功率模块IGBT状态监测及可靠性评估方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变流器作为新能源转换系统中极其重要的组成部分,其运行安全性和可靠性越来越受到科研人员、电力系统运行和管理人员的关注。随着我国新能源发电系统装机容量的不断增长,对功率变流器的容量、效率和可靠性的要求也越来越高,尤其当变流器中IGBT功率模块出现隐形故障的时候,维护、检修等运行管理的难度也越来越大,所以研究变流器IGBT功率模块的可靠性和寻求一种状态监测与评估的方法对于新能源发电及其转换系统的安全可靠运行显得非常重要。
     由于电力电子器件大多封装在模块中,模块内部故障不易直接测量,状态难于监测与评估,可靠性难于保证。论文从这几个关键问题入手,分析了功率模块IGBT的失效原因及可靠性对策、研究了功率模块IGBT的运行驱动可靠性、IGBT的故障诊断与运行状态监测与评估。还研究了功率模块IGBT热模型、动态热阻和结温的提取、寿命预测等方面,以实现对功率模块的状态监测与有效评估,提高其工作可靠性。概括起来,论文主要研究了以下几个方面的内容和创新点:
     ①功率模块IGBT的失效机理研究。分析了由IGBT可靠性降低引发的失效机理及失效模式并提出了失效评判标准,根据失效模式,把功率模块失效方式分为两大类,即与封装有关的失效以及与芯片相关的失效,总结出变流器IGBT失效的根本原因,提出其失效是内部疲劳逐渐积累并与外部运行环境等多种因素相互作用的结果,当其承受的电应力、热应力、化学应力、辐射应力和机械应力以及其他因素使所经受的应力条件超过最大额定值时,便会造成器件失效。
     ②功率模块IGBT的驱动控制可靠性研究。对于目前常用的推挽结构的功率模块驱动电路,虽然减小驱动电阻将导致开通、关断时间的缩短,但同时也将导致开关过程中IGBT功率器件电热应力的增加,从而使功率模块可靠性降低。针对这一特点,首次提出了一种基于dSPACE的分段控制算法,通过软件和硬件结合分段控制功率模块开、关断速度,揭示了功率模块的表面温度变化规律,拟合出了表面温度变化的动态曲线,实验证明该控制方法具有良好的驱动和保护功能,在缩短开关时间的同时可以有效抑制电压、电流应力的增加,并能有效地减少新能源转换系统中输出电压和电流的谐波、提高电压利用率和波形质量,使新能源转换系统可靠性得到提高。
     ③功率模块IGBT的状态监测与评估方法研究。针对风力发电等可再生能源转换系统中大功率变流器等电力电子设备的故障率较高、缺乏有效的状态监测问题,本文致力于研究新能源系统中功率模块的故障诊断与状态监测和评估方法研究,通过分析目前常用的状态监测方法的困难和弱点,首次提出了IGBT的外特性监测方法,建立了IGBT外特性瞬态模型与稳态模型及其评估标准,并首次提出了基于神经网络的黑箱算法,从外特性角度建立了基于功率模块多个运行状态参数(如工作电压、电流、调制比、表面温度等)的状态监测与评估系统,并运用智能计算方法和人工神经网络建立了IGBT表面温度预测模型,实验证明该方法方便可行,为研究和提高可再生能源发电系统中变流器功率模块的可靠性开辟了新的途径。
     ④功率模块IGBT的热模型和寿命预测研究。本文分析和研究了功率模块IGBT的功率计算方法以及热模型及求解算法、热阻提取,寿命预测。IGBT的寿命和IGBT结温的变化有关,而结温源于它的发热,发热又源于功率损耗且和其热阻有关。因此,IGBT结温及热阻是影响其寿命、评估其可靠性的重要参数。本文提出了一种IGBT动态热阻的提取方法,给出了实验步骤,拟合出了热阻变化的动态曲线和热阻公式,该方法克服了IGBT内部参数难于测量和不易操作的特点,通过检测外部集射电压参数间接地获取IGBT结温,建立了外部参数和内部参数之间的联系,在动态曲线和结温公式基础上,提出了一种新的IGBT寿命预测理论模型,并对该理论模型进行了归一化,使该模型简单适用且适用范围得到拓宽,为提高IGBT的可靠性具有重要的意义。
The convertor plays the extremely important role in the new energy conversionsystem, its safety and reliability in operation is more and more focused on by theelectrical power system operators, the managements and scientific researchers. With theincrease of our new generators total volume and the transmission capacity, therequirement of reliability and volume, efficiency is becoming more and more important,so it becomes more difficult to manage the convertors, especially when the IGBT powermodule presents the potential failure, therefore it seems important to seek one kind ofIGBT power module condition online monitor and the failure diagnosis methodregarding the IGBT power module safe reliability service
     Firstly, the failure mechanism is analysized and the protection action is presentedby means of introducing the common failure problems and normal condition duringconvertor operation. Then, the driving circuit and thermal model and lifetime predictionis proposed. After that, a new method, which is based on the algorithm of black box forthe IGBT power module, is proposed to monitor and forecast IGBT module's condition.The following researching work has been finished in this dissertation
     ①Mechanisms and failure mode resulted from the reliability decreasing of IGBTis analyzed. According to the failure Mechanism, the failure, which comprised of thefailure patterns of mosfet device and component hybrid pattern failure, is classified intotwo types whose failure mode is related with package and chips of IGBT respectively.The failure of IGBT power module is caused by the interacting multi-factors. Such as itsinternal fatigue accumulation, external operating environment etc.
     ②In the present push-pull driving circuit for power module, reducing the drivingresistance will lead to make the time shorter, but this process will result in increase ofcurrent and voltage thermal stress. After the failure mechanism and thermal model ofpower module is analyzed, a novel driving methodology based on dSPACE has beenintroduced and validated in this paper. The ascending theory of case-temperature isinvestigated and then an exponential curve is achieved for power module, experimentsprove that this methodology has a good driving and the protective performance,andeffectively reduce harmonics of output current and voltage in the new energyconversion system, enhance the voltage utilization rate and waveforms quality, thus thereliability of power module has been greatly improved.
     ③Packaging-related internal failure such as solder fatigue or wire crack has beenacknowledged as one of the principal root causes of IGBT power module failures.Condition monitoring is needed by power electronic system operator as a cost-effectivemeans of improving IGBT reliability. In this paper, an approach is presented to monitorinternal failure inside a IGBT power module by identifying the increase of external casetemperature due to internal failure, In this method, an IGBT power module is regardedas a black box system without considering any internal factors or models associatedwith the heat sink as well as the power loss module, all electrical factors at certainworking points are classified as the inputs, meanwhile the case temperature isconsidered as the output of the black box system respectively, in which any devicepower loss model or heat sink model is not established to estimate the internal thermalresistance. Firstly, case temperature is predicted based on the GA-BP artificial neuralnetwork, after that, a monitoring method are presented based on the predicted look-uptable or model and a threshold for the difference between the measured and thepredicted case temperature is set reasonably. It is because that the total loss in themodule increases as junction temperature rises generated from internal failure, causingan increase in case temperature rise, the external characteristic of IGBT is the reflectionof internal condition, once the measured case temperature is higher than the predictedtemperature at a certain working point, taking account of the masking effect ofmeasuring accuracy and errors, then a conclusion can be get that the IGBT condition isabnormal. At last, experiment has validated and demonstrated the concept andcharacterized the proposed method.
     ④The lifetime of IGBT power module is related with the change amplitude ofjunction temperature, the junction temperature is from the dissipating heat of IGBT, theheat comes from the power loss of IGBT, the thermal model, and power losscalculations are investigated. Furthermore, the prediction model of lifetime for IGBT isproposed.
引文
[1]. R. Billinton, H. Chen, assessment of risk-based capacity benefit factors associated with windenergy conversion systems[J],IEEE Transactions on Power System,1998,13(3):1191-1196.
    [2].陈树勇,戴慧珠,白晓民,周孝信,风电场的发电可靠性模型及其应用[J],中国电机工程学报,2000,120(3):26-28.
    [3].陈明,胡安,刘宾礼,绝缘栅双极型晶体管失效机理与寿命预测模型分析[J],西安交通大学学报,2011,45(10):65-71.
    [4].王海超,鲁宗相,周双喜,风电场发电容量可信度研究[J],中国电机工程学报,2005,25(10):103-106.
    [5].吴义纯,丁明,基于蒙特卡罗仿真的风力发电系统可靠性评价[J],电力自动化设备,2004,24(12):70-73.
    [6]. J.F. Manwell, J.G. McGowan, A.L. Rogers, wind energy explained–theory, design andapplication. John Wiley&Sons Ltd,2002.
    [7].刘勇,梁利华,曲建民,微电子器件及封装的建模与仿真[M],北京:科学出版社,2010:15-16
    [8]. THEBAUD J M, WOIRGARDE, ZARDINIC, et al,strategy for designing accelerated agingtests to evaluate IGBT power modules lifetime in real operation mode [J],IEEE Transactionson Components and Packages Technologies,2003,39(2):429-438.
    [9]. CIAPPA M,CARBOGNANIF,FICHTNER W, lifetime prediction and design of reliability testsfor high power devices in automotive applications[J], IEEE Transactions on MaterialsReliability,2003,3(24):191-196.
    [10]. MOROZUMI A,YAMADA K,MIYASAKA T,et al,reliability of power cycling for IGBTsemiconductor modules[J],2003,39(3):665-671.
    [11].鲁光祝,向大为,IGBT功率模块状态监测技术综述[J].电力电子,2011(2):5-10
    [12]. J.Lehmann, M. Netzel, R. Herzer, and S. Pawel, method for electrical detection of bond wirelift-off for power semiconductor [C], IEEE15th International Symposium on PowerSemiconductor Devices and ICs,2003,333-336.
    [13]. B. Farokhzad, Method for Early Failure Recognition in Power Semiconductor Modules [P],US Patent6,145,107, to Siemens,2000.
    [14]. Dawei Xiang, Shaoyong Yang, Li Ran, et al. Change of Terminal Characteristics of a VoltageSource Inverter (VSI) due to Semiconductor Device Degradation[C],Power Electronics andApplications,13th European Conference on8-10Sept.2009:1-10.
    [15]. Nishad Patil, Diganta Das, Kai Goebel, et al. Identification of failure precursor parameters forInsulated Gate Bipolar Transistors (IGBTs)[C],International Conference on PHM,2008:1-5.
    [16]. V. Sankaran, and X. Xu, Integrated Power Module Diagnostic Unit [P], US Patent5,528,446,to Ford Motor Company,1996.
    [17]. Y.Xiong, X.Cheng, Z.J.Shen, et al. A Prognostic and Warning System for Power ElectronicModules in Electric, Hybrid, and Fuel Cell Vehicles[C],41st Annual Meeting. IEEE IndustryApplications Conference I,2006(3):1578-1584.
    [18]. Luowei Zhou, Shengqi Zhou. Effects of Wire-bond Lift-off on Gate Circuit of IGBT PowerModules[C],Power Electronics and Motion Control Conference (EPE/PEMC),2010:45-47.
    [19]. M.A.Rodriguez,A.Claudio,D.Theillio,et al.A New Fault Detection Technique for IGBT Basedon Gate Voltage Monitoring[C], IEEE Power Electronics Specialists Conference,2007:1001-1005
    [20].李玉淋.功率电源中IGBT失效机理及其检测方法的研究[D].陕西:西安理工大学,2008.
    [21]. D. Xiang, L. Ran, P. Tavner, S. Yang, A. Bryant, P. Mawby, Monitoring Solder Fatigue in aPower Module Using the Rise of Case-above-ambient Temperature [J]. IEEE Transactions onindustry application,2011,47(6):2578-2591.
    [22].黄俊,王兆安,电力电子变流技术[M],北京:机械工业出版社,1994.
    [23].黄家善,王廷才,电力电子技术[M],北京:机械工业出版社,2007.
    [24].魏克新,杜明星,基于传热反问题的绝缘栅双极型晶体管模块温度计算方法[J],吉林大学学报-工学版,2011,41(6):1743-1747.
    [25]. M. Ciappa. Selected failure mechanisms of modern power modules [J],Micro electronicsReliability,2002(42):653-667.
    [26]. A. Morozumi, K. Yamada, T. Miyasaka, et al. Reliability of Power Cycling for IGBT PowerSemiconductor Modules [J],IEEE Transactions on Industry Applications,2003(3):665-671
    [27]. HELD M, JACOB P, NICOLETTI G, et al. Fast power cycling test for IGBT modules intraction application [J]. Journal of electronics,1999,86(10):1193-1204.
    [28]. XIONG Y,CHENG X,SHEN J,et al.Prognostic and warning system for power-electronicsmodules in electric, hybrid electric, and fuel-cell vehicles[J],IEEE transactions on industrialelectronics,2008,55(6):2268-2276.
    [29]. LU H,BAILEY C,lifetime prediction of an IGBT power electronics module under cyclictemperature loading[C], international conference on electronic packaging technology and highdensity packaging. Piscataway, NJ, USA: IEEE,2009:274-279.
    [30]. HAMIDI A, BECK N, THOMAS E. Reliability and lifetime evaluation of different wirebonding technologies for high power IGBT modules [J],Microelectronics reliability,1999,39(5):1153-1158.
    [31]. A. Hamidi, S. Kaufmann, E. Herr. Increased Lifetime of Wire Bonding Connections for IGBTPower Modules[C],16th Annual IEEE Applied Power Electronics Conference and Exposition,2001(2):1040-1044.
    [32]. E.Herr, T.Frey, R.Schlegel, et al. Substrate-to-base solders joint reliability in high power IGBTmodules [J]. Microelectron. Reliability,1997(37):1719-1722.
    [33]. D. Katsis and J. Wyk. Void-Induced Thermal Impedance in Power Semiconductor Modules:Some Transient Temperature Effects [J],IEEE Transaction on Industry Applications,2003,39(5):1239-1246.
    [34]. D. Katsis and J. Wyk. A thermal, mechanical, and electrical study of voiding in the solderdie-attach of power MOSFETs [J], IEEE Transaction on Components and PackagingTechnologies,2006,29(1)127-136.
    [35].王彦刚,武力,崔雪青等,IGBT模块封装热应力研究[J],电力电子技术,2000(6):52-54.
    [36]. L. Fratelli, G. Giannini, B. Cascone and G. Busatto, Reliability Test of Power IGBTs for RailwayTraction[C], in European Conference on Power Electronics and Applications (EPE),1999.
    [37]. FELLER L, HARTMANN S, SCHNEIDER D. Life-time analysis of solder joints in highpower IGBT modules for increasing the reliability for operation at150degrees centigrade [J].Microelectronics Reliability,2008,48(5):1161-1166.
    [38].施建根,孙伟锋,景伟平,等.车载IGBT器件封装装片工艺中空洞的失效研究[J],电子与封装,2010,10(2):23-27.
    [39]. D. A. Grant and J. Gowar, Power MOSFET-Theory and Applications [M], New York: Wiley,1989.
    [40]. S.M. Sze, Physics of Semiconductor Devices [M],New Yhork: Wiley,1981.
    [41]. C. Duvvury, J. Rodriguez, C. Jones, and M. Smayling, Device integration for ESD robustnessof high voltage power MOSFETs [C], International. Electron Devices Meeting,1994:407-410.
    [42]. N.Mohan, T.Undeland, and W. Robbins, Power Electronics: Converters, Applications, andDesign [M]. New York: Wiley,1995.
    [43]. K. Kameda. Motor driving device having MOSFET, MOSFET, and motor having MOSFET[P], U.S. Patent7352144,2008.
    [44]. J. Bernstein, M. Gurfinkel, X. Li, J. Walters, Y. Shapira, and M. Talmor. Electronic circuitreliability modeling [J],Microelectron Reliability,2006,46(12):1957-1979.
    [45]. E. Amerasekera and F. Najm. Failure Mechanisms in Semiconductor Devices [M],2nd. NewYork: Wiley,1997.
    [46]. M. Arab, S. Lefebvre, Z. Khatir, and S. Bontemps. Experimental investigations of trench fieldstop IGBT under repetitive short-circuits operations [C],IEEE Power Electronics SpecialistsConference,2008:4355-4360.
    [47].丁定浩,陆军.装备寿命周期使用保障的理论模型和设计技术[M],北京:电子工业出版社,2011
    [48].苏平,张靠社.基于主动式IGBT型Crowbar的双馈风力发电系统LVRT仿真研究[J].电力系统保护与控制.2010,38(23):165-170.
    [49]. Odak a A, Itoh J, Sato I. Analysis of loss and junction temperature in power semiconductorof the matrix converter using simple simulation methods [C],IEEE Proc of IAS[C].Seattle,USA: IEEE,2004:850-855.
    [50]. P.J. Tavner, Review of condition monitoring of rotating electrical machines [J], IET ElectricPower Applications,2008,2(4):215-247.
    [51]. M. Musallam and C.M. Johnson, Real-Time Compact Thermal Models for HealthManagement of Power Electronics [J],IEEE Transactions on Power Electronics,2010,25(6):1416-1425.
    [52].曾繁玲,IGBT驱动与保护电路的研究[J],仪表技术,2007(07):61-63.
    [53]. Bieniecki S, Hartman M, Iwaszkiewicz J. Driving circuits for high power IGBT applications[C]. Proceedings of the IEEE International Symposium on Industrial Electronics,1996(1):525-530.
    [54]. Luo J, Liang Y C, Cho B J. Design of IGBT gate drive circuit with SOA consideration [C].International Conference on Power Electronic Drives and Energy Systems for IndustrialGrowth,1998(1):307-311.
    [55]. Hefner A R. An investigation of the drive circuit requirements for the power insulated gatebipolar transistor (IGBT)[J]. IEEE Transactions on Power Electronics.1991,6(2):208-219.
    [56]. John V, S uh B S, Lipo T A. High-performance active gate drive for high-power IGBT 's [J].IEEE Transaction on Industry Application,1999,35(5):1108-1117.
    [57]. Nguyen M. N. Short circuit protection of high speed, high power IGBT modules [C]. IEEETransactions on Pulsed Power Conference,2003(2):815-818.
    [58]. S.Mohagheghi, R.G. Harley, T.G.Habetler and D.Divan, Condition Monitoring of PowerElectronic Circuits Using Artificial Neural Networks[J],IEEE Transactions on PowerElectronics,2009,24(10):2363-2367.
    [59]. Y. Xiong, X. Cheng, Z. Shen, C. Mi, H. Wu and V. Garg, A Prognostic and Warning Systemfor Power Electronic Modules in Electric, Hybrid, and Fuel Cell Vehicles[J], IEEETransaction on Industry Electronics,2008,55(6):2268-2276.
    [60]. Klumpner C, Blaabjerg F. Using reverse b locking IGBTs in power converters for adjustablespeed drives [C]. IEEE Proc of IAS[C].Salt Lake City, USA: IEEE,2003:1516-1523.
    [61]. Muhammad Abu-khaizaran,Patrick Palmer,Yanan Wang, parameters influencing theperformance of an IGBT gate drive[C], power electronics specialists conference,2008:3457-3462.
    [62].周大宁,孙凯等。RB-IGBT驱动电路及其在矩阵式变换器中的应用[J].清华大学学报(自然科学版).2006,46(4):465-468.
    [63]. ZHOU Daning, LIU Zhichao. An improved driving and protection circuit for RB-IGBT[A].IEEE Proc of PESC [C]. Aachen, Germany: IEEE,2004:118-124.
    [64]. S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran and P. Tavner. Condition Monitoring forDevice Reliability in Power Electronic Converters-A Review [J]. IEEE Transactions onPower Electronics,2010,25(11):2734-2752.
    [65]. S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran and P. Tavner, An Industry-Based Survey ofReliability in Power Electronic Converters [J], IEEE Transaction on Industry Applications,2011,47(3):1441-1451.
    [66].刘希真,周文俊,尤佳. IGBT工作结温的状态识别[J].天津大学学报,2002,35(2):243-246
    [67]. Barlini D, Ciappa M, Casellazzi A, et al. New tech-nique for the measurement of the static andof the transient junction temperature in IGBT devices under operating conditions [J].Microelectronics Reliability,2006,46(9-11):1772-1777.
    [68]. MunkNielsen, S. Tutelea, L.N.Jaeger,U.“simulation with ideal switch models combined withmeasured loss data provides a good estimate of power loss”[c], IEEE Industry applicationsConference,2000, l5(5):2915–2922.
    [69]. D. Xiang, L. Ran, P. Tavner, S. Yang, A. Bryant, P. Mawby.“Condition Monitoring PowerModule Solder Fatigue Using Inverter Harmonic Identification”[J], IEEE Transactions onPower Electronics,2011,27(1):235–247.
    [70]. V. Sankaran and X. Xu,“Integrated Power Module Diagnostic Unit,” U.S. Patent5,528,446,1996.
    [71]. L. Fratelli, G. Giannini, B. Cascone and G. Busatto,“Reliability Test of Power IGBT's forRailway Traction”[C], in EPE,1999.
    [72]. P.O.Lauritzen,“Simulation and modeling for power electronics”, Computers in PowerElectronics,1988:37-42.
    [73]. A.Azzopardi, C. Jamet, J.-M. Vinassa, C. Zardini,“Switching performances Comparison of1200Punch-Through IGBTs under Hard-Switching at High Temperature”[C], PESC'98, Japan1998:1201-1207.
    [74]. Stig Munk-Nielsen, Lucian N Tutelea, Ulrik J(a)ger,“Simulation with Ideal Switch ModelsCombined with Measured Loss Data Provides a Good Estimate of Power Loss”[J], Powerelectronics,2007,41(8):2915-2922.
    [75]. Matlab中文论坛,Matlab神经网络30个案例分析[M],北京:北京航空航天大学出版社,2010.
    [76].李丽霞,BP神经网络及其在疾病预后分类问题中的应用[D],太原:山西医科大学,2002.
    [77].孟治国,BP神经网络在土地利用分类中的应用分析[D],长春:吉林大学,2004.
    [78].吴仕勇,基于数值计算算法的BP神经网络及遗传算法的优化研究[D],昆明:云南师范大学,2006.
    [79].李华,基于一种改进遗传算法的神经网络[D],太原:太原理工大学,2007.
    [80].吴建生,基于遗传算法的BP神经网络气象预测建模[D].南宁:广西师范大学,2004
    [81]. Han Shuang, Yang Yongping, Liu Yongqian, The Comparison of BP network and RBFnetwork in wind power prediction application”[C],20072nd International Conference onBio-Inspired Computing: Theories and Applications,2007:173-176.
    [82]. Shikha Singh, T S Bhatti, D P Kothari,“Wind Power Estimation Using Artificial NeuralNetwork”, Journal of Energy Engineering,2007,133(1):46-49.
    [83].熊妍,沈燕群,江健,何湘宁,IGBT损耗计算和损耗模型研究[J],电源技术应用,2009,9(5):56-60.
    [84].许德伟,朱东起,黄立培,姜新建,卢海惟.电力半导体器件和装置的功率损耗研究[J],清华大学学报,2000,40(3):5-8.
    [85]. Hefner A R, Diebolt D M. An experimentally verified IGBT model implemented in the sabercircuit simulation [A]. Conference of IEEE PESC,1991:10-19.
    [86]. Chuck Wong. EMTP modeling of IGBT dynamic performance for power dissipationestimation [J], IEEE Transactions on Industry Application,1997,33(1):64-71.
    [87]. Mantooh H A, Hefner A R. Electro-thermal simulation of an IGBT PWM inverter [C].24thAnnual IEEE Power Electronics Specialists Conference,1993:75-84.
    [88]. Kraus R, Hoffmann k. Analytical Model of IGBTs with low emitter efficency. Proceedings the5th symposium power semiconductor devices and ICs,1993:30-34
    [89]. Kraus R, Turkes P, Sigg J.physics based model of power semiconductor devices for the circuitsimulator spices[C].Procedings IEEE PESC’98[C],1998:1726-1731.
    [90]. Kraus R, Mattaush, Status and trends of power semiconductor devices model for circuitsimulation [J].IEEE transactions on Power electronics,1998,13:452-465.
    [91]. Redig, Kraus. The influence of the base resistance modulation on switching losses inIGBTs[C], Conference record IEEE-IAS Annual Meeting,1996(3):1500-1506.
    [92]. Ramy Azar, Florin Udrea, M ahesh De Silva, et al. Advanced SPICE Modeling of LARGEpower IGBT models [J], IEEE transactions on industry applications,2004,40(3):710-716.
    [93]. Sheng K, Finney S J, Williams B W. Fast and accurate IGBT model for PSPICE[J].Electronics letters,1996,32(25):2294-2295.
    [94]. Sheng K, Finney S J, Williams B W. A new analytical IGBT model with improved electricalCharacteristics [J]. IEEE transactions on Power Electronics,1994(14):98-107.
    [95]. Cavalcanti M C, da Silva E R, Jacobina C B, et al. Comparative Evaluation of losses in softand hard-switched inverters[C].38th IAS Annual Meeting. Conference Record of the IndustryApplications Conference,2003(3):1912-1917.
    [96]. Calculation of Major IGBT operating parameters[R].Infineon Application Notes,http:/Infineon.com.
    [97]. Yun C S, Malberti P. Ciappa M.et al. Thermal component model for electrothermal analysis ofIGBT module system[J].IEEE Transactions on Advanced Packaging,2001,24(3):401-406.
    [98]. Ciappa M,Fichtner W, Kojima T, et al.Extraction of accurate thermal compact models for fastelectro-thermal simulation of IGBT modules in hybrid electric vehicles[J].MicroelectronicsReliability,2005,45(9-11):1694-1699.
    [99].刘克格闫楚良.结构疲劳试验寿命数据分布类型对其使用寿命的影响[J],吉林大学学报-工学版,2011,41(2):419-423
    [100]. Masana F N. A New Approach to Dynamic Thermal Modeling of Semiconductor Packages [J].Micro electronics Reliability,2001(41):901-912.
    [101]. Zhaohui luo. A Thermal Model for IGBT Modules and Its Implementation in a Real TimeSimulator[D].Pittsburgh University of Pittsburgh,2002.
    [102].陈明,汪波,唐勇. IGBT动态热阻抗曲线提取实验研究[J],电力电子技术,2010,44(9):101-103.
    [103].何晓菁,程备,殷录桥等.大功率LED热阻测试系统的开发[J].电子测量技术200831(9):17-20.
    [104].陈明,胡安,唐勇,汪波.绝缘栅双极型晶体管传热模型建模分析[J],高电压技术,2011,37(2):453-458.
    [105].赵宇,杨军,马小兵.可靠性数据分析教程[M].北京:北京航空航天大学出版社,2009:171-172
    [106]. LU Zhijin, HUANG Wei, Lach J, et al. Interconnect lifetime prediction under dynamics stressfor reliability[J], Microelectronics,2002,42(2):653-667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700