中低速磁悬浮车体结构设计及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中低速磁悬浮列车因其乘座舒适、转弯半径小、安全不会脱轨、易于维护及绿色环保等优点,受到越来越广泛的关注。日本已经建成了中低速磁悬浮山梨示范线并投入商业运营,我国西南交通大学、国防科技大学和中科院电科所均研制出了工程样车,并积极将这些研究成果推广为商业应用,北京中低速磁浮交通S1号线已经开工建设,预计2015年开通试运营。
     中低速磁悬浮列车有着自身的特点,车辆的导向,驱动和制动等与现有的轮轨车辆完全不同;因此,悬浮车辆的车体结构设计载荷也与现有的轮轨车辆不同,车体结构设计应依据实际运行状况采用合理的设计载荷。本文依据磁悬浮列车的实际运行状况并比较了TB/T1335-1996, BS EN12663:2000, JIS E 7106:2006关于车体载荷的说明,阐述了中低速磁悬浮列车车体结构的设计载荷,其中包括车体垂向静载荷、垂向动载荷、扭转载荷和纵向载荷产生的原因及大小,并依据这些载荷确定了中低速磁悬浮列车车体结构的考核工况。
     为了在车体结构设计之初确定各部件的主要承载位置,及为设计提供思路,本文根据中低速磁悬浮列车的基本参数以及对车体结构的基本要求,运用三维设计软件和结构分析软件建立了车体结构的拓扑优化模型,并采用静态单工况刚度优化方法,比较了车体结构拓扑优化各参数的选取,然后对车体结构采用了多工况静动态拓扑优化方法,得出车体结构的概念模型。
     运用拓扑优化结果,对中低速磁悬浮列车车体底架、端墙、侧墙、车顶进行了详细的结构设计,为了提高整车的刚度和便于车下设备的安装,底架结构采用了横向滑台与中梁的形式,详细结构设计完成之后,再次建立了车体结构的有限元模型,并对车体结构进行了静强度分析和尺寸优化,使车体结构重量由原来的4.13吨减少到3.09吨,减重率达到25.18%,车体结构仍能满足强度要求。
Low-speed maglev trains have many advantages including riding comfortable, small turning radius, safety and don't worry about derailed, easy maintenance and environmental friendly etc, it is paid more and more attention. Yamanashi low-speed maglev train test line have been built in Japan and put in commercial operation. Engineering prototype vehicles have been manufactured respectively by Southwest Jiaotong University, National Defense University and Electrical Research Institute of Chinese Sciences Academy. They are promoting these research results into commercial applications positively. Beijing low-speed maglev line s1 has been constructed and put into trial operation in 2015.
     Low-speed maglev trains have its characteristics. Vehicles guiding, driving and braking systems are different from the existing wheel track vehicles.Therefore, the design loads of the vehicle is also different from the track vehicles, and car body structure design should be based on its actually operating conditions with reasonable design loads. This paper illustrated the design loads of Low-speed maglev vehicles including static vertical load, dynamic vertical load, torsion load and longitudinal load and compared these loads with the standards of TB/T1335-1996,BS EN12663:2000, JIS E 7106:2006.and determined the designed cases based on these loads to the structure of the low-speed maglev train body.
     In order to determine the main load supporting locations of car body at the beginning design and provide conceptual model for the designer, a topology optimization model was established reference the basic parameters using three-dimensional design software and the finite element analysis software. Exploring single and static stiffness case compared the topology optimization parameters how to choose and how to influence the optimization results. Finally, a conceptual model was obtained exploring multiple static and dynamic topology optimizations.
     The car body under frame, end walls, side walls and roof structure were designed in details referencing the topology optimization results. In order to improve the vehicle rigidity and convenient to install equipments, the under frame was designed as the horizontal slider and the middle beam structure. A finite element model was established again after the detailed design. Using the finite model completed the static strength analysis and size optimization. The weight of car body structure reduce from 4.13 tons to 3.09 tons and weight loss ratio up to 25.18%. Car body structure can also meet the strength requirements.
引文
[1]魏庆朝,孔永健.磁悬浮铁路系统与技术[M].中国科学技术出版社,2003
    [2]赵春发.磁悬浮车辆系统动力学研究[D].西南交通大学博士学位论文,2002
    [3]G. Samavedam. Assessment of CHSST Maglev for U.S. Urban[R]. Final Report,2002.
    [4]铁道车辆强度设计及试验鉴定规范TB/T1335-1996
    [5]铁路机车车辆客车车体设计一般要求.JIS E 7106:2006
    [6]铁道应用——轨道车身的结构要求BS EN 12663:2000
    [7]曹玲玲.高速列车车体设计规范的分析与研究[D].北京交通大学硕士学位论文,2007
    [8]张博.动车组车体强度设计规范的研究[D].北京交通大学硕士学位论文,2009
    [9]王旭东.地铁车体结构垂向总载荷和纵向力取值的探讨[J].铁道机车车辆,2004,24(5):28-32
    [10]任启麟.关于客车车体扭转载荷问题的探讨[J].铁道车辆,1997,35(3):5-8
    [11]Radovan Sarunac. "Low Speed" Magnetic Levitation Vehicle in the U.S[J]. IEEE,1999,130-143
    [12]王婧宇.城市轨道交通列车动力学模型的仿真研究[D].北京交通大学硕士学位论文,2009
    [13]王福天.车辆系统动力学[M].北京:中国铁道出版社,1994
    [14]海邦君.铝合金车体设计研究[J].铁道车辆,2003,41(10):26-29
    [15]常树民,马纪军.铝合金车体结构设计构思[J].铁道车辆,2004,42(9):9-13
    [16]刘静安铝材在铁道运输车辆中的开发与应用(上)[J].铝加工,1993,16(23):26-34
    [17]刘静安铝材在铁道运输车辆中的开发与应用(下)[J].铝加工,1993,16(24):21-25
    [18]杜春江.连续体结构拓扑优化理论及其在炮塔结构设计中的应用研究[D].南京理工大学博士学位论文,2008
    [19]左孔天.连续体结构拓扑优化理论与应用研究[D].华中科技大学博士学位论文,2004
    [20]杨姝.复杂机械结构拓扑优化若干问题研究[D].大连理工大学博士学位论文,2007
    [21]朱光谦.某SUV车架结构拓扑优化设计[D].燕山大学硕士学位论文,2010
    [22]苏胜伟.基于Optistruct拓扑优化的应用研究[D].哈尔滨工程大学硕士学位论文,2008
    [23]范文杰,范子杰,苏瑞意.汽车车架结构多目标拓扑优化方法研究[J].中国机械工程,2008,19(12):1505-1508
    [24]扶原放,金达锋,乔蔚炜.多工况下微型电动车车身结构拓扑优化设计[J].机械设计2010,27(2):77-80
    [25]Martin P. Bendsφe and Ole Sigmund. Topology Optimization:Theory, Methods and Applications[M].Springer Verlag, Berlin Heidelberg,2003
    [26]佟维,刘晓雪.高速动车组铝合金车体结构优化策略[J].计算力学学报2009,26(3)424-427
    [27]兆文忠,杨德庆,李福等.结构系统优化分解法的解耦研究[J].大连铁道学院学报1995,16(1)18-23
    [28]Paris,J. Navarrina, F. Colominas, I. Casteleiro, M. Topology optimization of continuum structures with local and global stress constraints[J]. Structural and Multidisciplinary Optimization,2009, v39(4):p 419-437
    [29]Bruggi,Matteo,Cinquini,Carlo.Topology optimization of multi-loaded structures with mixed finite elements[J]. Advances in Structural Engineering,2007,10(6):663-679
    [30]鲍佳.磁浮列车悬浮控制与动力学仿真[D].西南交通大学硕士学位论文,2003
    [31]赵宇.常导低速磁浮列车机械制动控制研究[D].国防科学技术大学硕士学位论文,2005
    [32]张博.低速磁浮列车电-机械联合制动控制方法研究[D].国防科学技术大学硕士学位论文,2005
    [33]张志洲,龙志强.日本首条城市磁浮运营线车辆技术[J].电力机车与城轨车辆,2005,,2005,28(6):44-46
    [34]张志洲,龙志强.日本东部丘陵线磁悬浮系统技术[J].综述国外铁道车辆,2005,42(6):7-11
    [35]张志洲,张惠霞.韩国磁悬浮列车发展[J].国外铁道车辆,2006,43(4):8-11
    [36]谢涛,刘静,刘军考.结构拓扑优化综述[J].机械工程师,2006,8:22-25
    [37]Bendsφe, M., and Kikuchi, N. Generating Optimal Topologies in Optimal Design using a Homogenization Method[J]. Computer Methods in Applied Mechanics and Engineering,71 (1988):197-224.
    [38]唐焕文,秦学志.实用最优化方法[M].大连:大连理工大学出版社,2004.
    [39]刘惟信.机械最优化设计[M].北京:清华大学出版社,2000
    [40]李楚琳,张胜兰,冯樱等.Hyperworks分析应用实例[M].北京:机械工业出版社,,2008.
    [41]张胜兰,郑冬黎,郝琪.基于Hyperworks的结构优化设计技术[M].北京:机械工业出版社,2008
    [42]严隽毫.车辆工程[M].北京:中国铁道出版社,1999
    [43]谢云德,常文森.电磁型(EMS)磁悬浮列车系统铅垂方向建模与仿真[J].铁道学报,1996,18(4):47-53
    [44]邓小星,傅茂海,卜继玲等.五模块中低速磁浮车辆动力学研究[J].电力机车与城轨 车辆,2010,33(1):10-17
    [45]谢云德,常文森,尹力明.磁悬浮列车系统轨道动力学分析与试验研究[J].国防科技大学学报,1997,19(5):58-63
    [46]Huiguang Dai.Dynamic behavior of maglev vehicle/guideway system with control[D]. Case Western Reserve University Doctor Degree Dissertation,2005
    [47]赵春发,翟婉明,王其昌.低速磁浮车辆曲线通过动态响应仿真分析[J].中国铁道科学,2005,26(3):94-98
    [48]王洪坡.EMS型低速磁浮列车/轨道系统的动力相互作用问题研究[D].国防科学技术大学博士学位论文,2007
    [49]叶学艳.磁浮车辆系统动力学建模与仿真分析[D].西南交通大学硕士学位论文,2007
    [50]鲍维千.内燃机车总体及走行部[M].北京:中国铁道出版社,2007
    [51]梅竹.基于虚拟样机的磁浮列车建模及仿真[D].国防科学技术大学硕士学位论文,2006
    [52]缪炳荣,罗仁,王哲等.Simpack动力学分析高级教程[M].成都:西南交通大学出版社,2010
    [53]张锁怀,张平满,贾坤.地铁调车作业中车钩缓冲器冲击特性分析[J].机械设计与研究,2010,26(6):61-64
    [54]帅纲要,常明,何华.城轨车辆车钩缓冲器的配置与能量吸收[J].电力机车与城轨车辆,2009,32(5):17-21
    [55]Zhou, M., Difficulties in Truss Topology Optimization with Stress and Local Buckling Constraints[J]. Structural Optimization,11 (1996) 134-136.
    [56]Zhou, M., and Haftka, R.T., A Comparison Study of Optimality Criteria Methods for Stress and Displacement Constraints[J]. Computer Methods in Applied Mechanics and Engineering,124 (1995),253-271.
    [57]Duysinx, P., and Bendsφe, M., Topology Optimization of Continuum Structures with Local Stress Constraints[J]. DCAMM Report, Technical University of Denmark,1996.
    [58]Satty TL,Vargas LG.Prediction,projection and forecasting application of the analytic hierarchy process in economics finace,politics games and sports[M].Boston:Kluwer Academic,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700