蓟县剖面元古宙沉积物(1.8-0.85Ga)的分子有机地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迄今为止,地球科学家的注意力仍主要集中于显生宙地球的研究,而对早期地球与早期生命的演化段却知之甚少。本研究以我国著名的中晚元古代地层剖面天津蓟县剖面(1.8-0.85Ga)中保存的沉积有机质为研究对象,运用分子有机地球化学的方法和理论系统研究了该剖面元古宙沉积物中的可溶有机分子特征、干酪根化学与热降解产物分子特征以及各种有机质类型(包括可溶单体烃类、干酪根等)和共生碳酸盐的碳同位素特征。在研究和讨论中还重点结合了蓟县剖面丰富的古环境和古生物的资料,从分子和同位素的角度对燕山盆地及其生命在全球演化大背景下的早期演化进行了深入探讨。
     剖面生物标志化合物特征的调查显示整个剖面具有基本相似的分子组成。值得一提的是在剖面串岭沟组约1.8Ga的页岩中发现了指示真核生物存在的古老甾烷和指示原生动物存在的目前所知的最古老的伽马蜡烷。通过对剖面分子特征与独立的古环境和古生物资料的对比研究发现蓟县剖面中的有机分子很好地记录了燕山盆地元古宙各阶段的生物和古环境演化的信息。
     干酪根和共生碳酸盐的碳同位素组成(δ~(13)C_k和δ~(13)C_(carb))以及二者的差值(Δ_C)反映了在全球大环境演化下的燕山盆地小生境的演化特征。δ~(13)C_k和δ~(13)C_(carb)的剖面特征表明,大约1.55Ga前,全球CO_2浓度曾持续快速下降,而之后趋于稳定。Δ_C被证明能有效反映局部环境中不同生物群落在利用CO_2过程中的碳同位素分异程度的差异。Δ_C在剖面上的规律性变化显示了燕山盆地生物整体同位素分异程度在元古宙演化过程中出现旋回式波动。这一波动能很好地被解释为燕山盆地周期性海进与海退所导致的不同生物群落的更迭。
     单体烃碳同位素组成与共生干酪根碳同位素组成之间的关系提供了燕山盆地演化中更为深层次的有关生物地球化学循环方面的信息。剖面中具有较重同位素组成的类异戊二烯化合物和早于高于庄期(>1.4Ga)的样品中的正构烷烃可能较多地来源于生存在燕山古海中的喜盐等古细菌类脂,而高于庄期后样品中的正构烷烃可能较多地起源于具有相对较轻同位素组成的原始藻类有机质。正构烷烃与共生干酪根碳同位素关系在高于庄末期(1.4Ga)的明显倒转可能表明在高于庄末期以后原始有机质的异养生物降解程度明显降低。这一降低可能与燕山盆地进入稳定的浅水陆表海沉积环境有关。蓟县剖面元古宙沉积有机质中独特的单体烃与共生干酪根的碳同位素关系特征地反映了具有明显局限特征
    
     中科院广州地球化学研究所博士学位论文
    的元古宙燕山盆地所特有的生物地球化学循环过程。
     Rock-Eval等数据以及初步的干酪根化学和热降解的研究表明剖面中大部
    分干酪根样品己对应成熟至油窗结束阶段,且只有来自剖面洪水庄组干酪根具
    有开展全面有机地球化学研究的价值。多种有机地球化学方法对剖面洪水庄组
    干酪根的综合研究不仅获得了洪水庄组干酪根重要的分子结构特征和有机质生
    物起源的信息,而且还从干酪根的角度证实了洪水庄组可溶有机质原生性的本
    质。
     通过对剖面洪水庄组与北美老页岩组分子特征及其他地球化学特征的对比
    表明华北地块很可能在1112亿年以前与劳伦大陆是紧紧挨在一起的。
     此项研究具有以下特色和创新之处:()研究对象连续时间跨度最长;门)
    研究内容涉及面较全面;(3)较早详细探讨了前寒武纪沉积有机质的分子特征
    与古环境和生物群落的演化关系;N)独立推导和论证了吵C_和5’3C。的差
    值(八C)的生物和环境的重要意义:6)在前寒武纪有机质研究中区分了局部
    封闭环境下的生物地球化学循环过程与广域海环境下的生物地球化学过程的差
    异:(6)开展了前寒武纪干酪根化学和热降解研究;()开创性地将分子有机
    地球化学的数据应用于元古宙Rodinia超大陆的重建中。
The Precambrian, one of the most important stages in the history of the Earth, so far, is still less known to us mostly because of the absence of intact morphological fossils in the Precambrian strata. This study systemically investigated the molecular (including soluble saturates and hydrocarbon products of keogen degradation) and carbon isotopic (including soluble hydrocarbons, kerogens and coexisted carbonates etc.) characteristics of Paleo- to Neoproterozoic (1.8-0.85Ga) sediments from the famous Jixian strata section, North China. The environmental and biological evolutions of Proterozoic Yanshan Basin companied by the global evolution were also discussed in detail with these molecular and isotopic data combined with independent palaeoenvironmental and palaeontologic information as acquired from these strata.
    Analogous hydrocarbon types were detected in almost all samples from Jixian strata section. It is worth noting that the old steranes and the so far oldest gammacerane was detected in the l.SGa shales from Chuanlinggou Formation, which denote the presences of eucaryotes and protozoans respectively. The agreement of molecular characteristics with palaeoenvironmental and fossils data as derived from these strata suggests that the biomarkers preserved in these Proterozoic sediments are good indicators for the evolution of the palaeoenvironment and the early life in Yanshan basin.
    The stable carbon isotopic characteristics of kerogen (813Ct) and coexisting carbonate (Sl3Ccait>) derived from the strata show a rapid decline of atmospheric CO2 concentration before 1.55Ga, and a stable concentration after 1.55Ga. It is confirmed that the difference (Ac) between the isotopic compositions of carbonate and associated kerogen can reflect the extent of carbon isotope fractionations accompanying biological usage of COa- The cyclic variations along the strata sequence exhibited by AC record may reflect the periodical marine transgression and regression that occurred in Yanshan basin during the Proterozoic age, and in turn, the changes of biocommumties adaptable to the changed environments.
    
    
    
    The carbon isotopic relationships among kerqgens and n-alkanes and isoprenoids from these strata are consistent with the hypothesis that before 1.4Ga both n-alkanes and isoprenoids were mainly derived from heterotrophic halophiles and other possible archaebacteria, but after 1.4Ga only isoprenoids were still mainly originated from the archaebacteria while n-alkanes were significantly derived from primitive organic matter of photosynthetic organisms such as cyanobacteria. The change of biological origins of n-alkanes around 1.4Ga may suggest a marked decline of heterotrophic reworking to primitive lipids after 1.4Ga. This decline might be related to the formation of stable epicontinental sea characterized by shallow water environment. The isotopic relationship between individual hydrocarbons and associated kerogens derived from Jixian strata section may suggest special biogeochemical processes existed in closed Proterozoic Yanshan Basin compared to those of open sea system.
    Rock-Eval analysis and kerogen degradations show that most of the kerogens from the strata section are over mature. Only the kerogen acquired from Hongshuizhuang Formation can meet the chemolysis and thermolysis of kerogen. Abundant structural and biological original information was obtained from this kerogen based on the integrated applications of multiple organic geochemical methods significantly including RTCO and Py-GC-MS. Moreover, the indigenous natures of soluble hydrocarbons derived from Hongshuizhuang Fm. are also suggested by these integrated applications.
    The molecular and other geochcmicaf correlations between ttongshuizhuang i^m. and Nonesuch Fm. from Central North American Rift System show the possible linkage between North China Block and Laurentia Block before 1.1-1.2Ga.
    Features and innovations in this study: (1) Longest successive time scale of Precambrian samples is studied; (2) The environmental and biological significances of the d
引文
[1] Press, F.,and Siever, R. Earth. San Francisco, W.H.Freeman.,1974, 945.
    [2] Galimov, E. M., Kuznetsova, N.G., and Prokhorov. The Composition of the former atmosphere of the earth as indcated by isotopic analysis of pre-Cambrain carbonates,Geokhim., 1968, 11:1376-1381.
    [3] Hallam, A. Favies interpretation and the stratigraphic record. W.H.Freeman. and Company 1981.中译本,张志娴,沈德麒译,地质出版社,1991, 183-199.
    [4] Willianm, T. H., Thomas, J. C., Steven, K. B. W., Richard, P. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model. Nature, 2001, 405:425-429.
    [5] 陆松年,马国干,高振家,林蔚兴.中国晚前寒武纪冰成岩系初探.中国晚前寒武纪冰成岩论文集.《前寒武纪地质》第1号,北京:地质出版社,1983:1-86.
    [6] 关保德,耿午辰,戎治国,杜慧英.河南省罗圈组冰碛岩时代探讨冲国晚前寒武纪冰成岩论文集.《前寒武纪地质》第1号,北京:地质出版社,1983:183-206.
    [7] Hunt, J. M. Petroleum Geochemistry and Geology. W.H.Freeman. and Company1979.中译本,胡伯良译,石油工业出版社,1986, 9.
    [8] Han, T. M., and Runnegar, B. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron Formation, Michigan. Science, 1992, 257:232-235.
    [9] 阎玉忠.蓟县串领沟组页岩相藻丝体.天津地质矿产研究所所刊,1989,21:149-165.
    [10] 阎玉忠,刘志礼.论长城系微化石群的真核生物意义.微体古生物学报,1993,10:167-180.
    [11] 朱士兴,孙淑芬,黄学光,等.燕山常州沟组(约1800Ma)碳质压型化石及其多细胞组织的发现.科学通报,1999,44:1552-1557.
    [12] 阎玉忠,刘志礼.Sangshuania是真核藻类还是遗迹化石?.微体古生物学报,1998a,15:101-110.
    [13] 赵元龙,黄友庄,王家仁,等.凯里化石库—一个新的中寒武世布尔古斯页岩型化石库.贵州地质,1996,17(2):105-114.
    [14] Chia-Wei Li, Jun-Yuan Chen, Tzu-En Hua. Precambrian Sponges with Cellular Structures.Science, 1998,279:879-882.
    [15] 陈均远,周桂琴,朱茂炎.澄江动物群,台北:国立图书馆,1-222.
    [16] 袁训来,李军,陈孟莪.晚前寒武纪后生植物的发展及其化石证据.古生物学报,1995,34(1):90-99.
    [17] Shuhai Xiao, Yun Zhang, A. H. Knoll. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 1998, 391:553-558.
    [18] Vidal, G., and Knoll, A. H. Radiations and extinctions of plankton in the Late Precambrain
    
    and Early Cambrian. Nature, 1982, 297:57-60.
    [19] Tucker, M. E. Carbon isotope excursions in Precambrian/Cambrian boundary beds, Morocco. Nature, 1986, 319:48-50.
    [20] Lambert, I. B., Walter, M. R., Zang, W. L., Lu, S. N., and Ma, G. A. Palaeoenvironment and carbon isotope stratigraphy of Upper Proterozoic carbonates of the Yangtze Platform. Nature, 1987, 325:140-142.
    [21] Logan, G. A., Hayes, J. M., Hieshima, G. B., and Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycle. Nature, 1995, 376:53-56.
    [22] Summons R E, Walter M R. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. American Journal of Science, 1990, 290-A:212-244.
    [23] 李任伟.分子地层学.地球科学进展,1992,7(2) :78.
    [24] Mckirdy, D.M. Organic geochemistry in Precambrian research. Precambrain Research, 1974, 1:75-137.
    [25] Mckirdy, D.M., Hahn, J. The composition of kerogen and hydrocarborn in Precambrain rocks : Mineral deposition and the evolution of the biosphere. Dahlem Konferenzen, Berlin, Springer-Verlag, Holland, H. D., Schidlowski, M., (eds.), 1982,123-154.
    [26] Durand B. (ed.). Kerogen. Insoluble organic matter from sedimentary rocks. Editions Technip, Paris. 1980, 519.
    [27] Tissot, B. P., and Welte, D. H., Petroleum formation and occurrence. Birlin, Springer-Verlag, 1984, 699.
    [28] Kvenvolden, K. A., Peerson, E. and Pollock, G. E. Optical configuration of amino acids in the Precambrain Fig Tree Chert. Nature, 1969,221:141-143.
    [29] Swain, F. M., Bratt, J. M. and Kirkwood, S. Carbohydrates from Precambrain and Cambrian rocks and fossils. Bull. Geol. Soc. Am, 1970, 81:499-504.
    [30] Han, J., and Calvin, M. Occurrence of fatty acids and aliphatic hydrocarbons in a 3. 4 billion year old sediment. Nature, 1969, 224:576-578.
    [31] Eglinton, G., Scott, P. M., Belsky, T., Burlingame, A. L., and Calvin, M. Hydrocarbons of biological origin from a one-billion-year-old sediment. Science, 1964, 145:263-264.
    [32] Meinschein, W. G., Barghoom, E. S., Schopf, J. W. Biological remnants in a Precambrain sediment. Science, 1964, 145:262.
    [33] Oro, J., Nooner, D. W., Zlatkis, A. Hydrocarbons of Biological origin in sediments about two billion years old. Science, 1965, 148:77-79.
    [34] Kvenvolden, K., and Hodgson, G. W. Evidence for porphyrins in Early Precambrain Swaziland System Sediments. Geochimica et Cosmochimica Acta, 1969, 33:1195-1202.
    [35] Hoering, T. C., Navale, V. A search for molecular fossils in the kerogen of Precambrian sedimentary rocks. Precambrain Research , 1987, 34:247-267.
    [36] Grantham, P. J. The occurce of unusual C27 and C29 sterane predominances in two types of Oman crude oil. Organic Geochimistry, 1986, 9:1-10.
    
    
    [37] Jackson, M. J., Powell, T. G., Summons R. E., and Sweet I. P. Hydrocarbon shows and petroleum source rocks in sediments as old as 1. 7×10~9 years. Nature, 1986, 322:727-729.
    [38] Fowler, M. G., and Douglas, A. G. Saturated hydrocarbon biomarkers in oils of Late Precambrain age from Eastern Siberia. Organic Geochimistry, 1987, 11:201-203.
    [39] Summons, R. E., Powell, T. G., Boreham, C. J. Petroleum geology and geochemistry of the middle Proterozoic McArthur Basin, Northern Australia:Ⅲ. Composition of extractable hydrocarbons. Geochimica et Cosmochimica Acta, 1988a, 52:1747-1763.
    [40] Summons, R. E., Brassell, S. C., Eglinton, G., Evans, E. J., Horodyski, R. J., Robinson, N., and Ward. D. M. Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Cayon, U.S.A. Geochimica et Cosmochimica Acta, 1988b, 52:2625-2637.
    [41] Pratt, L. M., Summons, R. E., and Hieshima, G.B. Sterane and triterpane biomarkers in the Precambrain Nonesuch Formation, North American Midcontinent Rift. Geochimica et Cosmochimica Acta, 1991,55:911-916.
    [42] Bazhennova, O. K., and Arefiev, O. A. Geochemical peculiarities of pre-Cambrain source rocks in the East European Platform. Organic Geochimistry, 1996, 25(5-7) :341-351.
    [43] Brocks, J. J., Logan, G. A., Buick, R., Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science, 1999, 285:1033-1036.
    [44] Warburton, G. A., and Zumberge, J. E. Determination of petroleum sterane distribution by mass spectrometry with selective metastable ion monitoring. Analytical Chemistry, 1983, 55:123-126.
    [45] Logan, G. A., Summons, R. E. and Hayes, J. M. An isotopic biogeochemical study of Neoproterozoic and Early Cambrian sediments from the Centralian Superbasin, Australia. Geochimica et Cosmochimica Acta, 1997, 61:5391-5409.
    [46] Mycke, B., and Michaelis, W. Molecular fossils from chemical degradation of macromolecular organic matter. Leythaeuser, D., and Rullkλotter, J. (eds.), Advances in Organic Geochimistry 1985, Oxford, Pergamon Press, 1986, 847-858.
    [47] Mycke, B.. Narjes, F., and Michaelis, W. Bacteriohopanetetrol from chemical degradation of an oil shale kerogen. Nature, 1987, 326:179-181.
    [48] Llsley, W H, Zingaro, R A, Zoeller, Jr. J H. The reactivity of ruthenium textroxide towards aromatic and etheric functionalities in simple organic compounds. Fuel, 1986, 65: 1216-1220.
    [49] Boucher, R J, Standen, G, Patience, R L, Eglinton, G. Molecular characterisation of kerogen from the Kimmeridge clay formation by mild selective chemical degradation and solid state 13C-NMR. Advances in Oganic Geochemistry 1989, Oganic Geochemistry, 1990, 16:951-958.
    [50] Sklarew, D. S.,and Nagy. B. 2,5-Dimethylfuran from 2. 7×10~9 year-old-Rupemba-Belingwe stromatolite, Rhodesia: Potential evidence for remnants of
    
    carbohydrates. Proc. Nat. Acad. Sci. U.S.A., 1979, 76:10-14.
    [51] Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 1999, 400:554-557.
    [52] Schopf, J. w., Oehler, D. Z. How old are the Eukaryotes? Science, 1976, 193:47-49.
    [53] Schopf, J. W., and Packer, B. Early Archean (3.3-billion-3.5-billion-year-old) microfossiis from the Warrawoona Group, Australia. Science, 1987, 237:70-73.
    [54] Hofmann, H. J., and Schopf, J. W. Early Proterozoic microfossiis. Schopf, J. W. (eds.),Earth's Earliest Biosphere; Its Origin and Evolution. Princeton, New Jersey, Princeton University Press, 1983, 321-360.
    [55] Schopf, J. W., and Walter, M. R. Archean microfossiis: new evidence of ancient microbes,Schopf, J. W. (eds.), Earth's Earliest Biosphere; Its Origin and Evolution. Princeton, New Jersey, Princeton University Press, 1983, 187-213.
    [56] Schoell, M., Wellmer, F. -W. Anomalous 13~C depletion in early Precambrian graphites from Superior province, Canada. Nature, 1981,290:696-699.
    [57] Cameron, E. M. Evidence from early Proterozoic anhydrite for sulphur isotopic partitioning in Precambrain oceans. Nature, 1983,304:54-56.
    [58] Hayes, J. M. Global methanotrophy at the Archean-Proterozoic transition. Bengtson,S.(ed.), Early Life on Earth, Nobel Symposium, Columbia University Press, New York, 1994,84:220-236.
    [59] 吴庆余,刘志礼,盛国英,等.前寒武纪富藻燧石层中的生物标志化合物.中国科学院地球化学研究所有机地球化学开放实验室研究年报(生物标志物和干酪根).贵阳,贵州人民出版社,1986,111-121.
    [60] Peng, P. A., Sheng, G. Y., Fu, J. M., Yan, Y. Z. Biological markers in 1.7 billion year old rock from the Tuanshanzi Formation, Jixian strata section, North China. Organic Geochemistry, 1998, 29:1321-1329.
    [61] 陈晋镳,张惠民,朱士兴,赵震,王振刚.蓟县震旦亚界研究.中国地质科学院天津地质矿产研究所主编.中国震旦亚界.天津,天津科学技术出版社,1980,56-114.
    [62] 王铁冠.龙潭沟含沥青砂岩的生物标志物组合—一个元古界储层沥青的研究.蒋良朴主编.生物标志物地球化学研究.武汉,中国地质大学出版社,1990,146-154.
    [63] Jiang, N. H., Tong, Z. Y., Ren, D. L., et al. The discovery of retene in Precambrian and Paleozoic marine formation. Chinese Journal of Geochemistry, 1995, 59:4259-4266.
    [64] 张立平,黄第藩,廖志勤.密执安盆地志留系碳酸盐岩中高含量的惹烯和甲基惹烯化合物.1999,44(13):1425-1429.
    [65] Summons, R. E.,and Powell, T. G. Petroleum source rocks of the Amadeus Basin. Korsch,R.. J., Kennard, J. M., (eds.), Geological and Geophysics studies in the Amadeus Basin,Central Australia. Bureau of Mineral Resources, Australia, Bulletin, 1991,236:511-524.
    [66] Wang, T. -G., Simoneit, B. R. T. Tricyclic terpanes in Precambrian bituminous sandstone from the eastern Yanshan region, North China. Chemical Geology, 1995, 120:155-170.
    
    
    [67] Summons, R. E., and Powell, T. G. Hydrocarbon composition of the Late Proterozoic oils of the Siberian Platform: Implications for the depositional environment of source rocks. Schidlowski, M., Golubic, S., Kimberley, M. M., et al., (eds.), Early organic evolution and mineral and energy resource, Berlin, Springer-Verlag, 1992, 296-307.
    [68] Klomp, U. C. The chemical structure of a pronounced series of iso-alkanes in south Oman crudes. Leythaeuser, D., Rullkotter, J., (eds.), Advances in Organic Geochemistry 1985, Oxford, Pergamon press, 1986, 807-814.
    [69] Grantham, P. J., Lijmbach, G. W. M., Posthuma, J., et al. Origin of crude oils in Oman. Journal of Petroleum Geology. 1988, 11:61-79.
    [70] 张水昌,J.M.Moldown,Maowen Li,边立曾,张宝民,王飞宇,何忠华,王大悦.分 子化石在寒武-前寒武地层中的异常分布及其生物学意义.中国科学(D辑),2001,31 (4) :299-304.
    [71] Aref'ev O A, Zabrodina M N, Makushina V M. et al. Relict tetra-and pentacyclic hydrocarbons in ancient oils of the Siberian Platform. Izvestia Akademii Nauk SSSR Seriya Geologicheskaya, 1980, 10: 122-129(in Russian).
    [72] Hayes, J. M., Summons, R. E., Lambert, I. B., Strauss, H. and Des Marais, D. J. Proterozoic Biogeochemistry. Schopf, J. W., and Klein, C., (eds.), The Proterozoic Biosphere : A Multidisciplinary study, Cambridge University Press, 1990.
    [73] Hoering, T. C. Molecular fossils from the Precambrain Nonesuch Shale. Carnegie Institute of Washington Yearbook, 1976, 75:806-813.
    [74] Hoering, T. C. Monomethyl acyclic hydrocarbons in petroleum and rock extracts. Carnegie Institute of Washington Yearbook, 1981, 80:389-393.
    [75] Des Marais, D. J., Strauss, H., Summons, R. E., and Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature,1992, 359:605-609.
    [76] Des Marais, D. J. Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Organic Geochemistry, 1997, 27(5-6) :185-193.
    [77] Strauss, H., Des Marais, D. J., Summons, R. E., and Hayes, J. M. The proterozoic Biosphere: A Vultidisciplinary Study, Schopf, J. W., and Klein, C. (eds.), Cambridge University, Press, New York, 1992, 117-128.
    [78] Hsu, k. J., Oberhansli, H., Gao, J. Y., Sun, S., Chen, H. L., Krahenbuhl, U. 'Strangelove ocean before the Cambrian explosion. Nature,1985, 316:809-811.
    [79] Senftle. J. T., Later, S. R., Brownly, B. W., and Brown J. H. Quantitative chemical characterization of vitrinite concentrates on pyrolysis-gas chromatography rank variation of pyrolysis products. Organic Geochemistry, 1986, 9:345-350.
    [80] Horsfield, B. Practical criteria for classifying kerogens: Some observations from pyrolysis-gas chromatography. Geochimica et Cosmochimica Acta, 1989, 53: 891-901.
    [81] Hartgers, W. A., Sinninghe Damste, J. S., and de Leeuw, J. W. Identification of C2-C4 alkylated benzenes in flash pyrolysates of kerogens, coals and asphaltenes. Journal of
    
    Chromatography, 1992, 606:211-220.
    [82] Hartgers, W. A., Sinninghe Damste, J. S., and de Leeuw, J. W. Geochemical significance of alkylbenzene distributions in flash pyrolysates of kerogens, coals and asphaltenes. Geochimica et Cosmochimica Acta, 1994a, 58:1759-1775.
    [83] Rullkotter, J., and Michaelis, W. The structure of kerogen and related materials. A review of recent progress and future trends. Organic Geochemistry, 1990, 16(4-6) :829-852.
    [84] 傅家谟,秦匡宗.干酪根地球化学.广州,广东科技出版社,1995,191-244.
    [85] Boucher, R. J., Standen, G., Eglinton, G. Molecular characterisation of kerogens by mild selective chemical degradation ruthenium tetroxide oxidation. Fuel, 1991, 70:695-702.
    [86] Reiss, C., Blanc. P., Albrecht, P. 0ygard, K. (ed). Organic geochemistry, Oslo. F. Hurtigtrykk, 1993,543.
    [87] Stock, L. M., Wang, S.-H. Ruthenium tetroxide catalysed oxidation of Illinois No.6 coal. The formation of volatile monocarboxylic acids. Fuel, 1985, 64:1713-1717.
    [88] Stock, L. M., Wang, S.-H. Ruthenium tetroxide catalysed oxidation of coals. The formation of aliphatic and benzene carboxylic acids. Fuel, 1986, 65:1552-1562.
    [89] Mojelsky, T. W., Ignasiak, T. M., Frakman, Z., Mclntyre, D. D., Lown, E. M., Montgomery, D. S., and Strausz, O. P. Structural features of Alberta oil sand bitumen and heavy.oil asphaltenes. Energy & Fuels, 1992,6(1) :83-96.
    [90] Peng, P. A., Fu, J. M., Sheng, G. Y. Ruthenium-ions-catalyzed oxidation of an immature asphaltene: structural features and biomarker distribution. Energy & Fuels, 1999a, 13:266-277.
    [91] Blokker, P., Schouten, S., van den Ende, H., de Leeuw, J. W., Hatcher, P. G., Sinninghe Damste, J. S. Chemical structure of algaenans from the freshwater algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanum. Organic Geochemistry, 1998, 29:1453-1468.
    [92] Blokker, P., Schouten, S., de Leeuw, J. W., Sinninghe Damste, J. S. van den Ende, H. A comparative study of fossil and extant algaenans using ruthenium tetroxide degradation. Geochimica et Cosmochimica Acta, 2000, 64:2055-2065.
    [93] Baudet, N., Amble. A., Jacquesy, J. C., Vandenbroucke, M. and Behar, F. Transalkylation applied for the structural characterization of kerogen. Fuel, 1994, 73:1594-1599.
    [94] Minkova, V., Dobal, V., Angelova, G. Chemical deploymerization of oil shale. Fuel, 1985, 54(12) :1635-1638.
    [95] Sharma, D. K., Mishra, S. 13C-NMR spectral studies of the depolymerized coal obtained by acidic phenolation. Fuel Science and Technology Int'l., 1990, 8(4) :351-377.
    [96] Goossens, H., de Leeuw, J. W., Irene, W., Rijpstra, C., Meyburg, G. J. and Schenck, P. A. Lipids and their mode of occurrence in bacteria and sediments-I. A methodological study of the lipid composition of Acinetobacter calcoaceticus LMD79-41. Organic Geochemistry, 1989a, 14:15-25.
    
    
    [97] Goossens, H., Duren, R. R., de Leeuw, J. W. and Schenck, P. A. Lipids and their mode of occurrence in bacteria and sediments-Ⅱ. Lipids in the sediment of a stratified fresh water lake. Organic Geochemistry, 1989b, 14: 27-41.
    [98] Ambles, A., Dupas, G., and Jacquesy, J. C. Solubilization of Timahdit (Morocco) oil shale kerogen catalysed by 18-Crown-6. Tetrahedron Letter, 1987, 28:6449-6452.
    [99] Ambles, A., Baudet, N. and Jacquesy, J. C. Structural study of the kerogen from Brazilian Irati oil shale by selective degradations. Tetrahedron Letter, 1993, 34:1783-1786.
    [100] Ambles, A., Grasset, L., Dupas, G., and Jacquesy, J. C. Ester-and ether bond cleavage in immature kerogens. Organic Geochemistry, 1996, 24: 681-690.
    [101] Kribii, A., Lemee, L., Chaouch, A., Ambles, A. Structural study of the Moroccan Timahdit (Y-layer) oil shale kerogen using chemical degradations. Fuel, 2001, 80:681-691.
    [102] del Rio, J. C., Gonzalez-Vila, F. J., Matin, F., Verdejo, T. Chemical structural investigation of asphaltenes and kerogens by pyrolysis/methylation. Organic Geochemistry, 1996, 23:1009-1022.
    [103] del Rio, J. C., Hatcher, P. G. Analysis of aliphatic biopolymers using thermochemolysis with tetramethylammonium hydroxide (TMAH) and gas chromatography-mass spectrometry. Organic Geochemistry, 1998, 29:1441-1451.
    [104] Martin, F., Gonzalez-Vila, F. J., del Rio, J. C., Verdejo, T. Pyrolysis derivatization of humic substances, 1. Pyrolysis of fulvic acids in the presence of tetramethylammonium hydroxide. Journal of Analytical and Applied Pyrolysis, 1994, 28:71-80.
    [105] Fabbri, D., Chiavari, G., Galletti, G. C. Characterization of soil humin by pyrolysis (/methylation)/gas chromatography/mass spectrometry: structural relationships with humic acids. Journal of Analytical and Applied Pyrolysis, 1996, 37:161-172.
    [106] Peng, P. A. Chemical structure and biomarker content of Jinghan asphaltenes and kerogens. Energy & Fuels, 1999b, 13:248-265.
    [107] Schulten, H.-R., Leinweber, P., Theg, B. K. G. Characterization of organic matter in an interlayer clay-organic complex from soil by pyrolysis/methylation-mass spectrometry. Geoderma, 1996,69:105-118.
    [108] Kralert. P. G., Alexander, R., Kagi, R. I. An investigation of polar constituents in kerogen and coal using pyrolysis-gas chromatography-mass spectrometry with in situ methylation. Organic Geochemistry, 1995, 23:627-639.
    [109] Michaelis, W., Richnow, H. H., Jenisch, A. Structural studies of marine and riverine humic matter by chemical degradation. The Science of the Total Environment, 1989, 81/82:41-45.
    [110] Chappe, B., and Albrecht, P. Polar lipids of archaebacteria in sediments and petroleums. Science. 1982, 217(2) :65-66.
    [111] Jenisch. A., Richnow, H. H., Michaelis, W. Chemical structural units of macromolecular coal components. Organic Geochemistry, 1990, 16:917-929.
    [112] Schaeffer-Reiss, C.. Schaeffer, P., Putschew, A. and Maxwell, J. R. Stepwise chemical
    
    degradation of immature S-rich kerogens from Vena del Gesso (Italy). Organic Geochemistry. 1998,29:1857-1873.
    [113] Sinninghe Damste, J. S., Rijpstra, W. E. C., de Leeuw, J. W. and Schenck, P. A. Origin of organic sulphur compounds and sulphur-containing high molecular weight substances in sediments and immature crude oils. Organic Geochemistry, 1988, 13:593-606.
    [114] Sinninghe Damste, J. S., Egliton, T. I., Rijpstra, W. E. C., de Leeuw, J. W. Molecular characterization of organically-bound sulphur in high-molecular-weight sedimentary organic matter using flash pyrolysis and Raney Ni desulfurisation. Orr, W. L. and White. C. M., eds.. Geochemistry of Sulfur in Fossil Fuels, Amer. Chem. Soc., 1990b, 486-527.
    [115] Mycke, B., Schmid, J. C., and Albrecht, P. A novel sulphur cross-linked polymer in crude oils: origin and geochemical significance. Orr. W. L. and White, C. M., eds., Geochemistry of Sulfur in Fossil Fuels, Amer. Chem. Soc., 1990.
    [116] Kohnen, M. E. L., Sinninghe Damste, J. S., de Leeuw, J. W. Biases from natural sulphurisation in palaeoenvironmental reconstruction based on hydrocarbon biomarker distributions. Nature, 199la, 349:775-778.
    [117] Hofmann, I. C., Hutchison, J., Robson, J. N., Chicarelli, M. I., Maxwell, J. R. Evidence for sulphide links in a crude oil asphaltene and kerogens from reductive cleavage by lithium in ethylamine. Organic Geochemistry, 1992, 19: 371-387.
    [118] Adam, P., Schmid, J. C., Mycke, B., Strazielle, C., Connan, A., Hue, A., Riva, A., Albrecht. P. Structural investigation of nonpolar sulfur cross-linked macromolecules in petroleum. Geochim. Cosmochim. Acta, 1993, 57:3395-3419.
    [119] Schaeffer, P., Harrison. W. N., Keely, B. J. and Maxwell, J. R. Product distributions from chemical degradation of kerogens from a marl from a Miocene evaporitic sequence (Vena del Gesso, N. Italy). Organic Geochemistry, 1995, 23:541-554.
    [120] Schaeffer, P., Reiss, C.. Albrecht, P. Geochemical study of macromolecular organic matter from sulfur-rich sediments of evaporitic origin (Messinian of Sicily) by chemical degradations. Organic Geochemistry, 1995, 23: 567-581.
    [121] Richnow, H. H., Jenisch, A., and Michaelis, W. Structural investigations of sulfur-rich macromolecular oil fractions and a kerogen by sequential chemical degradation. Eckardt, C. B., Maxwell, J. R., Larter, S. R. and Manning, D. A. C. (eds), Advances in Organic Geochemistry 1991, Organic Geochemistry, 1992, 19:351-370.
    [122] Richnow, H. H., Jenisch, A. and Michaelis, W. The chemical structure of macromolecular fractions of a sulfur rich oil. Geochim. Cosmochim. Acta, 1993, 57:2767-2780.
    [123] Kohnen, M. E. L., Sinninghe Damste, J. S., Kock-van Dalen, A. C. and de Leeuw, J. W. Di or polysulphide bound biomarkers in sulphur rich geomacromolecules as revealed by selective chemolysis. Geochim. Cosmochim. Acta, 1991b, 55: 1375-1394.
    [124] Koopmans, M. P., de Leeuw, J. W., Lewan, M. D., Sinninghe Damste, J. S. Impact of dia-and catagenesis on sulphur and oxygen sequestration of biomarkers as revealed by
    
    artificial maturation of an immature sedimentary rock. Organic Geochemistry, 1996, 25:391-426.
    [125] Koopmans, M. P., Schaeffer-Reiss, C., de Leeuw, J. W., Lewan, M. D., Maxwell, J. R.,Schaeffer, P., Sinninghe Damst(?), J. S. Sulphur and oxygen sequestration of n-C_(37) and n-C_(38) unsaturated ketones in an immature kerogen and release of their carbon skeletons during early stages of thermal maturation. Geochim. Cosmochim. Acta, 1997, 61:2397-2408.
    [126] HOld, I. M., Brussee, N. J., Schouten, S., Sinninghe Damst(?), J. S. Changes in the molecular structure of a Type Ⅱ-S kerogen (Monterey Formation, U.S.A.) during sequential chemical degradation. Organic Geochemistry, 1998, 29:1403-1417.
    [127] Putschew, A., Schaeffer-Reiss, C., Schaeffer, P., Koopmans, M. P., de Leeuw, J. W., Lewan.M. D., Sinninghe Damst(?), J. S., Maxwell, J. R. Release of sulfur- and oxygen-bound components from a sulfur-rich kerogen during simulated maturation by hydrous pyrolysis.Organic Geochemistry, 1998, 29:1875-1890.
    [128] Fowler, M. G., and Brooks, P. W. Organic geochemistry as an aid in the interpretation of the history of oil migration into different reservoirs at the Hibernia K-18 and BenNevis I-45 wells, Jeanne d'Arc Basin, offshore eastern Canada. Oganic Geochemistry, 1990,16:461-475.
    [129] Hayes, J. M., Takigiku, R., Ocampo, R., et al. Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale. Nature, 1987,329:48-51.
    [130] Hayes, J. M., Freeman, K. H., Popp, B. N., et al. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes. Organic Geochemistry,1990, 16: 1115-1128.
    [131] Peters, D. E., and Moldowan, J. M. The biomarker Guide: interpretating molecular fossils in petroleum and ancient sediments, Prentice Hall, Inc., 1993.
    [132] Hofmann, H. J., Chen, J. B. Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, Northern China. Canadian Journal of Earth Sciences, 1981, 18:443-447.
    [133] 阎玉忠.蓟县长城系串领沟组裂梭藻.天津地质矿产研究所所刊,1982,6:1-7.
    [134] 阎玉忠.中国蓟县团山子组(17亿年)宏观藻类的发现和初步研究.微体古生物学报,1995,12:107-126.
    [135] 杜汝霖,田立富,燕山青白口系宏观藻类龙凤山藻属的发现和初步研究.地质学报,1985,3:183-190.
    [136] 杜汝霖,田立富,李汉棒.蓟县长城系高于庄组宏观生物化石的发现.地质学报,1986,2:115-120.
    [137] 陆松年,李惠民.蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年.中国地质科学院院报,1991,22:137-145.
    [138] 李怀坤,李惠民,陆松年.长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义.地球化学,1995,24:43-48.
    [139] 阎玉忠,刘志礼.中国蓟县长城系团山子宏观藻群.古生物学报,1997,36:18-41.
    
    
    [140] 阎玉忠,刘志礼.中国北方燕山盆地长城纪生物群落和古环境关系探讨.微体古生物学报,1998b,15:249-266.
    [141] 孙大中,陆松年.华北地台的元古宙构造演化.中国地质科学院院报,1987,16:55-69.
    [142] 李超,彭平安,盛国英,傅家谟.前寒武纪有机质研究进展.科学通报,1999,44(21):2251-2261.
    [143] 朱士兴,邢裕盛,张鹏远,等.华北地台中、上元古界生物地层序列.北京,北京:地质出版社,1994,175-208.
    [144] 王松山,桑海清,裘冀,陈孟莪,李明荣.蓟县剖面杨庄组和雾迷山组形成年龄的研究.地质科学,1995,30(2):166-173.
    [145] Summons, R. E., Branched alkanes from ancient and modern sediments : Isomer discrimination by GC/MS with multiple reaction monitering. Organic Geochemistry, 1987,11:281-290.
    [146] Kissin, Y. V. Catagenesis and composition of Petroleum : Origin of n-alkanes and iso-alkanes in petroleum crudes. Geochimica et Cosmochimica Acta, 1987, 51:2445-2457.
    [147] De Rosa, M., Gambacorta, A., Minale, L., and Bulock, J. D. Cyclohexane fatty acids from a thermophilic bacterium. J. Chem.Soc. Chem. Comm., 1971, 1334.
    [148] Suzuki, K. I., Saito, K., Kawaguchi, A., Okuda, S., and Komagata, K. Occurrence of -cyclohexyl fatty acides in Curtobacterium pusillum strains. J. Gen. Appl. Microbial, 1981,27:261-266.
    [149] Hoffman, C. F., Foster, B., Powell, T. G., and Summons, R. E. Hydrocarbon biomarkers from Ordovician sediments and the fossil alga Gloeocapsomorpha prisca Zalessky 1917.Geochimica et Cosmochimica Acta, 1987, 51:2681-2697.
    [150] Fowler, M. G., Abolins, P., and Douglas, A. G. Monocyclic alkanes in Ordovician organic matter. Leythaeuser, D. and Rullk(?)tter, J.(eds.), Advances in Organic Geochimistry 1985,Organic Geochimistry, 1986, 10:815-823.
    [151] De Rosa, M, Gambacorta, A, Gliozzi, A. Structure, biosynthesis and physiochemical properties of archaebacterial lipid. Microbiological Reviews, 1986, 50:70-80.
    [152] Petrov, A. A., Vorobyova, N. S., Zemskova, Z. K. Isoprenoid alkanes with irregular "head-to-head" linkages. Organic Geochemistry, 1990, 16:1001-1005.
    [153] Aquino Neto, F. R., Restle, A., Albrecht, P. and Ourisson, C. Novel tricyclic terpanes (C_(19),C_(20)) in sediments and petroleum. Tetrahedron Letter, 1982, 23:2027-2030.
    [154] Aquino Nero, F. R., Trendel, J. M., Restle, A., Connan, J. and Albrecht, P. Occurrence and formation of tricyclic and tetracyclic terpanes in sediments and petroleums. Bjory, M.Albrecht, P. Cornford, C. et al. (eds.), Advances in Organic Geochemistry 1981, Wiley,Chichester, 1983, 659-667.
    [155] Ourisson, G., Albrecht, P., and Rohmer, M. Predictive microbial biochemistry: from molecular fossils to procaryotic membranes. Trends in Biochemical Science,1982,7:233-239.
    
    
    [156] Simoneit, B. R. T., Leif, R. N., Radler de Aquino Neto, F., Almeida Azevedo, D., Pinto, A.C., and Albrecht, P. On the Presence of tricyclic terpane hydrocarborns in permain tasmanite algae. Naturwissenschaften, 1990, 77:380-383.
    [157] Ourisson, G., Rohmer, M., Poralla, K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annual reviews of microbiology, 1987, 41:301-333.
    [158] Peters, K. E., and Moldowan, J. M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Organic Geochemistry, 1991, 17:47-61.
    [159] ten Haven, H. L., de Leeuw, J. W., Sinninghe Damste, J. S., Schenck, P. A., Palmer, S. E., and Zumberge, J. E. Application of biological markers in the recognition of palaeo hypersaline environments. Kelts, K., Fleet, A.,and Talbot, M., (eds.), Lacustrine Petroleum Source Rocks, Geological Society London Special Publication, 1988, 40:123-140.
    [160] Simoneit, B. R. T. Diterpenoid compounds and other lipids in deep-sea sediments and their geochemical significance. Geochimica et Cosmochimica Acta, 1977, 41:463-476.
    [161] Simoneit, B. R. T. Cyclic terpenoids of the geosphere. Johns R B. (ed), Biological Markers in the Sedimentary Record, Amsterdam: Elsevier, 1986.43-99.
    [162] Simoneit, B. R. T., Grimalt, J. O., Wang, T, G., et al. Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals. Leythaeuser D, Rullk(?)tter J. ,(eds), Advances in Organic Geochemistry 1985; Oxford, Pergamon, 1986, 877-889.
    [163] 孔祥星,王忠,王广利,等.藻类热模拟产物中发现丰富的惹烯.中国引油学会石油 地质专业委员会等主编,第八届有机地球化学学术会议论文摘要汇编,2000,313.
    [164] Sinninghe Damst(?), J. S., Kenig, F., Koopmans, M. P., et al. Evidence for gammacerane as an indicator of water column stratification. Geochimica et Cosmochimica Acta, 1995,59:1895-1900.
    [165] Brassell, S. C., Eglinton, G., Howell, V. J. Palaeoenvironmental assessment of marine organic-rich sediments using molecular organic geochemistry. Brooks J, Fleet A J., (eds),Marine Petroleum Source Rocks, Oxford, Geol. Soc. Spec. Publ., 1987, 26:79-98.
    [166] Zhang, Y. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation, Hebei,China. J. Paleontology, 1981, 55:485-506.
    [167] 朱士兴.燕山区震旦亚界下部叠层石中微生物化石的初步研究.天津地质矿产研究所所刊,1982,5:1-26.
    [168] Knoll, A. H., Hayes, J. M., Kaufman,A. J., Swett, K., and Lambert, I. B. Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland.Nature, 1986, 321:832-838.
    [169] Durand, B. Kerogen. Insoluble organic matter from sedimentary rocks. Paris: Editions Technip, 1980, 98-140.
    [170] Hayes, J. M. Factors controlling 13~C contents of sedimentary organic compounds:Principles and evidence. Marine Geology. 1993, 113:111-125.
    
    
    [171] Xiao, S., Knoll, A. H., Kaufman, A. J., et al. Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China Platform. Precambrian Research, 1997, 84:197-220.
    [172] Plumb, K. A. New Precambrian time scale. Episodes, 1991,14:139-140.
    [173] Hayes, J. M., Popp, B. N., Takigiku, R., et al. An isotopic study of biogeochemical relationships between carbonates and organic carbon in the Greenhorn Formation. Geochimica et Cosmochimica Acta, 1989, 53:2961-2972.
    [174] Holland, H. D. Early Proterozoic atmospheric change. Bengtson S, ed., Early Life on Earth, New York, Columbia University Press, 1994, 237-244.
    [175] de Leeuw, J. W., Largeau, C, A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. Engel. M. H., et al. (eds.), Organic Geochemistry, Principles and Applications, New York, Plenum Press, 1993, 23-72.
    [176] Rau, G. H., Sullivan, C. W., Gordon, L. I. δ13C and δ15N variations in Weddell Sea particulate organic matter. Marine Chemistry, 1991, 35:355-369.
    [177] Schildowski, M., Gorzawski, H., and Dor, 1. Carbon isotopic variations in a solar pond microbial mat: Role of environmental gradients as steering variables. Geochimica et Cosmochimica Acta, 1994, 58:2289-2298.
    [178] Grice, K., Schouten, S., Nissenbaum, A., et al. Isotopically heavy carbon in the C21 to C25 regular isoprenoids in halite-rich deposits from the Sdom Formation, Dead Sea Basin, Israel. Organic Geochemistry, 1998, 28:349-359.
    [179] Riebesell, U., Revill, A. T, Holdsworth, D. G., et al. The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochimica et Cosmochimica Acta, 2000, 64:4179-4192.
    [180] Anderson, R., Kates, M., Baedecker, M. J., et al. The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments. Geochimica et Cosmochimica Acta, 1977. 41:1381-1390.
    [181] De Rosa, M., Gambacorta, A., Nicolaus, B., et al. A C25 diether core lipid from archaebacterial haloalkaphiles. Journal of General Microbiology, 1983, 129:2333-2337.
    [182] Rowland, S. J. Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria. Organic Geochemistry, 1990, 15:9-16.
    [183] Teixidor, P., Grimalt, J. O., Pueyo, J. J. Isopranylglycerol diethers in non-alkaline evaporitic environments. Geochimica et Cosmochimica Acta, 1993,57:4479-4489.
    [184] Oren, A. Availability, uptake and turnover of glycerol in hypersaline environment. FEMS Microbiology Ecology, 1993, 12:15-23.
    [185] Tindall, B. J. The family Halobacteriaceae. Balows, A., Truper, H. G., Dworkin, M., et al. (eds), The Prokaryotes. A Handbook on the Biology of Bacteria, Berlin, Springer Verlag. 1992,768-808.
    
    
    [186] DeNiro, M. J. and Epstein, S. Machanism of carbon isotope fractionation associated with lipid synthesis. Science, 1977, 197:261-263.
    [187] DeNiro, M. J. and Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta, 1978, 42:495-506.
    [188] Schildowski, M., Matizgkeit, U., Krumbein, W. E. Superheavy organic carbon from hypersaline microbial mats. Naturwissenschaften, 1984, 71:303-308.
    [189] van der Meer, M. J. T., Schouten, S., de Leeuw, J. W., et al. Autotrophy of green nonsulfur bacteria in hot spring microbial mates: biological explanations for isotopically heavy organic carbon in the geological record. Environmental Microbiology, 2000, 2:428-435.
    [190] Sinninghe Damste, J. S., Schouten, S. Is there evidence for a substantial cotribution of prokaryotic biomass to organic carbon in Phanerozoic carbonaceous sediments?. Organic Geochemistry, 1997,26:517-530.
    [191] Peng, P. A., Sheng, G. Y., Fu, J. M., et al. Immature crude oils in the salt lake depositional environment are related to organic matter precipitated at stage of carbonate in salt lake sedimentation sequences. Chinese Science Bulletin, 2000,45(Supplement):1-6.
    [192] Durand, B. and Monin, J. C. Elemental analysis of kerogen (C, H, O, N, S, Fe). Durand, B. (ed.), Kerogen. Insoluble organic matter from sedimentary rocks, Editions Technip. Paris. 1980, 133-142.
    [193] Teichmuller, M. Organic petrology of source rocks, history and state of the art. Leythaeuser D. and Rullkotter, J. (eds.), Advances in Organic Geochemistry 1985, Organic Geochemistry, Pergamon Press, Oxford, 1986, 10:581-599.
    [194] Kister. J., Guiliano, M., Largeau, C., Derenne, S. and Casadevall, E. Characterization of chemical structure, degree of maturation and oil potential of torbanites (type I kerogens) by quantitative FT-i.r. spectroscopy. Fuel, 1990, 69:1356-1361.
    [195] Qin, K. Z. Kerogen carbon aromaticity-its determination and significance. Journal of Southeast Asian Earth Science, 1991, 5:81-88.
    [196] Larter. S. R. and Horsfield, B. Determination of structural components of kerogens using analytical pyrolysis methods. Engel M. H. and Macko S. A. (eds), Organic Geochemistry. Plenum press, New York, 1990.
    [197] Eglinton, T. I., Sinninghe Damste, J. S., Kohnen. M. E. L., De Leeuw, J. W., Larter. S. R.. Thatcher. M. and Patience, R. S. Analysis of maturity related trends in the organic sulphur composition of kerogens by flash pyrolysis gas-chromatography. Orr W. L. and White C. M. (eds). Geochemistry of Sulphur in Fossil Fuels, ACS Symposium Series, ACS. 1990. 471-493.
    [198] Eglinton. T. L, Simninghe Daniste, J. S.. Kohnen M, E. L., and De Leeuw, J. w. Organic Sulphur in Macromoleculoar organic matter. 3. Estimation of thiophenic content of kerogens by pyrolysis-gas chromatography. Fuel, 1990.
    [199] Gelin. F., Sinninghe Damste, J. S., Harrison, W. N., Maxwell, J. R., de Leeuw. J. W.
    
    
    Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy):Ⅲ. Stratigraphic changes in the molecular structure of kerogen in a single marl bed as revealed by flash pyrolysis. Organic Geochemistry, 1995, 23(6):555-566.
    [200] Gelin, F., Sinninghe Damst(?), J. S., Harrison, W. N., Reiss, C., Maxwell, J. R., de Leeuw, J. W. Variations in origin and composition of kerogen constituents as revealed by analytical pyrolysis of immature kerogens before and after desulphurization. Organic Geochemistry,1996, 24:705-714.
    [201] Chappe, B., Michaelis, W. and Albrecht, P. Molecular fossils of archaebacteria as selective degradation products of kerogen. Douglas A. G. and Maxwell J. R. (eds), Advances in Organic Geochemistry 1979, Pergamon Press, Oxford, 1980, 265-274.
    [202] Mycke, B., Narjes, F. and Michaelis, W. Bacteriohopanetetrol from chemical degradation of an oil shale kerogen. Nature, 1987, 326(12):179-181.
    [203] Reiss, C., Blanc, P., Albrecht, P. New structural information on Messel shale kerogen based on selective chemical degradation. ygard, K., (ed.) Organic Geochemistry, Oslo, F.Hurtigtrykk, 1993, 500-502.
    [204] 刘德汉,史继扬,郑旭明.高演化碳酸盐岩的地球化学特征及非常规评价方法的探讨.天然气工业,1994,14(增刊):62-66.
    [205] 于荣炳,张学祺.燕山地区晚前寒武纪同位素地质年代学的研究.天津地质矿产研究所所刊,1984,(11):1-23.
    [206] Ishiwatari, R., and Machihara, T. Algal lipids as a possible contributor to the polymethylene chains in kerogen. Geochimica et Cosmochimica Acta, 1982a,46:1459-1464.
    [207] Ishiwatari, R., Morinaga, S. and Simoneit, B. R. T. Alkaline permanganate oxidation of kerogen from Cretaceous black shales thermally altered by diabase intrusions and laboratory simulations. Geochimica et Cosmochimica Acta, 1985, 49:1825-1835.
    [208] Strausz, O. P., Mojelsky, T. W., and Lown, E. M. Structural features of Boscan and Duri asphaltenes. Energy & Fuels, 1999, 13:228-247.
    [209] Behar, F., Vandenbroucke, M. Chemical modeling of kerogens. Organic Geochemistry,1987, 11:15-24.
    [210] Ishiwatari, R., and Machihara, T. Structural changes of young kerogen during laboratory heating as revealed by alkaline potassium permanganate oxidation. Geochimica et Cosmochimica Acta, 1982b, 46:825-831.
    [211] Chalansonnet, S., Largeau, C., Casadevall, E., Berkaloff, C., Peniguei, G., and Couderc, R.Cyanobacterial resistant biopolymers. Geochemical implications of the properties of Schizothrox sp. Resistant material. Organic Geochemistry, 1988, 13:1003-1010.
    [212] 高林志,章雨旭,王成述,田树刚,彭阳,刘友元,董大中,何怀香,雷宝桐,陈孟莪,杨立公.天津蓟县中新元古代层序地层初探.中国区域地质,1996,1:64-74.
    [213] Poutsma, M. L. Free-radical thermolysis and hydrogenolysis of model hydrocarbons
    
    relevant to processing of coal. Energy and Fuel, 1990, 4:113-131.
    [214] Derenne, S., Largeau, C., Casadevall, E., Sinninghe Damste, J. S., Tegelaar, E. W., and de Leeuw, J. W. Characterisation of Estonian Kukersite by spectroscopy and pyrolysis: Evidence for abundant alkyl phenolic moieties in an Ordovician, marine, Type Ⅱ / Ⅰ kerogen. Durand, B., and Behar, F. (eds.), Advances in Organic Geochemistry 1989, Organic Geochemistry. 1990, 16:873-888.
    [215] Douglas, A. G., Sinninghe Damste, J. S., Fowler, M. G., Eglinton, T. I., and de Leeuw, J. W. Unique distributions of hydrocarbons and sulphur compounds released by flash pyrolysis from the fossilized alga Gloeocapsomorpha prisca, a major constituent in one of four Ordovician kerogens. Geochimica et Cosmochimica Acta, 1991, 55:275-291.
    [216] Ratledge, C. and Wilkinson, S. G. Terpenoid lipids. In Microbial Lipids. Ratledge, C.. Wilkinson, S. G.(eds.), Vol.1, Part 1, Chap.3, Academic Press. 1988.
    [217] Hartgers, W. A., Sinninghe Damste, J. S., Requejo, A. G., Allan, J., Hayes, J.M. and de Leeuw, J. W. Evidence for only minor contributions from bacteria to sedimentary organic carbon. Nature. 1994b, 369:224-227.
    [218] Hartgers, W. A., Sinninghe Damste, J. S., Requejo, A. G., Allan, J., Hayes, J.M., Ling, Y., Xie, T.-M. A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids. Teln s, N. et al.(eds), Advances in Organic Geochemistry 1993. Organic Geochemistry, 1994c, 22:703-725.
    [219] Hoefs, M. J. L., Van Heemst, J. D. H., Gelin, F., Koopmans, M. P., Van Kaan-Peters, H. M. E., Schouten. S., de Leeuw, J. W. and Sinninghe Damste, J. S. Alternative biological sources for 1,2,3,4-tetramethylbenzene in flash pyrolysates of kerogen. Organic Geochemistry, 1995, 23(10) :975-979.
    [220] Collister, J. W., Summons, R. E., Lichtfouse, E., Hayes, J. M. An isotopic biogeochemical study of the Green River oil shale. Organic Geochemistry, 1992, 19: 265-276.
    [221] Hieshima, G. B.. Pratt, L. M. Sulfur/Carbon ratios and extractable organic matter of the Middle Proterozoic Nonesuch Formation, North American Midcontinent Rift. Precambrian Research, 1991. 54:65-79.
    [222] Imbus, S. W.. Engel, M. H., Elmore, R. D., Zumberge, J. E. The origin, distribution and hydrocarbon generation potential of organic-rich facies in the Nonesuch Formation, Central North American Rift System: A regional study. Organic Geochemistry, 1988, 13:207-219.
    [223] 陆松年.新元古时期Rodinia超大陆研究进展述评.地质论评,1998, 44(5) :489-495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700