青海都兰地区前泥盆纪变质岩系物质组成及地质演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以板块构造和造山带等地学新理论为指导,以地质事件群研究为主线,采用区域地质调查手段,在查明区域地层、构造、岩浆活动和变质变形特征基础上,将本区前泥盆纪变质地体由北向南划分为欧龙布鲁克古陆块、沙柳河超高压碰撞带和柴达木微陆块三个大地构造单元,研究了欧龙布鲁克古陆块、沙柳河超高压碰撞带和柴达木微陆块的物质组成,确定它们之间的相互关系。其中最北部的欧龙布鲁克古陆块主要由古元古代德令哈片麻岩、莫河片麻岩、达肯大坂岩群、中元古代万洞沟群和南华纪-震旦纪全吉群组成,全吉群与下伏的变质岩系呈不整合接触,在欧龙布鲁克至全吉山一带保存了清晰的变质基底和沉积盖层双层结构模式;作为两个陆块分界的沙柳河超高压碰撞带主要由中元古代沙柳河岩群、新元古代花岗片麻岩、早古生代榴辉岩、滩间山岩群和蛇绿岩套组成,保存了中-新元古代Rodinia超大陆汇聚的证据;位于南部的柴达木微陆块在本区主要由中元古代金水口岩群和夕线堇青花岗片麻岩组成。在此基础上,针对新发现的中元古代沙柳河岩群、中新元古代花岗质片麻岩、早古生代榴辉岩和有重要意义的地质体,采用事件群、重点研究和高精度测试手段与方法,确定其形成环境、形成时代和地质意义,建立了本区前泥盆纪重大地质事件序列,研究了它们的相互关系,将地质演化历史划分为七个阶段,分析了与Rodinia 超大陆汇聚与裂解有关的事件,提出中-新元古代花岗片麻岩是Rodinia 超大陆汇聚的产物,而南华纪-震旦纪的全吉群是Rodinia 超大陆裂解的有力证据,进一步探讨了Rodinia 超大陆汇聚与裂解在本区的相应时代,为研究我国三大陆块在全球Rodinia 超大陆中的位置及其相互关系提供资料和证据。
The metamorphic terrane of pre-Devonian in Dulan region of Qinghai province was important part of central orogen in China. The tectonic location situated between the North China, Tarim and Yangtze blocks, that is the join position of the Qinling, Qinlian and Kunlui orogen. There were abundant geological records of assembly and break-up of the Rodinia supercontinent in Meso-and Neoproterzoic that were preserved in Qulan region. The studying mission is to find out the composition and the tectonic evolution of pre-Devonian metamorphic terrane in Dulan and the relation with the Rodinia supercontinent reconstruction. It would be based on the field geological survey. The geological events group is main thread and by means of isotopic geo-chronology and other knowledge.
    The metamorphic terranes of pre-Devonian in Dulan have been subdivided into three units from north to south, it is according to geological survey and integrating study, which the scale is 1:250,000 and 1:50,000, and based on sedimentary construction, magma movement, metamorphism and structure deformation, Analysis to the information about geophysics and faults boundary. The units include Olongbluck block, Shaliuhe UHP collision belt and Qaidam block, so the regional tectonic framework has been found.
    Olongbluck block was composed of Delingha Gneiss, Mehe Gneiss, Dakaidaban Group in the Paleoproterozoic, Wandonggou Group in the Mesoproterozoic and Quanji Group in the Nanhua-Sinian. The Shaliuhe UHP collision belt was constituted by Shaliuhe Group, granodioritic gneiss, tonalitic gneiss, moyitic gneiss in the Meso-and Neoproterzoic, eclogite, Tanjianshan Group and ophiolite in early Paleozoic. Qaidam block include Jinshuikou Grorp and sillimanite-cordierite granitic gneiss.
    The former Dakaidaban Group has been disassembled and confirmed. It has been considered that one part is metamorphic volcanic-sedimetary rock series in the Paleoproterozoic, the othe part is metamorphic clasolite in the Mesoproterozoic, which is Shaliuhe Group(or Yuqia Group) found by us in this geological survey. It provide new data for establishing tectonic framework of northern magin of Qaidam basin. At the same time, abundant granitic gneiss of the Paleoproterozoic have been found in former Dakaidaban Group, they underwent metamorphism
    and deformation together in the Paleoproterozoic, especially anatexis in 1900Ma. Quanji Group was unconformity above Dakaidaban Group, which is a strata in magnesoiu-carbonate rock and glacial conglomerate predominatingly. Their main rock type are glutenite, quatzite, sandshale, dolostone and tillite which have not undetwent metamorphism. The formed age is 760Ma from volcanic rocks in the bottom by isotopic geochronology. The age is approximately correspond with Rodinia break-up in Yangtze block, South Australia and America et al.. this is most persuasion Rodinia break-up evidence found in northern magin of Qaidam basin. Based up on geological, lithological, geochemical and geochronological characteristics of granitic gneiss in the proterozoic, we found out that the granitic gneiss in Paleoproterozoic including Delingha Gneiss and Mehe Gneiss, the granitic gneiss in the Mesoproperozoic consist of Luliangshan Gneiss, Caishigou Gneiss and Xitieshan Gneiss. Delingha Gneiss is biotite-adamellitic gneiss, belong to ultra-aluminium rock series, and the tectonic setting is intracontinent, the forming age is 2366±10Ma from single zircon U-Pb data. Mehe Gneiss consist of dark-gray, banding, fine grain-size, biotite-hornblende-plagioclase gneiss and meta-tonalite, the forming age is 2348±43Ma. It indicated that northern of Dulan region had underwent a large scale magma movement at 2300-2400Ma in Olongbluck block. The gneisses in Meso-and Neoproterzoic forming ages are 1190±39Ma、928±18Ma 和842Ma by TIMS and SHRIMP zircon U-Pb isotopic dating method. The petrochemistry and geochemisitry indicated that their origin environmental is magma-arc and collision orogenics type. It showed a large scale continent assembly in 1200-800Ma in this area. The early magma movement (1200-1000Ma) was consistent with Rodinia in the world, but the later period magma movement (1000-800Ma) was lagged the other block in the whole world. It has very vivid character of China block and important actual significance for studying the position of China block in the globe tectonics. Eclogites were distribute in the granitic gneisses and Shaliuhe Group with lenticle or banding like. They could be subdivided into five kinds, representative eclogite, hornblende eclogite, coesite-bearing muscovite-hornblende eclogite, kyanite eclogite and degrading eclogite. The petrochemical and geochemical characteristics were indicated that the eclogites could be subdivided into three types which were high-Ti, middle-Ti and low-Ti. Studying metamorphic minerals and metamorphism, the eclogite metamorphism underwent three stages: epidote amphibolite facies, HP eclogite facies and high-amphibolite facies. The peak temperature of eclogite facies was 650±20℃, the pressure could reached 24-28kbar. The eclogites have been determined using high precise SHRIMP and TIMS zircon U-Pb isotopic dating method, giving four group ages of 763Ma, 550-560Ma, 465-500Ma and 434Ma, the age of 465-500Ma was reflected to main collision period, so we think that the forming age of eclogites was early Paleozoic. Studying by rock paragenesis assemblage and geochemistry, the protolith of eclogites were confirmed that could be basic volcanic rocks or basic dykes,a part of eclogites belong to Shaliuhe Group, the other part of eclogites had the characteristics of island arc to ocean ridge which could be the remnant of oceanic crust or volcanic arc in early Paleozoic. Accordingly, the forming tectonic setting and mechanism of eclogites have been further discussed.
引文
1 Barbarin B.A review of the relationships between granitoid types,their origrins and their geodynamic environments. Lithos.1999, 46:605-626
    2 Boger S.D., Carson C.J., Wilson C.J.L., Fanning C.M., Neoproterozoic deformation in the Radok Lake region of the northern Prince Charles Mountains, east Antarctica; evidence for a single protracted orogenic event, Precambrian Research (104)1-2 (2000) pp.
    3 Bucher, K.,and Frey,M.,Petrogenesis of Metamorphic Rocks.(Seventh Edition), Springer, 2002, p.341.
    4 Carswell,D.A.,O’Brien,P. J.,Wilson, R. J. & Zhai, M.,Thermobarometry of phengite-bearing eclogites in the DabieMountains of central China. Journal of Metamorphic Geology, 1997, 15, 239–252.
    5 Castro A, Moreno-Ventas I, de al Rosa J D. H-type (hybr id)granitoids: a proposed revision of the granite-type classification and nomen clature. Earth Sci Rev, 1991, 31: 237-253
    6 Chopin, C. & Sobolev, N. V. Ultrahigh Pressure Metamorphism (eds Coleman, R. G. & Wang, X.), 1995, 96-131 (Cambridge Univ. Press, New York,).
    7 Chun-Ming Wu , Xin-She Wang, Chong-Hui Yang , Yuan-Sheng Geng, Fu-Lai Liu, Empirical garnet–muscovite geothermometry in metapelites. Lithos, 2002, 62 :1-13.
    8 Clark D.J., Hensen B.J., Kinny P.D., Geochronological constraints for a two-stage history of the Albany-Fraser Orogen, Western Australia, Precambrian Research (102)3-4 (2000) pp. 155-183
    9 Coleman R.G., Lee D.E., Beatty L.B., Brannock W.W., Eclogites and eclogites: their differences and similarities. Geol.Soc.Am.Bull., 1965, 76:483-508.
    10 Condie K C. Plate Tectonic and Crustal Evolution. 3rd ed. Oxford: Pergamon Press, 1993. 1-476
    11 Condie K C.Plate Tectonics and Crustal Evolution.New York: Pergarnon Press, 1982.1-310
    12 Dalziel I W D. Pacific margins of Laurentia and East Antarctic-Australia as a conjugate rift pair; evidence and implication for an Encambrian supercontinent. Geology, 1991, 19;598-601.
    13 Dalzier, I W D, Mosher, S and Gahagan, L M, Laurentia-Kalahari collision and the assembly of Rodinia. 2000, J. Geol., v.108,499-513.
    14 Dewey J F.Extensional collapse of orogenes.Tectonics, 1988, 7: 1123-1139
    15 Dobrzhinetskaya, L., Green, H. W. & Wang, S. Alpe Arami: a peridotite massif from depths of more than 300 kilometers. Science, 1996, 271, 1841-1845.
    16 Eby G N. The A-type granitoid: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 1990, 26: 115-134
    17 Ellis, D. J. & Green, D. H., 1979. An experimental study of the efect of Ca upon the garnet –clinopyroxene Fe–Mg exchange equilibria. Contributions to Mineralogy and Petrology, 71,13-22.
    18 Elthon D. Geochemical evidence for formation of the Bay o f Islands Ophiolite above a subduction zone. Nature, 1991, 354: 140-143.
    19 Ernst, W. G., Signifcance of phengitic micas from lowgrade schists. American Mineralogist, 1963, 48, 1357–1373.
    20 Evans David A.D., Li Z.X., Kirschvink Joseph L., Wingate Michael T.D., A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia, Precambrian Research (100)1-3 (2000)
    21 Graham, C. M., and Powell, R. A garnet-hornblende geothermometer: calibration, testing, and application to the Pelona Schist, Southern California. Journal of Metamorphic Geology, 1984, v. 2, pp. 13-21.
    22 Green, T. H. and Hellman, P. L. Fe-Mg partitioning between coexisting garnet and phengite at high pressure, and comments on a garnet-phengite geothermometer. Lithos, 1982, v. 15, pp. 253-266.
    23 Hoffman P. F., Did the breakup of Laurentia turn Gondwana inside out? Science, 1991, 252: 1409-1412.
    24 Holland, T.J.B., Blundy, J., Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol. 1994, 116, 433-447.
    25 Jake P,White A J R. Major and trace element abundances in volcanic rocks of orogenic areas.Geol Soc Am Bull, 1972, 83:29-40
    26 Krogh, E. J., The garnet–clinopyroxene Fe2+–Mg geothermometer: an updated calibration. J. metamorphic Geol, 2000, 18, 211–219
    27 Krogh, E. J., The garnet–clinopyroxene Fe–Mg geothermometer—a reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology, 1988, 99, 44–48.
    28 Kroner A. The Pan-African belt of Northeastern and eastern Africa, MadagaSCAR, Southern India, Sri Lanka and East Antarctic: terrane amalgamation during formation of the Gondwana supercontinent. Thorweihe U, Schandelmeier H, Geoscientific Research in Northeast Africa. Rotterdam: Balkema, 1993,3-9.
    29 Li S, Wang S, Chen Y, et al. Excess argon in phengites from eclogite: Evidence from dating of eclogite minerals by Sm-Nd, Rb-Sr and 40Ar/39Ar methods. Chem Geol, 1994,12:343-350.
    30 Li Z.X., Li X.H., Kinny P.D., Wang J., The breakup of Rodinia: did it start with a mantle plume beneath South China?, Earth And Planetary Science Letters (173)3 (1999) pp. 171-181
    31 Li Z.X., Powell C.McA., Palaeomagnetic study of Neoproterozoic glacial rocks of the Yangzi Block: palaeolatitude and configuration of South China in the late Proterozoic Supercontinent, Precambrian Research (94)1-2 (1999) pp. 1-5
    32 Li,ZX, Li, XH, Powell,C.M., Wang,J., 830-820Ma mafic to felsic igneous activity in South China part of plume-induced rifting that led to the breakup of Rodinia? J. Conf.Abst., 1999, v.4, p.117.
    33 Li,ZX., Zhang, LH., Powell,C.M., Positions of the East Asian cratons in the Neoproterozoic super-continent Rodinia. Australia J Earth Science, 1996, 43 (6):593-604.
    34 Li,ZX., Zhang,LH., Powell,C.M., South China in Rodinia: part of the missing link between Australia—East Antarctic and Laurentia? Geology, 1995, 23 (5):407-410.
    35 Lu Songnian,Yang Chunliang,Li Huaikun and Li Humin, A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 2002,5 (1) :123-131.
    36 McMenamin M A S, McMenamin D L S. The Emergence of Animals: the Cambrian Breakthrough. New York: Columbia University Press, 1990, 1-12.
    37 Meert J G, Growing Gondwana and rethinking Rodinia: a paleomagnetic perspective. Gondwana Research, 2001, 4 (3) :275-278.
    38 Meschede M.,A methed of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem. Geol, 1986, 56,207-218.
    39 Miyashiro A. Nature of alkalic volcanic rock series.Contrb Miner Petrol, 1978,66 :91-104
    40 Miyashiro A. Volcanic rock series in island arcs and active continental margins.Am J Sci, 1974, 274: 321-355
    41 Moores, E.W., South west U.S.—East Antarctic (SWEAT) connection: a hypothesis. Geology 1991.19:425-428
    42 Morgan P,Baker B H,eds. Processes of Continental Rifting.[s.l.]:Els.Sci.Pub., 1983, 1-680
    43 Morrison G W. Characteristics and tectonic setting of the shoshonite rock association.Lithos, 1980, 13:97-108
    44 Nelson J. Are crustal thickness variations in old mountain belts like the Appalachians a consequence of lithospheric delamination Geology, 1992, 20: 498-502
    45 Newton R.C., Metamorphic temperatures and pressures of group B and C eclogites. Geol.Soc.Am.Memoir., 1986, 164: 17-30
    46 Patrick J. O'Brien, Garnet zoning and reaction textures in overprinted eclogites, Bohemian Massif, European Variscides: A record of their thermal history during exhumation, Lithos Vol. 41 (1-3) pp. 119-133.
    47 Pearce J A. An expert system for the tectonic characterization of ancient volcanic rocks.J Volcan Geotherm Res, 1987, 32: 51-65
    48 Pearce J.A, A User’s Guide to Basalt Discrimination Diagrams. In Wyman D.A.,ed.,Trace element geochemistry of vocanic rocks: Applications for massive sulphide exploration[A] In: Geological association of Canada, Short Course Notes[C], 1996, 12:79-113.
    49 Piper J.D.A., The Neoproterozoic Supercontinent: Rodinia or Palaeopangaea?, Earth And Planetary Science Letters (176)1 (2000) pp. 131-146
    50 Pitcher W S. Granite type and tectonic environment. Mountain Building Processes. London: Academic Press, 1983. 19-40
    51 Pitcher W S. The Nature and Origin of Granite. London: Chapman & Hall, 1993.1-321
    52 Powell, R. & Evans, J. A., A new geobarometer for the assemblage biotite-muscovite-chlorite-quartz. Journal of Metamorphic. Geology, 1983, 1, 331–336.
    53 R. Coggon and T. J. B. Holland, Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J. metamorphic Geol., 2002, 20, 683–696
    54 S. G. SONG, J. S. YANG, Z. Q. XU, J. G. LIOU AND R. D. SHI,Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, NW China. J. metamorphic Geol, 2003, 21, 631–644.
    55 Turner S, Sandiford M, Foden J. Some geodynamic and compositional constraints on "postorogenic" magmatism. Geology, 1992, 20: 931-934
    56 Velde, B., Phengite micas: synthesis, stability, and natural occurrence. American Journal of Science, 1965, 263, 886–913.
    57 Volpe A M, Macdougall J D, Hawkins J W. Lau Basin b asalts (LBB): trace element and Sr-Nd isotopic evidence for heterogeneity in backarc basin mantle. Earth Planet Sci Lett, 1988, 90: 174-186
    58 Winchester J.A. and Floyd P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chem. Geol., 1977, 20:325-343.
    59 Wingate Michael T.D., Giddings John W., Age and palaeomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia--Laurentia connection at 755 Ma, Precambrian Research (100)1-3 (2000) pp. 335-357
    60 Wyllie P J.Experimental petrology and global tectonics -a preview.Tectonophys, 1973, 17: 189-209
    61 Yang, J. J., Godard, G., Kienast, J. R., Lu, Y. & Sun, J. Ultrahigh-pressure (60 kbar) magnesite-bearing garnet peridotites from northeastern Jiangsu, China. J. Geol. 1993, 101, 541-554.
    62 Yang, J. S., Xu, Z. Q., Song, S. G., Zhang, J. X., Wu, C. L., Shi, R. D., Li, H. B., Brunel, M. & Tapponnier, P, Subduction of continental crust in the early Paleozoic North Qaidam ultrahigh-pressure metamorphism belt, NW China: Evidence from the discovery of coesite in the belt. Acta Geologica Sinica, 2002, 76, 63–68.
    63 Ye, K. et al.Large areal extent of ultrahigh-pressure (UHP) metamorphism in the Sulu ultrahigh-pressure terrane of East China: new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos, 2000b, 52, 157-164.
    64 Zhang JX, Yang JS, Xu ZQ, Wan YS, Meng FC, Li HB, Shi RD, Song SU, Two contrasting eclogite types on the northern margin of the Qaidam basin, western China. Acta Geologica Sinica-English Edition, 2002, 76 (3): 331-338.
    65 Zhu YF, & Ogasawara Y,Carbon recycled into deep Earth: evidence from dolomite dissociation in subduction-zone rocks. Geology, 2002, 30(10):947-950.
    66 白瑾,黄学光,王惠初等.中国前寒武纪地壳演化.北京:地质出版社.1996.141-148.
    67 曹永清,邓晋福.东昆仑-柴达木盆地北缘岩浆活动
    83 高山,Mihai N.Ducea,金振民等,下地壳拆沉作用及大陆地壳演化。高校地质学报,1998, 4(3):241-149.
    84 葛肖虹,刘俊来,刘永江.阿尔金断裂研究的科学问题与研究思路。现代地质,1998,12(3):295-301.
    85 葛肖虹,刘俊来.北祁连造山带的形成与背景.地学前缘,1999, 6(4):223-230.
    86 葛肖虹,刘俊来.被肢解的“西域克拉通”.岩石学报,2000, 16(1):59-66.
    87 葛肖虹,任收麦,刘永江等.中国西部的大陆构造格架.石油学报,2001,22(5):1-6.
    88 郭进京,赵风清,李怀坤.中祁连东段晋宁期碰撞型花岗岩及其地质意义。地质学报,1999,20(1):10-15.
    89 郭进京,赵凤清,李怀坤.中祁连东段晋宁期碰撞型花岗岩及其地质意义.地球学报,1999, 20(1):10-15.
    90 郭进京.柴北缘锡铁山地区滩间山群构造变形分析及其地质意义.前寒武纪进展,2000, 23(3):147-152.
    91 韩英善等,托莫尔日特蛇绿混杂岩带地质特征及其构造意义,青海地质,2000, 9(1):18-25.
    92 郝国杰,陆松年,李怀坤,郑健康,柴北缘沙柳河榴辉岩岩石学及年代学初步研究,前寒武纪研究进展,2001,24(3):154-162.
    93 郝国杰,陆松年,王惠初等,柴达木盆地北缘前泥盆纪构造格架及欧龙布鲁克古陆块地质演化,地学前缘,2004,11(3),115-122.
    94 郝国杰,陆松年,辛后田,王惠初,青海都兰地区前泥盆纪古陆块的物质组成和重大地质事件,吉林大学学报(地球科学版),2004,34(4),495-516.
    95 洪大卫,花岗岩研究的最新进展及发民趋势,1994,地学前缘,1(1-2)79-86.
    96 黄汲清、陈炳蔚,中国及邻区特提斯海的演化.北京:地质出版社,1987,
    97 姜春发,朱志直,柴耀楚等.昆仑开合构造,北京:地质出版社, 1992,
    98 赖绍聪,邓晋福,杨建军等.柴北缘发现大型韧性剪切带.现代地质,1993, 7(1):125.
    99 赖绍聪,邓晋福,赵海玲.柴达木北缘古生代蛇绿岩及其构造意义.现代地质,1996, 10(1):18-28.
    100 赖绍聪,邓晋福,赵海玲等.青藏高原北缘火山作用与构造演化.西安:陕西科学技术出版社,1996, 47-73.
    101 赖绍聪,邓晋福,赵海玲。柴达木北缘奥陶纪火山作用与构造机制。西安地质学院学报,1996,18(3):8-14。
    102 李复汉,董熔生,刘鸿允,扬子地区晋宁期板块构造的探讨。地质科学,1990, (3):215-223.
    103 李怀坤,陆松年,王惠初,青海柴北缘新元古代超大陆裂解地地质记录——全吉群.地质调查与研究,2002, 26(1)27-37.
    104 李怀坤,陆松年,赵风清等.柴达木北缘新元古代重大地质事件年代格架. 现代地质,1999a, 13(2):224-225.
    105 李怀坤,陆松年,赵风清等.柴达木盆地北缘鱼卡河柯石英榴辉岩的确定及其地质意义.现代地质,2001, 13(1):43-50.
    106 李继光,孙枢,郝杰等.碰撞造山带的碰撞时限的确定.岩石学报,1999, 15(2):315-320.
    107 李继亮,孙枢,郝杰,陈海弘,侯泉林,肖文交,碰撞造山带的碰撞事件时限的确定,岩石学报,1999,15(2):315-320.
    108 李兴振,许效松,潘桂堂等.泛华夏大陆群与东特提斯构造域演化.岩相古地理,1995, 15(4):1-13.
    109 刘福来,许志琴,杨经绥, 中国大陆科学钻探工程预先导中片麻岩-花岗片麻岩的岩石学和地球化学研究。地质学报,2001,75(1):70-81.
    110 刘良,车自成,罗金海,王焰,高章鉴。阿尔金山西段榴辉岩的确定及其地质意义。科学通报,1996b,41(16):1485-1488.
    111 卢欣祥,董有,尉向东,肖庆辉,李晓波,张宗清。东秦岭吐雾山A 型花岗岩的时代及其构造意义。血液学通报,1999,44(9):975-978.
    112 卢欣祥,秦岭花岗岩提示的造山过程-秦岭花岗岩研究进展,地球科学进展,1998,13(2):213-214.
    113 陆松年, 王惠初,李怀坤等.柴达木盆地北缘“达肯大坂群”的再厘定.地质通报,2002, 21(1):19-23.
    114 陆松年,陈志宏,李怀坤,郝国杰等,秦岭造山带中—新元古代(早期)地质演化,地质通报,2004,23(2),107-112.
    115 陆松年,初论“泛华夏造山作用”与加里东和泛非造山作用的对比,地质通报,2004,23(9-10),952-958.
    116 陆松年,蒋明媚,地幔柱与巨型放射状岩墙群,地质调查与研究,2003,26(3),136-144.
    117 陆松年,李怀坤,陈志宏.塔里木与扬子新元古代热-构造事件特征、序列和时代——扬子与塔里木连接(YZ-TAR)假设.地学前缘,2003,10(4),321-326.
    118 陆松年,李怀坤,于海峰等。中国中部年轻造山带内的新元古代重大地质事件及年代格架。现代地质,1999d,13(2), 223-224.
    119 陆松年,王惠初,李怀坤等,柴达森盆地北缘“达肯大坂群”的再厘定。地质通报,2002,21(1):19-23.
    120 陆松年,新元古时期Rodinia 超大陆研究进展述评,地质论评,1998,44(5):489-495.
    121 陆松年,杨春亮,蒋明媚等,前寒武纪大陆地壳演化示踪,北京:地质出版社.1996,
    122 陆松年,李怀坤,陈志宏,郝国杰等,秦岭中-新元古代地质演化及对Rodinia 超级大陆事件的响应,北京:地质出版社,2003,1-194.
    123 陆松年,于海峰,金巍等.塔里木古大陆东缘的微大陆块体群。岩石矿物学杂志,2002, 21(4):317-326.
    124 陆松年.新元古时期Rodinia 超大陆研究进展述评.地质论评,1998, 44(5):489-495.
    125 陆松年主编,青藏高原北部前寒武纪地质初探,北京:地质出版社,2002,1-120.
    126 陆松年主编.中国前寒武纪地质年代划分再讨论.现代地质,1999, 3(2):195-196.
    127 罗照华,邓晋福,曹永清等,青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化,现代地质,1999,13(1),51-56.
    128 马昌前.莫霍面,下地壳与岩浆作用。地学前缘,1998, 5(4):201-208
    129 梅华林,甘晓春王惠初译.确定变质作用P-T-t 轨迹的岩石学方法(F.S.Spear 著).国外前寒武纪地质,1990, 3:4-67.
    130 孟繁聪,张建新,杨经绥等,柴北缘锡铁山榴辉岩的地球化学特征,岩石学报,2003,19(3),435-442.
    131 倪志耀,王仁民.元古宙蛇绿岩研究现状及其板块构造意义.地质科技情报,1998, 17(4):25-30.
    132 潘桂堂,陈智梁,李兴振等,东特提斯地质构造形成与演化.北京:地质出版社.1997, 65-128.
    133 潘桂堂,李兴振,王立全,等.青藏高原及邻区大地构造单元初步划分.地质通报,2002, 21(11):701-707.
    134 潘桂堂.全球洋-陆转换中的特提斯演化.特提斯地质,2001, 18:23-40.
    135 潘桂棠,陈智梁,李兴振等,东特提斯地质构造形成演化。北京:地质出版社,1997。肖庆辉,邓晋福,马大铨等,花岗岩研究思维与方法,北京:地质出版社,2002.
    136 潘桂棠,王立全,朱弟成,青藏高原区域地质调查中几个重大科学问题的思考,地质通报,2004,23(1),12-19.
    137 潘裕生,周伟明,许荣华.昆仑山早古生代地质特征与演化.中国科学(D)辑,1996, 26(4):302-307.
    138 青海省地质局地质八队,1:5 万夏日哈乡幅南戈泉幅、乌龙滩幅、巴硬格莉山幅四幅联测区调报告, 1989.
    139 青海省地质局区测队,1:20 万德令哈旧址幅区调报告, 1975.
    140 青海省地质局区测队,1:20 万都兰幅香日德农场幅区调报告,1968.
    141 青海省地质局区测队,1:20 万乌兰幅区调报告, 1968.
    142 青海省地质矿产局。青海省区域地质志,北京:地质出版社,1991,1-662.
    143 任纪舜,姜春发等,中国大地构造及其演化.北京:科学出版社, 1980.
    144 任纪舜,昆仑—秦岭造山系的几个问题,西北地质,2004,37(1),1-5.
    145 任纪舜,王作勋,陈炳蔚等。新一代中国大地构造图。中国区域地质,1997,16(3):225-230.
    146 宋述光,杨经绥.柴达木盆地北缘都兰地区榴辉岩中透长石+石英包裹体:超高压变质作用的证据.地质学报,2001, 75(2):180-185.
    147 孙崇仁主编,青海省岩石地层.武汉:中国地质大学出版社, 1997.
    148 孙廷贵,张国伟,郑健康等.柴达木地块东南缘岩浆弧(带)形成的动力学背景。2001, 4 总68:16-21.
    149 孙延贵,郝维杰,韩英善等,柴达林盆地东段托莫尔日特似蛇蛇绿岩岩石组合特征,中国区域地质,2000,19(3):258-264.
    150 孙延贵,郝维杰,韩英善等.柴达木盆地东段托莫尔日特似蛇绿岩岩石组合特征[J].中国区域地质,2000, 19(3):258-264.
    151 万渝生,许志琴,杨经绥等.祁连造山带及邻区前寒武纪深变质基底的时代和组成.地球学报,2003,24(4 总77):319-324.
    152 王臣,青藏高原北部板块构造地球物理特征,青海地质,1991,(2):1-13。
    153 王德滋,周金诚.我国花岗岩研究的回顾与展望.岩石学报,1999, 15(2):161-169.
    154 王惠初,陆松年,袁桂邦,辛后田等,柴达木盆地北缘滩间山群的构造属性及形成时代。地质通报,2003,22(7),487-493.
    155 王惠初,陆松年,袁桂邦等.柴北缘滩间山群的构造属性及形成时代.地质通报,2003, 22(7):34-40.
    156 王惠初,袁桂邦,辛后田,郝国杰等,柴达木盆地北缘鱼卡河岩群的地质特征和时代,地质通报,2004,23(4),314-321.
    157 王惠初,袁桂邦,辛后田等.柴北缘绿梁山榴辉岩的产出状态及其成因意义初探.中国地质,2001, 28(7):22-27.
    158 王强,王人镜,邱家骧.造山带岩浆活动与构造运动关系研究综述。地质科技情报,1997, 16(4):39-44.
    159 王仁民,贺高品,陈珍珍等.1987.变质岩原岩图解判别法.北京:地质出版社,1987, 1-199.
    160 王涛,花岗岩混合成因研究及大陆动力学意义。岩石学报,2000, 16(2):161-168.
    161 王毅智,梁超云,王桂秀.柴达木盆地北缘麻粒岩的发现及地质特征.青海地质,2000, 9(1):33-38.
    162 王云山,陈基娘,青海省及其毗邻地区变质地质及变质作用。北京:地质出版社,1987,1-286。王云山,庄庆兴,史从彦等。柴达木北缘的全吉群。见:中国震旦亚界。天津:天津科学技术出版社,1980,214-229.
    163 王云山,陈基娘.论青海北部元古宙的几次地质事件.前寒武纪地质——国际晚前寒武纪地质讨论会论文选集,1986, 283-291.
    164 王云山,陈基娘.青海省及毗邻地区变质地质与变质作用.北京:地质出版社,1987, 1-268.
    165 王云山,庄庆兴,史从彦等.柴达木盆地北缘的全吉群.中国震旦亚界.天津:天津科学技术出版社.1982, 214-229.
    166 吴才来,杨经绥,王志红等.柴达木盆地北缘西端冷湖花岗岩。中国区域地质,2001, 20(1):73-81.
    167 吴泰然.花岗岩及其形成的大地构造环境。北京大学学报(自然科学版), 1995, 31(3):358-365.
    168 武红岭,董树文.大别山陆-陆点碰撞和构造超压的形成.地球科学,2001, 26(5):457-463.
    169 肖序常,陈国铭,朱志直。祁连山古蛇蛇绿岩带的地质构造。地质学报,1978,52(4):281-295。熊兴武,陈忆元。柴达木地块北缘早古生代裂陷槽。见王鸿祯等:中国古大陆边缘中、新元古代及古生代构造演化。北京:地质出版社,1994,114-131.
    170 肖序常.从扩张速率试论蛇绿岩的类型划分.岩石学报,1995, 11(增刊):10-23.
    171 辛后田,郝国杰,王惠初等.柴北缘前震旦纪地层系统的新认识.前寒武纪研究进展,2002, 25(2):113-119.
    172 辛后田,周世军,王惠初,郝国杰等.柴达木盆地北缘“沙柳河岩群“的重新启用.西北地质,2004, 37(1):26-33.
    173 熊兴武,陈忆元.柴达木地块北缘早古生代裂陷槽.见:王鸿祯,王自强等编.中国古大陆边缘中新元古代及古生代构造演化.北京:地质出版社,1994, 114-131.
    174 许志琴,杨经绥,吴才来等.柴达木北缘超高压变质带形成与折返的时限及机制.地质学报,2003, 77(2):163-176.
    175 许志琴,杨经绥,袁枚.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘.1996, 6(3):139-149.
    176 许志琴,张建新,徐惠芬等.中国主要大陆山链韧性剪切带及动力学.北京:地质出版社,1997.
    177 胥颐,刘福田,刘建华,陈辉,孙若昧.中国西北大陆碰撞带的深部特征及其动力学意义。地球物理学报,44(1):40-47。
    178 杨建军,朱红,邓晋福等.柴达木北缘石榴石橄榄岩的发现及其意义.岩石矿物学杂志,1994, 25(2):97-105.
    179 杨经绥,宋述光,许志琴等.柴达木盆地北缘早古生代高压-超高压变质带中发现典型超高压矿物——柯石英.地质学报,2001, 75 (2):175-179.
    180 杨经绥,许志琴,李海兵等.柴北缘地区榴辉岩的发现及潜在的地质意义.科学通报,1998, 43(14):1544-1548.
    181 杨经绥,许志琴,李海兵等。我国西部柴北缘地区发现榴辉岩。科学通报,1998,43(14):1544-1549
    182 杨经绥,许志琴,宋述光等.青海都兰榴辉岩的发现:试论我国中央造山带中高压-超高压变质带的分布及构造意义.地质学报,2000, 74(2):154-168.
    183 杨经绥,张建新,孟繁聪等.中国西部柴北缘—阿尔金的超高压变质榴辉岩及其原岩性质探讨.地学前缘,2003, 10(3):|291-314.
    184 杨坤光,杨巍然.碰撞后的造山过程及造山带巨量花岗岩的成因。地质科技情报,1997, 16(4):16-22.
    185 杨晓松,金振民.部分熔融与青藏高原地壳加厚的关系综述。地质科技情报,1999, 18(1):24-28.
    186 殷鸿福,张克信,东昆仑造山带的一些特点。地球科学,1996,22(4)339-432.
    187 殷鸿福,张克信.中央造山带的演化与特点.地球科学——中国地质大学学报,1998, 23(5):437-447.
    188 于海峰,陆松年,梅华林等.中国西部新元古代榴辉岩-花岗岩带和深层次韧性剪切带特征及其大陆再造意义.岩石学

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700