groups. Nor was on distracter errors. Depressed patients required less time to respond to positive words at follow-up than at initial time, no significant difference was observed for negative across time. (3) The choice index of emotion words were associated with the performance of Trial Making B, WCST, CPT, and Stroop Color Word Test related with cognitive controls. (4) Errors of omission during positive block were positively associated with the scores of depression and negative thoughts at initial time. The performance of cognitive tests associated with cognitive controls was not correlated with the scores of depression and negative thoughts. The change of errors of omission during positive and negative block predicted the change of the Hamilton Depression Rating Scale (HAMD) scores.
     Conculusions:(1) There were impaired cognitive controls and emotional bias which is characteristic of impaired processing of positive emotion in MDD; and (2) there is a correlation of emotional bias and impaired cognitive controls; and (3) the change of the processing of positive and negative emotional information might correlate with the change of symptoms differently.
     Objective:we aimed to test whether a negativity bias occurs as a result of deficient top-down attentional control causing gain control of negative emotional information, and to explore the directionality and temporal specificity of such bias in major depression by event-related potentials (ERPs) in first-episode major depressive disorder (MDD). Methods:20 nonmedicated patients with a first episode of unipolar MDD and 20 matched controls complete a visual three-stimulus semantic oddball task while electroencephalogram (EEG) activity was recorded. In the tasks, each of the positive and negative categories served in separate runs as task-relevant target or task-irrelevant nontarget, and neutral category as standard.
     Results:(1) Behavior data showed that MDD patients had decreased hit rates for positive words, but no difference for negative words compared with controls; and there were significantly lower hit rates for positive words than for negative words in MDD patients; and there was no group difference in reaction time. (2) ERPs data showed that in target condition, MDD patients showed enlarged anterior P2 (~160-260ms) and marginally reduced anterior N2(~260-430ms) elicited by positive target stimuli compared with controls, while no difference was found for anterior P2 and N2 elicited by negative target stimuli between groups. Within group, controls showed significantly decreased anterior P2 (-210-260ms) elicited by target positive stimuli relative to target negative; MDD patients showed significantly reduced N2 elicited by target positive stimuli relative to target negative, and significantly reduced P3 (-400-600ms) elicited by target negative stimuli relative to target positive. In nontarget condition, MDD patients exhibited a marginal enhancement P2 for nontarget negative words compared with controls, while no difference was found to the P2 elicited by nontarget positive words and nor to the N2 elicited by nontarget stimuli including positive and negative words, compared with controls. Within group, controls showed marginally increased P2 (~160-210ms) to nontarget positive words relative to nontarget negative words. Additively, MDD patients showed delayed latency of anterior N2 compared with controls, and MDD patients presented delayed P1 latency (~70-130 ms) for positive words relative to negative over right posterior regions. (3) The relationship of ERP data with the scores of HAMD and automatic thoughts questionnaire (ATQ) showed that the amplitude of the P2 and the N2 elicited by target positive words over frontal-central regions was positively associated with the scores of HAMD and ATQ, so was the amplitude of the P2 (~160-210ms) to nontarget negative words.
     Conclusions:The electrophysiological data demonstrated that (1) the potential mechanism of negativity bias in major depression may be deficits of attentional control on positive stimuli causing relative gain control of negative stimuli at perceptual and post-perceptual stages; and (2) the negativity bias may stem from impared processing of positive emotional information, rather than an enhanced processing of negative emotional information. (3) The onset of the negativity bias is at perceptual stage and such negativity bias lasts until post-perceptual stages. (4) The ERPs components of anterior P2, N2 and the P3 elicited by target positive stimuli might provide objective index for early detection of MDD in the future.
     Objective:We aimed to explore the relationship of electroencephaphysiological mechanisms of the negativity bias and selective serotonin re-uptake inhibitors (SSRIs) treatment effects to further test the model of cognitive emotional interaction and to provide objective index for the response of antidepressant treatment and prognosis by SSRIs treatment for 9 weeks in first episode major depression.
     Methods:16 nonmedicated patients with a first episode of unipolar major depressive disorder (MDD) at initial time and after 9-week SSRIs treatment complete a visual three-stimulus semantic oddball task while electroencephalogram (EEG) activity was recorded.
     Results:(1) The response rate was 87.5% with 75% total reduction rate of the Hamilton Depression Rating Scale (HAMD-17 item) scores after 9-week treatment in MDD patients.
     (2) Behavior data showed that after 9-week SSRIs treatment, the hit rates was significantly increased for positive words and marginally for negative words across time; but the hit rateswas still marginally decreased for positive words relative to negative words in MDD patients at follow-up. The reaction time was significantly shortened after 9-week treatment compared with initial time.
     (3) The ERPs data across time showed that in target condition, there were significantly reduced anterior P2, enhanced anterior N2 and marginally reduced P3 amplitude elicited by target positive words across time, while no difference was found to amplitude of the P2, the N2 and the P3 eilicted by target negative words across time. In nontarget condition, there was significantly reduced anterior P2 elicited by nontarget negative words, and marginally reduced anterior P2 elicited by nontarget positive words across time, while no difference was found to both the N2 and the P3 elicited by nontarget stimuli. There was a significantly fastened N2 latency across time. A shortened P1 latency to positive stimuli over right posterior regions was found across time, while no difference was found to P1 latency to negative stimuli over right posterior regions across time.
     (4) The amplitude of anterior N2 over frontal-central regions elicited by target positive stimuli at initial time was negatively associated with the HAMD and ATQ scores after 9-week treatment.
     Conclusions:The electrophysiological data demonstrated that (1) negativity bias might be associated with low 5-HT; and (2) SSRIs treatment effects have the role of enhancement of cortical electrophysiological responses to positive emotional stimuli and suppression brain responses to negative stimuli, resulting in the shift of negativity bias; (3) The ERPs components of anterior N2 elicited by target positive stimuli provide objective index for the response of antidepressant treatment and prognosis of MDD.
引文
[1]Chamberlain SR, Sahakian BJ. The neuropsychology of mood disorders. Curr Psychiatry Rep.2006.8(6):458-63.
    [2]Kessler RC, Berglund P, Demler O, et al. The epidemiology of major depressive disorder:results from the National Comorbidity Survey Replication (NCS-R). JAMA.2003.289(23):3095-105.
    [3]沈渔邨.精神病学.2000.第四版.北京.人民卫生出版社.102-110.
    [4]Brundtland GH. From the World Health Organization. Mental health:new understanding, new hope. JAMA.2001.286(19):2391.
    [5]Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron.2002.34(1):13-25.
    [6]Clark L, Chamberlain SR, Sahakian BJ. Neurocognitive mechanisms in depression:implications for treatment. Annu Rev Neurosci.2009.32:57-74.
    [7]Beck AT. Cognitive Therapy and the Emotional Disorders.1976. New York. Meridian.
    [8]Bower GH. GSG, Monterio KP. Selectivity of learning caused by affective states. Journal of Experimental psychology.1981.110:451-473.
    [9]Beck AT. Depression:Clinical, Experimental, and Theoretical.1967. New York Harper & Row.
    [10]Erickson K, Drevets WC, Clark L, et al. Mood-congruent bias in affective go/no-go performance of unmedicated patients with major depressive disorder. Am J Psychiatry.2005.162(11):2171-3.
    [11]Leyman L, De Raedt R, Schacht R, Koster EH. Attentional biases for angry faces in unipolar depression. Psychol Med.2007.37(3):393-402.
    [12]Williams JMG WFN, MacLeod C MA. Cognitive Psychology and Emotional Disorders.1997.2nd ed. Chichester. John Wiley.
    [13]Teasdale JD. cognitive vulnerability to persistent depression. cognition and emotion.1988.2:247-274.
    [14]Beck AT, Rush AJ, Shaw BF, Emery G. Cognitive Therapy of Depression. 1979. New York. Guilford Press.
    [15]Blaney PH. Affect and memory:a review. Psychol Bull.1986.99(2):229-46.
    [16]Mayberg HS, Liotti M, Brannan SK, et al. Reciprocal limbic-cortical function and negative mood:converging PET findings in depression and normal sadness. Am J Psychiatry.1999.156(5):675-82.
    [17]Yamasaki H, LaBar KS, McCarthy G Dissociable prefrontal brain systems for attention and emotion. Proc Natl Acad Sci U S A.2002.99(17):11447-51.
    [18]Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II:Implications for major psychiatric disorders. Biol Psychiatry. 2003.54(5):515-28.
    [19]Johnstone T, van RCM, Urry HL, Kalin NH, Davidson RJ. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci.2007.27(33):8877-84.
    [20]Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression:related and independent features. Biol Psychiatry.2007.61(2): 198-209.
    [21]Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I:The neural basis of normal emotion perception. Biol Psychiatry. 2003.54(5):504-14.
    [22]Gray JR, Braver TS, Raichle ME. Integration of emotion and cognition in the lateral prefrontal cortex. Proc Natl Acad Sci U S A.2002.99(6):4115-20.
    [23]Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation:implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008.13(9):829,833-57.
    [24]Mayberg HS. Limbic-cortical dysregulation:a proposed model of depression. J Neuropsychiatry Clin Neurosci.1997.9(3):471-81.
    [25]Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry.2000. 48(8):813-29.
    [26]Mayberg HS, Brannan SK, Tekell JL, et al. Regional metabolic effects of fluoxetine in major depression:serial changes and relationship to clinical response. Biol Psychiatry.2000.48(8):830-43.
    [27]Kennedy SH, Evans KR, Kruger S, et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry.2001.158(6):899-905.
    [28]Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol.2002.12(6):527-44.
    [29]Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment:an fMRI study. Biol Psychiatry.2001. 50(9):651-8.
    [30]Nobler MS, Sackeim HA, Prohovnik I, et al. Regional cerebral blood flow in mood disorders, III. Treatment and clinical response. Arch Gen Psychiatry. 1994.51(11):884-97.
    [31]Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn Sci. 2005.9(5):242-9.
    [32]Smith KA, Fairburn CG, Cowen PJ. Relapse of depression after rapid depletion of tryptophan. Lancet.1997.349(9056):915-9.
    [33]Fu CH, Williams SC, Cleare AJ, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment:a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry.2004.61(9):877-89.
    [34]Chen CH, Suckling J, Ooi C, et al. Functional coupling of the amygdala in depressed patients treated with antidepressant medication. Neuropsychopharmacology.2008.33(8):1909-18.
    [35]Carpenter LL, Anderson GM, Pelton GH, et al. Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology.1998.19(1):26-35.
    [36]Williams WA, Shoaf SE, Hommer D, Rawlings R, Linnoila M. Effects of acute tryptophan depletion on plasma and cerebrospinal fluid tryptophan and 5-hydroxyindoleacetic acid in normal volunteers. J Neurochem.1999.72(4): 1641-7.
    [37]Robinson OJ, Sahakian BJ. Recurrence in major depressive disorder:a neurocognitive perspective. Psychol Med.2008.38(3):315-8.
    [38]Rubinsztein JS, Rogers RD, Riedel WJ, Mehta MA, Robbins TW, Sahakian BJ. Acute dietary tryptophan depletion impairs maintenance of "affective set" and delayed visual recognition in healthy volunteers. Psychopharmacology (Berl). 2001.154(3):319-26.
    [39]Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM. Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am J Psychiatry. 2004.161(7):1256-63.
    [40]Luck SJ, Ford MA. On the role of selective attention in visual perception. Proc Natl Acad Sci USA.1998.95(3):825-30.
    [41]Luck SJ, Woodman GF, Vogel EK. Event-related potential studies of attention. Trends Cogn Sci.2000.4(11):432-440.
    [42]Banich MT, Mackiewicz KL, Depue BE, Whitmer AJ, Miller GA, Heller W. Cognitive control mechanisms, emotion and memory:a neural perspective with implications for psychopathology. Neurosci Biobehav Rev.2009.33(5): 613-30.
    [43]Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci.2001.24:167-202.
    [44]Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks:a latent variable analysis. Cogn Psychol.2000. 41(1):49-100.
    [45]Elliott R, Sahakian BJ, McKay AP, Herrod JJ, Robbins TW, Paykel ES. Neuropsychological impairments in unipolar depression:the influence of perceived failure on subsequent performance. Psychol Med.1996.26(5): 975-89.
    [46]Rogers MA, Kasai K, Koji M, et al. Executive and prefrontal dysfunction in unipolar depression:a review of neuropsychological and imaging evidence. Neurosci Res.2004.50(1):1-11.
    [47]Okada G, Okamoto Y, Morinobu S, Yamawaki S, Yokota N. Attenuated left prefrontal activation during a verbal fluency task in patients with depression. Neuropsychobiology.2003.47(1):21-6.
    [48]Wagner G, Sinsel E, Sobanski T, et al. Cortical inefficiency in patients with unipolar depression:an event-related FMRI study with the Stroop task. Biol Psychiatry.2006.59(10):958-65.
    [49]Crews WD Jr, Harrison DW, Rhodes RD. Neuropsychological test performances of young depressed outpatient women. An examination of executive functions. Arch Clin Neuropsychol.1999.14(6):517-29.
    [50]APA. DSM-IV-TR:Diagnostic and Statistical Manual of Mental Disorders. 2000. Washington. American Psychiatric Association.
    [51]Cornell DG, Suarez R, Berent S. Psychomotor retardation in melancholic and nonmelancholic depression:cognitive and motor components. J Abnorm Psychol.1984.93(2):150-7.
    [52]Mialet JP, Pope HG, Yurgelun-Todd D. Impaired attention in depressive states: a non-specific deficit. Psychol Med.1996.26(5):1009-20.
    [53]Austin MP, Ross M, Murray C, O'Carroll RE, Ebmeier KP, Goodwin GM. Cognitive function in major depression. J Affect Disord.1992.25(1):21-9.
    [54]Raskin A, Friedman AS, DiMascio A. Cognitive and performance deficits in depression. Psychopharmacol Bull.1982.18(4):196-202.
    [55]Trichard C, Martinot JL, Alagille M, et al. Time course of prefrontal lobe dysfunction in severely depressed in-patients:a longitudinal neuropsychological study. Psychol Med.1995.25(1):79-85.
    [56]Lemelin S, Baruch P, Vincent A, Everett J, Vincent P. Distractibility and processing resource deficit in major depression. Evidence for two deficient attentional processing models. J Nerv Ment Dis.1997.185(9):542-8.
    [57]MacQueen GM, Tipper SP, Young LT, Joffe RT, Levitt AJ. Impaired distractor inhibition on a selective attention task in unmedicated, depressed subjects. Psychol Med.2000.30(3):557-64.
    [58]Brittlebank AD, Scott J, Williams JM, Ferrier IN. Autobiographical memory in depression:state or trait marker. Br J Psychiatry.1993.162:118-21.
    [59]Lembke A, Ketter TA. Impaired recognition of facial emotion in mania. Am J Psychiatry.2002.159(2):302-4.
    [60]Murphy FC, Sahakian BJ, Rubinsztein JS, et al. Emotional bias and inhibitory control processes in mania and depression. Psychol Med.1999.29(6): 1307-21.
    [61]Johnson SL, Joormann J, Gotlib IH. Does processing of emotional stimuli predict symptomatic improvement and diagnostic recovery from major depression. Emotion.2007.7(1):201-6.
    [62]Lindholm E, Koriath JJ. Analysis of multiple event related potential components in a tone discrimination task. Int J Psychophysiol.1985.3(2): 121-9.
    [63]Hegerl U, Juckel G Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission:a new hypothesis. Biol Psychiatry.1993.33(3):173-87.
    [64]Rennie CJ, Robinson PA, Wright JJ. Unified neurophysical model of EEG spectra and evoked potentials. Biol Cybern.2002.86(6):457-71.
    [65]Barry RJ, Johnstone SJ, Clarke AR. A review of electrophysiology in attention-deficit/hyperactivity disorder:Ⅱ. Event-related potentials. Clin Neurophysiol.2003.114(2):184-98.
    [66]Alho K, Tottola K, Reinikainen K, Sams M, Naatanen R. Brain mechanism of selective listening reflected by event-related potentials. Electroencephalogr Clin Neurophysiol.1987.68(6):458-70.
    [67]Michie PT, Bearpark HM, Crawford JM, Glue LC. The nature of selective attention effects on auditory event-related potentials. Biol Psychol.1990. 30(3):219-50.
    [68]Michie PT, Solowij N, Crawford JM, Glue LC. The effects of between-source discriminability on attended and unattended auditory ERPs. Psychophysiology. 1993.30(2):205-20.
    [69]Vandoolaeghe E, van HF, Nuyten D, Maes M. Auditory event related potentials in major depression:prolonged P300 latency and increased P200 amplitude. J Affect Disord.1998.48(2-3):105-13.
    [70]Kemp AH, Hopkinson PJ, Hermens DF, et al. Fronto-temporal alterations within the first 200 ms during an attentional task distinguish major depression, non-clinical participants with depressed mood and healthy controls:a potential biomarker. Hum Brain Mapp.2009.30(2):602-14.
    [71]Bruder GE, Tenke CE, Towey JP, et al. Brain ERPs of depressed patients to complex tones in an oddball task:relation of reduced P3 asymmetry to physical anhedonia. Psychophysiology.1998.35(1):54-63.
    [72]el MF, Lesevre N. Attention impairment and psychomotor retardation in depressed patients:an event-related potential study. Electroencephalogr Clin Neurophysiol.1988.70(1):46-55.
    [73]Ogura C, Nageishi Y, Omura F, et al. N200 component of event-related potentials in depression. Biol Psychiatry.1993.33(10):720-6.
    [74]Polich J, Kok A. Cognitive and biological determinants of P300:an integrative review. Biol Psychol.1995.41(2):103-46.
    [75]Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP:a review. Psychophysiology.2008.45(1):152-70.
    [76]Crottaz-Herbette S, Menon V. Where and when the anterior cingulate cortex modulates attentional response:combined fMRI and ERP evidence. J Cogn Neurosci.2006.18(5):766-80.
    [77]Kopp B, Tabeling S, Moschner C, Wessel K. Fractionating the neural mechanisms of cognitive control. J Cogn Neurosci.2006.18(6):949-65.
    [78]Bruder GE, Tenke CE, Stewart JW, et al. Brain event-related potentials to complex tones in depressed patients:relations to perceptual asymmetry and clinical features. Psychophysiology.1995.32(4):373-81.
    [79]Urretavizcaya M, Moreno I, Benlloch L, et al. Auditory event-related potentials in 50 melancholic patients:increased N100, N200 and P300 latencies and diminished P300 amplitude. J Affect Disord.2003.74(3):293-7.
    [80]Chao LL, Nielsen-Bohlman L, Knight RT. Auditory event-related potentials dissociate early and late memory processes. Electroencephalogr Clin Neurophysiol.1995.96(2):157-68.
    [81]Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology.2001.38(3):557-77.
    [82]Johnson R Jr. A triarchic model of P300 amplitude. Psychophysiology.1986. 23(4):367-84.
    [83]Skrandies W. Evoked potential correlates of semantic meaning--A brain mapping study. Brain Res Cogn Brain Res.1998.6(3):173-83.
    [84]Polich J. Updating P300:an integrative theory of P3a and P3b. Clin Neurophysiol.2007.118(10):2128-48.
    [85]Deldin PJ, Keller J, Gergen JA, Miller GA. Right-posterior face processing anomaly in depression. J Abnorm Psychol.2000.109(1):116-21.
    [86]Nandrino JL, Dodin V, Martin P, Henniaux M. Emotional information processing in first and recurrent major depressive episodes. J Psychiatr Res. 2004.38(5):475-84.
    [87]Shestyuk AY, Deldin PJ, Brand JE, Deveney CM. Reduced sustained brain activity during processing of positive emotional stimuli in major depression. Biol Psychiatry.2005.57(10):1089-96.
    [88]Cavanagh J, Geisler MW. Mood effects on the ERP processing of emotional intensity in faces:a P3 investigation with depressed students. Int J Psychophysiol.2006.60(1):27-33.
    [89]Deldin PJ, Deveney CM, Kim AS, Casas BR, Best JL. A slow wave investigation of working memory biases in mood disorders. J Abnorm Psychol. 2001.110(2):267-81.
    [90]Deveney CM, Deldin PJ. Memory of faces:a slow wave ERP study of major depression. Emotion.2004.4(3):295-304.
    [91]Blackburn IM, Roxborough HM, Muir WJ, Glabus M, Blackwood DH. Perceptual and physiological dysfunction in depression. Psychol Med.1990.
    20(1):95-103.
    [92]Kayser J, Bruder GE, Tenke CE, Stewart JE, Quitkin FM. Event-related potentials (ERPs) to hemifield presentations of emotional stimuli:differences between depressed patients and healthy adults in P3 amplitude and asymmetry. Int J Psychophysiol.2000.36(3):211-36.
    [93]Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science.1965.150(700):1187-8.
    [94]Bledowski C, Prvulovic D, Goebel R, Zanella FE, Linden DE. Attentional systems in target and distractor processing:a combined ERP and fMRI study. Neuroimage.2004.22(2):530-40.
    [95]Chong H, Riis JL, McGinnis SM, Williams DM, Holcomb PJ, Daffner KR. To ignore or explore:top-down modulation of novelty processing. J Cogn Neurosci.2008.20(1):120-34.
    [96]Bradley MM, Hamby S, Low A, Lang PJ. Brain potentials in perception: picture complexity and emotional arousal. Psychophysiology.2007.44(3): 364-73.
    [97]Codispoti M, Ferrari V, Bradley MM. Repetition and event-related potentials: distinguishing early and late processes in affective picture perception. J Cogn Neurosci.2007.19(4):577-86.
    [98]Dolcos F, Cabeza R. Event-related potentials of emotional memory:encoding pleasant, unpleasant, and neutral pictures. Cogn Affect Behav Neurosci.2002. 2(3):252-63.
    [99]Ohman A, Mineka S. Fears, phobias, and preparedness:toward an evolved module of fear and fear learning. Psychol Rev.2001.108(3):483-522.
    [100]Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM. Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am J Psychiatry. 2004.161(7):1256-63.
    [101]Reilly-Harrington NA, Alloy LB, Fresco DM, Whitehouse WG. Cognitive styles and life events interact to predict bipolar and unipolar symptomatology. J Abnorm Psychol.1999.108(4):567-78.
    [102]Spitzer MB GRL, Williams M JBW. Structured clinical interview for axis I DSM-IV disorders:patient edition(SCID-I/P, Version 2.0).1994. New York. Biometrics Research Department, New York State Psychiatric.
    [103]张明园.精神科评定量表手册.1998.湖南科学技术出版社.133-137.
    [104]Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks:a latent variable analysis. Cogn Psychol.2000. 41(1):49-100.
    [105]Harvey PO, Le BG, Pochon JB, et al. Executive functions and updating of the contents of working memory in unipolar depression. J Psychiatr Res.2004. 38(6):567-76.
    [106]REITAN RM. The relation of the trail making test to organic brain damage. J Consult Psychol.1955.19(5):393-4.
    [107]Martin RC, Loring DW, Meador KJ, Lee GP. The effects of lateralized temporal lobe dysfunction on formal and semantic word fluency. Neuropsychologia.1990.28(8):823-9.
    [108]刘哲宁,陈筱章.抑郁症患者威斯康星卡片分类测验和连续操作测验的初步研究.中国心理卫生杂志.2003.(10):690-692.
    [109]Trenerry MR CJ, Leber WR. Stroop neuropsychological screening test manual. Stroop neuropsychological screening test manual.1989.
    [110]Taylor TJV, Drevets WC, Sahakian BJ. Cognition in mania and depression. Psychol Med.2003.33(6):959-67.
    [111]刘明矾,黄任之,涂远亮,姚树桥.抑郁症患者对情绪词抑制功能的实验
    研究.中国临床心理学杂志.2007.(02):161-163+167.
    [112]徐舒靖,尹慧芳,吴大兴.情绪障碍研究用汉语情绪词分类系统的初步建立.中国心理卫生杂志.2008.(10):770-774.
    [113]Sloan DM, Strauss ME, Wisner KL. Diminished response to pleasant stimuli by depressed women. J Abnorm Psychol.2001.110(3):488-93.
    [114]Reilly-Harrington NA, Alloy LB, Fresco DM, Whitehouse WG. Cognitive styles and life events interact to predict bipolar and unipolar symptomatology. J Abnorm Psychol.1999.108(4):567-78.
    [115]温忠麟,张雷.调节效应与中介效应的比较和应用.心理学报.2005.(02):268-274.
    [116]Luck SJ, Woodman GF, Vogel EK. Event-related potential studies of attention. Trends Cogn Sci.2000.4(11):432-440.
    [117]G.H. Bower, Mood and memory, Am Psychol 36 (1981) 129-148.
    [118]B.P. Bradley, K. Mogg, N. Millar, Implicit memory bias in clinical and non-clinical depression, Behav Res Ther 34 (1996) 865-879.
    [119]B.P. Bradley, K. Mogg, R. Williams, Implicit and explicit memory for emotion-congruent information in clinical depression and anxiety, Behav Res Ther 33 (1995) 755-770.
    [120]Schupp HT, Stockburger J, Codispoti M, Junghofer M, Weike AI, Hamm AO. Selective visual attention to emotion. J Neurosci.2007.27(5):1082-9.
    [121]Kissler J, Herbert C, Winkler I, Junghofer M. Emotion and attention in visual word processing:an ERP study. Biol Psychol.2009.80(1):75-83.
    [122]Huang YX, Luo YJ. Temporal course of emotional negativity bias:an ERP study. Neurosci Lett.2006.398(1-2):91-6.
    [123]Huang YX, Luo YJ. Temporal course of emotional negativity bias:an ERP study. Neurosci Lett.2006.398(1-2):91-6.
    [124]Semlitsch HV, Anderer P, Schuster P, Presslich O. A solution for reliable and
    valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology. 1986.23(6):695-703.
    [125]Vandoolaeghe E, van HF, Nuyten D, Maes M. Auditory event related potentials in major depression:prolonged P300 latency and increased P200 amplitude. J Affect Disord.1998.48(2-3):105-13.
    [126]Shimizu H, Saito H, Hoshiyama M. Cognitive mechanism for meaning of emotive words in depressed personality:an event-related potential study. Nagoya J Med Sci.2006.68(1-2):35-44.
    [127]Kotchoubey B. Event-related potentials, cognition, and behavior:a biological approach. Neurosci Biobehav Rev.2006.30(1):42-65.
    [128]Kahkonen S, Yamashita H, Rytsala H, Suominen K, Ahveninen J, Isometsa E. Dysfunction in early auditory processing in major depressive disorder revealed by combined MEG and EEG. J Psychiatry Neurosci.2007.32(5):316-22.
    [129]McCabe SB, Gotlib IH. Selective attention and clinical depression: performance on a deployment-of-attention task. J Abnorm Psychol.1995. 104(1):241-5.
    [130]Erickson K, Drevets WC, Clark L, et al. Mood-congruent bias in affective go/no-go performance of unmedicated patients with major depressive disorder. Am J Psychiatry.2005.162(11):2171-3.
    [131]Beck AT. The evolution of the cognitive model of depression and its neurobiological correlates. Am J Psychiatry.2008.165(8):969-77.
    [132]Blackburn IM, Roxborough HM, Muir WJ, Glabus M, Blackwood DH. Perceptual and physiological dysfunction in depression. Psychol Med.1990. 20(1):95-103.
    [133]Karaaslan F, Gonul AS, Oguz A, Erdinc E, Esel E. P300 changes in major depressive disorders with and without psychotic features. J Affect Disord. 2003.73(3):283-7.
    [134]Skrandies W, Chiu MJ. Dimensions of affective semantic meaning--behavioral and evoked potential correlates in Chinese subjects. Neurosci Lett.2003. 341(1):45-8.
    [135]Skrandies W, Chiu MJ, Lin Y. The processing of semantic meaning in Chinese words and evoked brain topography. Brain Topogr.2004.16(4):255-9.
    [136]Heller W. Neuropsychological Mechanisms of Individual Differences in Emotion, Personality, and Arousal. Neuropsychology.1993.7:476-489.
    [137]Montoya P, Larbig W, Pulvermuller F, Flor H, Birbaumer N. Cortical correlates of semantic classical conditioning. Psychophysiology.1996.33(6): 644-9.
    [138]Kemp AH, Gray MA, Silberstein RB, Armstrong SM, Nathan PJ. Augmentation of serotonin enhances pleasant and suppresses unpleasant cortical electrophysiological responses to visual emotional stimuli in humans. Neuroimage.2004.22(3):1084-96.
    [139]Marek GJ, Aghajanian GK. The electrophysiology of prefrontal serotonin systems:therapeutic implications for mood and psychosis. Biol Psychiatry. 1998.44(11):1118-27.
    [140]Kalin NH, Davidson RJ, Irwin W, et al. Functional magnetic resonance imaging studies of emotional processing in normal and depressed patients: effects of venlafaxine. J Clin Psychiatry.1997.58 Suppl 16:32-9.
    [141]Harmer CJ, Bhagwagar Z, Perrett DI, Vollm BA, Cowen PJ, Goodwin GM. Acute SSRI administration affects the processing of social cues in healthy volunteers. Neuropsychopharmacology.2003.28(1):148-52.
    [142]Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol.2002.12(6):527-44.
    [143]Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci.1995.18:193-222.
    [144]Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci.2000.23:315-41.
    [145]Mathalon DH, Ford JM, Pfefferbaum A. Trait and state aspects of P300 amplitude reduction in schizophrenia:a retrospective longitudinal study. Biol Psychiatry.2000.47(5):434-49.
    [I]Gross JJ, Munoz RF. Emotion regulation and mental health. Clin. Psychol. Sci. Pract.1995.2:151-164.
    [2]Gross JJ. The emerging field of emotion regulation:an integrative review. Rev. Gen. Psychol.1998.2:271-299.
    [3]Davidson RJ. Affective style, psychopathology, and resilience:brain mechanisms and plasticity. Am Psychol.2000.55(11):1196-214.
    [4]Emotions:A general psychoevolutionary theory. In:Scerer KC EP ed. Approaches to Emotion.1984. Hillsdale, NJ. Lawrence Erlbaum.197-219.
    [5]Cacioppo JT. The psychophysiology of emotion. In:Lewis R, Haviland-Jones JM, eds. The Handbook of Emotion.2000. Guilford Press.173-191.
    [6]Scherer KR. Appraisal Processes in Emotion:Theory, Methods, Research. 2001. Oxford University Press.
    [7]Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception Ⅰ:The neural basis of normal emotion perception. Biol Psychiatry. 2003.54(5):504-14.
    [8]Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception Ⅱ:Implications for major psychiatric disorders. Biol Psychiatry. 2003.54(5):515-28.
    [9]Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn Sci. 2005.9(5):242-9.
    [10]Hariri AR, Bookheimer SY, Mazziotta JC. Modulating emotional responses: effects of a neocortical network on the limbic system. Neuroreport.2000. 11(1):43-8.
    [11]Vuilleumier P, Armony JL, Driver J, Dolan RJ. Effects of attention and emotion on face processing in the human brain:an event-related fMRI study. Neuron.2001.30(3):829-41.
    [12]Anderson AK, Christoff K, Panitz D, De Rosa E, Gabrieli JD. Neural correlates of the automatic processing of threat facial signals. J Neurosci.2003. 23(13):5627-33.
    [13]Hariri AR, Mattay VS, Tessitore A, Fera F, Weinberger DR. Neocortical modulation of the amygdala response to fearful stimuli. Biol Psychiatry.2003. 53(6):494-501.
    [14]Cunningham WA, Johnson MK, Raye CL, Chris GJ, Gore JC, Banaji MR. Separable neural components in the processing of black and white faces. Psychol Sci.2004.15(12):806-13.
    [15]Frankenstein UN, Richter W, McIntyre MC, Remy F. Distraction modulates anterior cingulate gyrus activations during the cold pressor test. Neuroimage. 2001.14(4):827-36.
    [16]Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain.2002.125(Pt 2):310-9.
    [17]Pessoa L, McKenna M, Gutierrez E, Ungerleider LG. Neural processing of emotional faces requires attention. Proc Natl Acad Sci U S A.2002.99(17): 11458-63.
    [18]Tracey I, Ploghaus A, Gati JS, et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci.2002.22(7):2748-52.
    [19]Valet M, Sprenger T, Boecker H, et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain--an fMRI analysis. Pain.2004.109(3):399-408.
    [20]Critchley H, Daly E, Phillips M, et al. Explicit and implicit neural mechanisms for processing of social information from facial expressions:a functional magnetic resonance imaging study. Hum Brain Mapp.2000.9(2):93-105.
    [21]Gorno-Tempini ML, Pradelli S, Serafini M, et al. Explicit and incidental facial expression processing:an fMRI study. Neuroimage.2001.14(2):465-73.
    [22]Winston JS, Strange BA, O'Doherty J, Dolan RJ. Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nat Neurosci. 2002.5(3):277-83.
    [23]Taylor SF, Phan KL, Decker LR, Liberzon I. Subjective rating of emotionally salient stimuli modulates neural activity. Neuroimage.2003.18(3):650-9.
    [24]Winston JS, O'Doherty J, Dolan RJ. Common and distinct neural responses during direct and incidental processing of multiple facial emotions. Neuroimage.2003.20(1):84-97.
    [25]Hsieh JC, Meyerson BA, Ingvar M. PET study on central processing of pain in trigeminal neuropathy. Eur J Pain.1999.3(1):51-65.
    [26]Ploghaus A, Tracey I, Gati JS, et al. Dissociating pain from its anticipation in the human brain. Science.1999.284(5422):1979-81.
    [27]Sawamoto N, Honda M, Okada T, et al. Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula:an event-related functional magnetic resonance imaging study. J Neurosci.2000.20(19):7438-45.
    [28]Knutson B, Fong GW, Adams CM, Varner JL, Hommer D. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport.2001. 12(17):3683-7.
    [29]Phelps EA, O'Connor KJ, Gatenby JC, Gore JC, Grillon C, Davis M. Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci.2001.4(4):437-41.
    [30]Ploghaus A, Narain C, Beckmann CF, et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci.2001.21(24): 9896-903.
    [31]O'Doherty JP, Deichmann R, Critchley HD, Dolan RJ. Neural responses during anticipation of a primary taste reward. Neuron.2002.33(5):815-26.
    [32]Porro CA, Baraldi P, Pagnoni G, et al. Does anticipation of pain affect cortical nociceptive systems. J Neurosci.2002.22(8):3206-14.
    [33]Jensen J, McIntosh AR, Crawley AP, Mikulis DJ, Remington G, Kapur S. Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron.2003.40(6):1251-7.
    [34]Rogers RD, Andrews TC, Grasby PM, Brooks DJ, Robbins TW. Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. J Cogn Neurosci.2000.12(1):142-62.
    [35]Cools R, Clark L, Owen AM, Robbins TW. Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci.2002.22(11):4563-7.
    [36]Kringelbach ML, Rolls ET. Neural correlates of rapid reversal learning in a simple model of human social interaction. Neuroimage.2003.20(2):1371-83.
    [37]Gottfried JA, Dolan RJ. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nat Neurosci. 2004.7(10):1144-52.
    [38]Hornak J, O'Doherty J, Bramham J, et al. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci.2004.16(3):463-78.
    [39]Morris JS, Dolan RJ. Dissociable amygdala and orbitofrontal responses during reversal fear conditioning. Neuroimage.2004.22(1):372-80.
    [40]Phelps EA, Delgado MR, Nearing KI, LeDoux JE. Extinction learning in humans:role of the amygdala and vmPFC. Neuron.2004.43(6):897-905.
    [41]Fellows LK, Farah MJ. Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb Cortex.2005.15(1):58-63.
    [42]Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia--imaging a shared neuronal network. Science.2002.295(5560):1737-40.
    [43]Lieberman MD, Jarcho JM, Berman S, et al. The neural correlates of placebo effects:a disruption account. Neuroimage.2004.22(1):447-55.
    [44]Wager TD, Rilling JK, Smith EE, et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science.2004.303(5661):1162-7.
    [45]Ochsner KN, Gross JJ. Thinking makes it so:a social cognitive neuroscience approach to emotion regulation. In:Baumeister RF, Vohs KD, eds. Handbook of Self-Regulation:Research, Theory, and Applications.2004.229-255.
    [46]Beauregard M, Levesque J, Bourgouin P. Neural correlates of conscious self-regulation of emotion. J Neurosci.2001.21(18):RC165.
    [47]Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD. Rethinking feelings:an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci.2002.14(8): 1215-29.
    [48]Schaefer SM, Jackson DC, Davidson RJ, Aguirre GK, Kimberg DY, Thompson-Schill SL. Modulation of amygdalar activity by the conscious regulation of negative emotion. J Cogn Neurosci.2002.14(6):913-21.
    [49]Levesque J, Eugene F, Joanette Y, et al. Neural circuitry underlying voluntary suppression of sadness. Biol Psychiatry.2003.53(6):502-10.
    [50]Ochsner KN, Ray RD, Cooper JC, et al. For better or for worse:neural systems supporting the cognitive down-and up-regulation of negative emotion. Neuroimage.2004.23(2):483-99.
    [51]Phan KL, Fitzgerald DA, Nathan PJ, Moore GJ, Uhde TW, Tancer ME. Neural substrates for voluntary suppression of negative affect:a functional magnetic resonance imaging study. Biol Psychiatry.2005.57(3):210-9.
    [52]Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci.1995.18:193-222.
    [53]Hillyard SA, Anllo-Vento L. Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci U S A.1998.95(3):781-7.
    [54]Luck S J, Ford MA. On the role of selective attention in visual perception. Proc Natl Acad Sci U S A.1998.95(3):825-30.
    [55]Kastner S, Ungerleider LG. Mechanisms of visual attention in the human cortex. Annu Rev Neurosci.2000.23:315-41.
    [56]Vuilleumier P. How brains beware:neural mechanisms of emotional attention. Trends Cogn Sci.2005.9(12):585-94.
    [57]Critchley H, Daly E, Phillips M, et al. Explicit and implicit neural mechanisms for processing of social information from facial expressions:a functional magnetic resonance imaging study. Hum Brain Mapp.2000.9(2):93-105.
    [58]Winston JS, O'Doherty J, Dolan RJ. Common and distinct neural responses during direct and incidental processing of multiple facial emotions. Neuroimage.2003.20(1):84-97.
    [59]Cunningham WA, Johnson MK, Gatenby JC, Gore JC, Banaji MR. Neural components of social evaluation. J Pers Soc Psychol.2003.85(4):639-49.
    [60]Bishop S, Duncan J, Brett M, Lawrence AD. Prefrontal cortical function and anxiety:controlling attention to threat-related stimuli. Nat Neurosci.2004. 7(2):184-8.
    [61]Bantick SJ, Wise RG, Ploghaus A, Clare S, Smith SM, Tracey I. Imaging how attention modulates pain in humans using functional MRI. Brain.2002.125(Pt 2):310-9.
    [62]Valet M, Sprenger T, Boecker H, et al. Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain--an fMRI analysis. Pain.2004.109(3):399-408.
    [63]Tracey I, Ploghaus A, Gati JS, et al. Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci.2002.22(7):2748-52.
    [64]Botvinick MM, Cohen JD, Carter CS. Conflict monitoring and anterior cingulate cortex:an update. Trends Cogn Sci.2004.8(12):539-46.
    [65]Hsieh JC, Meyerson BA, Ingvar M. PET study on central processing of pain in trigeminal neuropathy. Eur J Pain.1999.3(1):51-65.
    [66]Ploghaus A, Tracey I, Gati JS, et al. Dissociating pain from its anticipation in the human brain. Science.1999.284(5422):1979-81.
    [67]Knutson B, Fong GW, Adams CM, Varner JL, Hommer D. Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport.2001. 12(17):3683-7.
    [68]Porro CA, Baraldi P, Pagnoni G, et al. Does anticipation of pain affect cortical nociceptive systems. J Neurosci.2002.22(8):3206-14.
    [69]Ochsner KN, Knierim K, Ludlow DH, et al. Reflecting upon feelings:an fMRI study of neural systems supporting the attribution of emotion to self and other. J Cogn Neurosci.2004.16(10):1746-72.
    [70]Phelps EA, O'Connor KJ, Gatenby JC, Gore JC, Grillon C, Davis M. Activation of the left amygdala to a cognitive representation of fear. Nat Neurosci.2001.4(4):437-41.
    [71]Jensen J, McIntosh AR, Crawley AP, Mikulis DJ, Remington G, Kapur S. Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron.2003.40(6):1251-7.
    [72]O'Doherty JP, Deichmann R, Critchley HD, Dolan RJ. Neural responses during anticipation of a primary taste reward. Neuron.2002.33(5):815-26.
    [73]Sawamoto N, Honda M, Okada T, et al. Expectation of pain enhances responses to nonpainful somatosensory stimulation in the anterior cingulate cortex and parietal operculum/posterior insula:an event-related functional magnetic resonance imaging study. J Neurosci.2000.20(19):7438-45.
    [74]Ploghaus A, Narain C, Beckmann CF, et al. Exacerbation of pain by anxiety is associated with activity in a hippocampal network. J Neurosci.2001.21(24): 9896-903.
    [75]Gross JJ. Antecedent-and response-focused emotion regulation:divergent consequences for experience, expression, and physiology. J Pers Soc Psychol. 1998.74(1):224-37.
    [76]Petrovic P, Kalso E, Petersson KM, Ingvar M. Placebo and opioid analgesia--imaging a shared neuronal network. Science.2002.295(5560):1737-40.
    [77]Lieberman MD, Jarcho JM, Berman S, et al. The neural correlates of placebo effects:a disruption account. Neuroimage.2004.22(1):447-55.
    [78]Wager TD, Rilling JK, Smith EE, et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science.2004.303(5661):1162-7.
    [79]Holland PC, Gallagher M. Amygdala-frontal interactions and reward expectancy. Curr Opin Neurobiol.2004.14(2):148-55.
    [80]Gottfried JA, Dolan RJ. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nat Neurosci. 2004.7(10):1144-52.
    [81]Phelps EA, Delgado MR, Nearing KI, LeDoux JE. Extinction learning in humans:role of the amygdala and vmPFC. Neuron.2004.43(6):897-905.
    [82]Hornak J, O'Doherty J, Bramham J, et al. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci.2004.16(3):463-78.
    [83]Fellows LK, Farah MJ. Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb Cortex.2005.15(1):58-63.
    [84]Cools R, Clark L, Owen AM, Robbins TW. Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci.2002.22(11):4563-7.
    [85]Morris JS, Dolan RJ. Dissociable amygdala and orbitofrontal responses during reversal fear conditioning. Neuroimage.2004.22(1):372-80.
    [86]Kalin NH, Shelton SE. Nonhuman primate models to study anxiety, emotion regulation, and psychopathology. Ann N Y Acad Sci.2003.1008:189-200.
    [87]Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation:implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008.13(9):829,833-57.
    [88]Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci.2001.24:167-202.
    [89]Wager TD, Smith EE. Neuroimaging studies of working memory:a meta-analysis. Cogn Affect Behav Neurosci.2003.3(4):255-74.
    [90]Raichle ME, Gusnard DA. Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp Neurol.2005.493(1):167-76.
    [91]Simpson JR Jr, Snyder AZ, Gusnard DA, Raichle ME. Emotion-induced changes in human medial prefrontal cortex:I. During cognitive task performance. Proc Natl Acad Sci U S A.2001.98(2):683-7.
    [92]Mayberg HS, Liotti M, Brannan SK, et al. Reciprocal limbic-cortical function and negative mood:converging PET findings in depression and normal sadness. Am J Psychiatry.1999.156(5):675-82.
    [93]Gray JR, Braver TS, Raichle ME. Integration of emotion and cognition in the lateral prefrontal cortex. Proc Natl Acad Sci U S A.2002.99(6):4115-20.
    [94]Yamasaki H, LaBar KS, McCarthy G Dissociable prefrontal brain systems for attention and emotion. Proc Natl Acad Sci U S A.2002.99(17):11447-51.
    [95]Johnstone T, van RCM, Urry HL, Kalin NH, Davidson RJ. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in
    major depression. J Neurosci.2007.27(33):8877-84.
    [96]Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression:related and independent features. Biol Psychiatry.2007.61(2): 198-209.
    [97]APA. DSM-IV-TR:Diagnostic and Statistical Manual of Mental Disorders. 2000. Washington. American Psychiatric Association.
    [98]Erickson K, Drevets WC, Clark L, et al. Mood-congruent bias in affective go/no-go performance of unmedicated patients with major depressive disorder. Am J Psychiatry.2005.162(11):2171-3.
    [99]Leyman L, De Raedt R, Schacht R, Koster EH. Attentional biases for angry faces in unipolar depression. Psychol Med.2007.37(3):393-402.
    [100]Mayberg HS. Limbic-cortical dysregulation:a proposed model of depression. J Neuropsychiatry Clin Neurosci.1997.9(3):471-81.
    [101]Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry.2000. 48(8):813-29.
    [102]Mayberg HS, Brannan SK, Tekell JL, et al. Regional metabolic effects of fluoxetine in major depression:serial changes and relationship to clinical response. Biol Psychiatry.2000.48(8):830-43.
    [103]Kennedy SH, Evans KR, Kruger S, et al. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am J Psychiatry.2001.158(6):899-905.
    [104]Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol.2002.12(6):527-44.
    [105]Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment:an fMRI study. Biol Psychiatry.2001. 50(9):651-8.
    [106]Nobler MS, Sackeim HA, Prohovnik I, et al. Regional cerebral blood flow in mood disorders, Ⅲ. Treatment and clinical response. Arch Gen Psychiatry. 1994.51(11):884-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700