昆虫乙酰胆碱受体β亚基毒理学特性研究与新外源表达平台的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因的外源表达是研究基因功能的一种重要方法。通过普通分子生物学技术和基因组测序技术,目前已经从很多种昆虫中鉴定了烟碱型乙酰胆碱受体亚基的基因,但是在外源表达时并不能表达出有功能的受体。
     本文用分子生物学方法和电生理学方法,对昆虫的烟碱型乙酰胆碱受体(nAChRs)p亚基进行了克隆,并对几种昆虫的烟碱型乙酰胆碱受体(nAChRs) β亚基重要功能环和环上氨基酸变化进行了毒理学特性分析,以期探明几种昆虫nAChRs β亚基的结构与功能,进一步探索新烟碱类杀虫剂选择作用的分子机制。由于昆虫单亚基表达或少数几个亚基共表达均不能在外源表达系统中表达出功能受体(一般认为是p亚基的问题),说明需要更多的烟碱型乙酰胆碱受体亚基共表达,或者需要与一些附属蛋白共表达,这样就要求在外源表达系统中转染或者注射更多的受体mRNA,需要提高外源细胞的接受量。根据非洲爪蟾卵母细胞表达外源受体的特点,考虑到中华大蟾蜍卵母细胞的体积优势,本文在开发中华大蟾蜍卵母细胞表达系统方面开展了一些探索。成功组建了电生理实验室,掌握了中华大蟾蜍的室内饲养方法、室内饲养对中华大蟾蜍生殖的影响因素和人工条件下获得中华大蟾蜍成熟卵母细胞的方法,最后对中华大蟾蜍成熟卵母细胞内源受体进行了分析,对可表达的外源蛋白进行研究,取得了部分有价值的进展和成果。
     一、昆虫nAChRs β亚基D、E、F环上氨基酸对新烟碱类杀虫剂选择性影响
     本文对模式昆虫果蝇和农业昆虫桃蚜的1nAChRs β1亚基D、E、F环及环上氨基酸变化对乙酰胆碱和吡虫啉的影响进行了双电极电压钳检测。检测结果发现,把模式昆虫果蝇和农业昆虫桃蚜的nAChRs β1亚基D、E、F环单独或整体引入到大鼠的p2亚基中与褐飞虱a1亚基共表达,与野生型(褐飞虱a1亚基和大鼠的p2亚基,Nlal-β2)相比,电生理检测发现构建的嵌合体对新烟碱类杀虫剂吡虫啉的敏感性上升,而对乙酰胆碱的影响基本上没有变化。同时把发生在loopE S131Y(R)、D133N和loopF T191W、P192K氨基酸变化引入到大鼠p2亚基中与褐飞虱a1亚基共表达,与野生型Nlαl-β2相比,电生理检测发现对新烟碱类杀虫剂吡虫啉的敏感性上升,而对乙酰胆碱的影响基本上没有变化。电生理记录结果显示昆虫nAChRs p亚基D、E、F环上氨基酸对新烟碱类杀虫剂选择性有重要的影响。
     二、褐飞虱nAChRs β1亚基的克隆和A-to-I RNA编辑位点的发现
     采用简并引物PCR和RACE技术首次从水稻害虫褐飞虱中克隆了具有典型结构烟碱型乙酰胆碱受体β亚基,同源性比对发现此基因具有烟碱型乙酰胆碱受体亚基的典型特征,如位于胞外区氨基端与配基结合密切相关的保守氨基酸残基形成的环1oopD-F、由13个氨基酸残基隔开的含有两个二硫键的半胱氨酸环、4个保守的跨膜片段、以及TM3和TM4之间可变的胞内区等。因此,根据系统进化关系,将这个基因命名为N1β1。同时发现在这个β亚基的氨基端有6个A-to-I RNA编辑位点,其中四个引起了氨基酸变化,位点2和位点5分别位于loopD和loopE上,引起了氨基酸天冬酰胺(N)到天冬氨酸(D)变化。在不同的褐飞虱品系中发现,位点2在敏感品系中发生频率较高,而位点5在抗性品系中发生频率较高,其他几个位点在两种褐飞虱品系中发生频率是没有变化的。
     三、A-to-I RNA编辑在褐飞虱中对新烟碱类杀虫剂敏感性的作用
     把在褐飞虱烟碱型乙酰胆碱受体β1亚基loopD和loopE上发现的RNA编辑引起的氨基酸天冬酰胺(N)到天冬氨酸(D)变化引入到大鼠的β2亚基中,构建成突变体β2N73D、β2loopD-N73D以及β2N73D、β2loopD-N73D与褐飞虱α1亚基共表达,与野生型即褐飞虱α1亚基和大鼠的β2亚基(N1α1-β2和N1α1-β2loopD)相比,电生理检测发现,发生在D环上的RNA编辑引起的N73D变化,降低了激动剂乙酰胆碱(ACh)和吡虫啉(IMI)的敏感性,但是对乙酰胆碱的影响大于吡虫啉;而发生在E环上的RNA编辑引起的N133D变化仅对吡虫啉的敏感性有影响,对乙酰胆碱的影响是没有变化的。由此认为,发生在褐飞虱烟碱型乙酰胆碱受体β1亚基loopD和loopE上RNA编辑引起的氨基酸天冬酰胺(N)到天冬氨酸(D)变化,对新烟碱类杀虫剂的敏感性是有关的,但是不同环上氨基酸的变化起的作用不同。
     四、中华大蟾蜍生物学特性研究
     本文研究了中华大蟾蜍的室内饲养方法、室内饲养对中华大蟾蜍卵母细胞成熟的影响因素和人工条件下获得成熟卵母细胞的方法。研究发现,中华大蟾蜍在环境温度<15℃时,处于冬眠期,这时室内饲养只要保持足够的湿度和通风即可,而环境温度>15℃时,中华大蟾蜍开始取食,每周在清晨或黄昏喂食2~3次活体黄粉虫,每周换水3~4次,保证中华大蟾蜍的排泄物及时清除,室内饲养的适宜温度是18~22℃。长期生长在高温或昏暗环境下的中华大蟾蜍是不能产生成熟卵母细胞的。中华大蟾蜍必须经过足够时间的低温处理,体内一种被称为“冬眠因子”的生长调控因子才能发挥作用,从而引发生发泡的破裂,使中华大蟾蜍卵母细胞成熟。4~6℃环境中处理一周至一个月时间的中华大蟾蜍,注射4000IU/千克绒毛膜促性腺激素(CG)或8个/千克脑垂体(PG),经过3~5天,可产生成熟的卵母细胞。
     五、中华大蟾蜍卵母细胞内源性离子通道的表达分析
     对中华大蟾蜍卵母细胞内源性基因表达进行了研究。实验用双电极电压钳技术在具有滤泡膜和无滤泡膜的中华大蟾蜍卵母细胞上记录由乙酰胆碱(Ach)、γ-氨基丁酸(GABA).甘氨酸(Gly)激活的配基门控离子受体超家族受体引起的电流,并与非洲爪蟾卵母细胞和先前在中华大蟾蜍卵母细胞中的表达进行了比较。结果显示,在具有滤泡膜的中华大蟾蜍卵母细胞上,乙酰胆碱、γ-氨基丁酸、甘氨酸受体均有不同程度的表达,表达对1mM乙酰胆碱、γ-氨基丁酸、甘氨酸引起的电流值分别是87.1±4.9nA、45.4±13.8nA、36.6±22.0nA;而无滤泡膜的中华大蟾蜍卵母细胞上,对乙酰胆碱、γ-氨基丁酸、甘氨酸的刺激检测不到任何电流信号。本工作的一个目的是探讨两种蟾蜍卵母细胞内源性神经递质受体和离子通道的表达,探索中华大蟾蜍卵母细胞作为外源表达工具的可能性。
     六、中华大蟾蜍卵母细胞表达外源通道的研究
     本章主要是对中华大蟾蜍卵母细胞的外源表达进行了研究。分别将美洲大蠊神经索和秀丽隐杆线虫的mRNA注射到中华大蟾蜍的卵母细胞中,利用双电极电压钳检测发现,在去除滤泡膜的中华大蟾蜍卵母细胞上记录到由乙酰胆碱(Ach)、γ-氨基丁酸(GABA)刺激引起的电流信号。在注射美洲大蠊神经索mRNA的卵母细胞上,1mM/L乙酰胆碱、γ-氨基丁酸引起的电流值分别是98.1±4.9nA、329.5±6.3nA;在注射秀丽隐杆线虫的mRNA的卵母细胞上,1mM/L乙酰胆碱、γ-氨基丁酸引起的电流值分别是84.1±13.8nA、89.5±7.9nA。作为隐性对照,在未注射mRNA的去除滤泡膜的卵母细胞上,没有检测到任何由乙酰胆碱、γ-氨基丁酸刺激引起的电流信号。结果显示,注射了外源mRNA的去除滤泡膜的中华大蟾蜍卵母细胞上,乙酰胆碱受体和γ-氨基丁酸受体均有表达。本工作的一个目的是探讨中华大蟾蜍卵母细胞作为外源性神经递质受体和离子通道表达系统的可行性。根据得到的结果认为中华大蟾蜍卵母细胞也可以作为一个表达工具,对配基门控离子受体超家族受体基因的外源表达研究。
Exogenous expression is an important method to study protein function. Many insect nicotinic acetylcholine receptor (nAChR) subunits have been identified and characterized by molecular cloning and genome sequencing. However, in the case of insects such as Drosophila with all subunits identified, considerable problems remain in identification of native subunit composition and even in generating functional insect nAChRs in heterologous expression systems.
     Nicotinic acetylcholine receptors (nAChRs) β subunits in insects were cloned by molecular techniques. To investigate the structure and function of insect nAChR β subunits and the possible mechanisms of neonicotinoids selectivity, the pharmcological properties of functional loops (D, E and F) and amino acids within loops of insect nicotinic acetylcholine receptor β subunits have been researched and analysised by electrophysiological techniques. Even when all insect a and β subunits were combined to generate a functional receptors, all tries are not successful. Previous studies showed that some proteins other than nAChRs themselves might play important roles in insect nAChRs formation, such as the chaperone, regulator and modulator, which indicates that more proteins should be expressed together to generate a functional insect nAChRs. To express more proteins together in frog oocytes, such as Xenopus oocytes, more cRNA or cDNA should be injected at the same time, which requires bigger capacities of oocytes. In this thesis, we are tyring to develop a new tool for exogenous expression of insect nAChRs and their accessary proteins, with big capacities. We have successfully set up the electrophysiology methods for Bufo bufo gargarizans (Chinese big toad) oocytes, including the indoor feeding methods, the factors affecting the reproduction of the big toad, the methods to obtain mature oocytes under artificial conditions, the injection of cRNA and electrophsiological recording. The endogenous expression of membrane channels in the big toad mature oocytes we tested and the exogenous expression of nAChRs were recorded.
     1. Amino acids within loops D, E and F of insect nicotinic acetylcholine receptor P subunits influenced neonicotinoid selectivity
     To investigate the mechanism of acetylcholine and neonicotinoid selectivity, we have examined the effects of altering insect-specific loops D, E and F and amino acids within loops D, E and F of insect nicotinic acetylcholine receptor with two-electrode voltage clamp.The results indicated that the introduction of the insect-specific loops D, E and F, singly or together, into rat02subunit resulted in a leftward shift of the imidacloprid dose-response curves for hybrid nAChRs containing insect and mammalian subunits Nlal-β2(Nlal from the brown planthopper Nilaparvata lugens and02from rat) chimeras, reflecting decreases in EC50, compared to wildtype nAChRs Nlal-β2. By contrast, the influences on ACh potency were minimal or negligible. S131Y (R) and D133N in loop E and T191W and P192K in loop F were found to contribute to the neonicotinoid selectivity of insect-specific loops E and F, reflecting in the significant leftward shifts in EC50to imidacloprid, but the influences on ACh potency were minimal, compared to wildtype nAChRs Nlal-β2. These results indicated the insect-specific loops D, E and F each play important roles in neonicotinoids selectivity.
     2. Molecular cloning nicotinic acetylcholine receptor β1subunit from brown planthopper and A-to-I RNA editing in this subunit
     We obtained the full-length cDNAs encoding nicotinic acetylcholine receptor P subunit in the Nilaparvata lugens, a major rice pest, by RT-PCR and RACE technology. The gene contain nicotinic acetylcholine receptor β subunit signature motifs, such as an extracellular N-terminal region with conserved residues within loops D-F which are involved in ligand binding, the cys-loop consisting of two disulphide bond-forming cysteines separated by13amino acid residues, four well-conserved transmembrane regions (TM1-4) and a variable intracellular region between TM3and TM4, and was denoted as N.lugens β(N1β1). Six A-to-I RNA editing sites were found in N1β1N-terminal domain, Among the six editing sites, four caused amino acid changes, in which the site2(E2) and site5(E5) caused an N to D change in loop D (N73D) and loop E (N133D) respectively. E2frequency was high in Sus (susceptible) strain and E5frequency was high in Res (resistant) strain. The frequency of the other sites is no change in the two different strains of N. lugens.
     3. The possible roles of A-to-I RNA editings in N1β1subunit in neonicotinoid sensitivity
     To evaluate the influence of N73D in loop D and N133D in loop E by A-to-I RNA editing on neonicotinoid selectivity, loop D or loop E of N1β1was introduced into rat β2of N1αl-βnAChRs to construct the hybrid Nlal-β2LoopD or Nlal-β2LoopE nAChRs, and then N73D or N133D mutation was introduced into β2LoopD or β2LoopE to construct mutant Nlal-p2LoopD-N73D or Nlα1-p2LoopE-N133D. By expressing in Xenopus oocytes, N73D mutation in loop D significantly reduced the agonist potency of both ACh and imidacloprid, and the influence on ACh was more significant than on imidacloprid. In contrast, N133D mutation in loop E only showed significant effects on imidacloprid potency, and the influences on ACh potency were minimal or negligible. These results indicated, although E2and E5in loop D and E both caused an N to D change in important loops, their roles in imidacloprid sensitivity might be different.
     4. The biological characteristics of the big toad
     In this section, the indoor feeding methods for the big toad, the factors affecting the reproduction of the big toad and the methods to obtain mature oocytes under artificial conditions were analyzed. When the environmental temperature was below15℃, the big toad is in a hibernation period, and adequate humidity and ventilation should be provided to keep such hibernation. When the environmental temperature was above15℃, the big toad start feeding Tenebrio molitor2or3times in a week at the early morning or dusk, and the water should be changed3to4times a week to ensure that the excrement of the big toad was immediately removed. The appropriate temperature indoors is18~22℃. When kept in in high temperature or under a dim environment, the Chinese big toad can not produce mature oocytes. The sufficient treatment by the low temperature was necessary for the oocyte maturation. After treatment by the low temerature of4~6℃for one week to one month and the injection of4000IU/kg CG (Chorionic gonadotropin) or8/kg PG (pituitary gland), the big toad toad could produce mature oocytes in3to5days.
     5. The endogenous expression of membrane channel proteins in the big toad oocytes
     The endogenous expression of membrane channel proteins in the big toad oocytes was analysised by two-electrode voltage-clamp recording, in oocytes with or without follicular. The receptors for acetylcholine (ACh), gamma-aminobutyric acid (GABA), and glycine (Gly) were tested, compared to the expression in Xenopus laevis oocytes and earlier findings in the big toad oocytes. The results showed that acetylcholine, gamma-aminobutyric acid and glycine could cause the obvious currents in the big toad oocytes with follicular membrane, with the current in response to1mM ACh, GABA and Gly in oocytes with follicular membrane was87.1±4.9nA,45.4±13.8nA and36.6±22.0nA. However, in the big toad oocytes without follicular membrane, no currents were detected when the application of ACh, GABA and Gly. The results indicated there was not the endogenous expression of the receptors for such chemcials in the big toad oocytes.
     6. The exogenous expression of membrane channel proteins in the big toad oocytes
     The mRNA purified from American cockroach nerve cord and Caenorhabditis elegans was injected into oocytes of the big toad. The currents in oocytes without follicular membrane evoked by the application of ACh and GABA were recoded using the two-electrode voltage-clamp, compared to the expression in Xenopus laevis and earlier findings in the big toad oocytes. The obvious currents were observed in the big toad oocytes with the injection of exogenous mRNA when application of ACh and GABA. The current in response to1mM ACh and GABA in oocytes injected with American cockroach nerve cord mRNA was98.1±4.9nA and329.5±6.3nA. The current in response to1mM ACh and GABA in oocytes injected with Caenorhabditis elegans mRNA was84.1±13.8nA and89.5±7.9nA. Because there was not any currents were evoked by ACh and GABA in the big toad oocytes without any injection, the results showed the suscessful expression of exogenous ACh receptors and GABA receptors in the big toad oocytes. In future, more receptors and channels were tested in the big toad oocytes. According to the results at present, we could conclude, at least, that the big toad oocytes can be used as an expression tool for exogenous expression of ACh and GABA receptors.
引文
1. 顾全保、徐国江、左嘉客,钙离子在蟾蜍卵母细胞成熟分裂过程中的作用,实验生物学报,1988,21(2):179-188。
    2. 顾全保、朱辉、李巍,红藻氨酸和GABA受体在中华大蟾蜍卵母细胞的表达,生理学报,1992,44(5):470-477。
    3. 顾全保、朱辉、姚永,大鼠脑神经递质受体和通道在中华大蟾蜍卵母细胞的表达,第一届中科院神经科学学术会议论文摘要,1990,p28。
    4. 李传翔,姚尚龙,聂辉,张玉芹,吕斌,在非洲爪蟾卵母细胞上表达大鼠肌肉乙酰胆碱受体的方法学研究,中国临床药理学与治疗学,2005,Feb;10(2);158-161。
    5. 刘泽文,褐飞虱对吡虫啉的抗性及其机理研究研究,2004,博士毕业论文,南京农业大学。
    6. 皮艳俐,中华大蟾蜍卵母细胞质膜存在钙依赖性的氯离子通道,2006,硕士毕业论文,武汉科技大学。
    7. 松峰,害虫捕食性天敌拟环纹豹蛛烟碱型乙酰胆碱受体毒理学特性研究,2009,硕士毕业论文,南京农业大学。
    8. 田辉凯,李学军,爪蟾卵母细胞表达体系在功能基因组学研究中的应用,国外医学分子生物学分册,2002,24(4):193-196。
    9. 王幽兰,长年控制蟾蜍生殖期的研究,动物学报,1954,6:81-84。
    10.王幽兰、朱光、蔡仕萍、左嘉客、赵剑星,垂体浸出液诱发蟾蜍卵球成熟的实验分析,实验生物学报,1982,15(1):67-74。
    11.巫国瑞,胡萃,许绍朴,稻飞虱,1987,北京:农业出版社。
    12.徐国江、朱光、阳良生、左嘉客,内源环化腺苷酸(cAMP)含量变化对卵母细胞成熟的影响,实验生物学报,1987,20(4):451-458。
    13.阳良生,胞内膜层系统参与孕酮诱发卵母细胞成熟的启动调控,实验生物学报,1987,20(4):443-450。
    14.姚永、顾全保、朱辉,中华大蟾蜍卵母细胞质膜的外向整流型钾离子通道,生理学报,1992,44:461-469。
    15.张晓东、臧益民、谢安,用于离子通道基因表达的爪蟾卵母细胞的分离和培养,心脏杂志,2001,13:120-122。
    16.赵剑星、王文萍、左嘉客,中华大蟾蜍卵母细胞成熟过程中膜电位变化的实验分析,实验生物学报,1989,22(9):337-342。
    17.赵剑星、朱光、徐国江、王幽兰,用实验条件改变离体高温卵巢卵对孕酮的应答能力,实验生物学报,1988,21(2):169-177。
    18.朱冼、王幽兰,长年高温养育对蟾蜍卵球发育和成熟的影响,Scientia Sinica,1963,12: 1165-1168。
    19.朱光、徐国江、王亦文、顾正、左嘉客,环境温度影响蟾蜍卵母细胞成熟能力的机制之实验分析,实验生物学报,1993,26(4):469-482。
    20.朱幸、朱辉、包永德,鸡视网膜谷氨酸受体和GABA受体在两栖类卵母细胞中的表达,生理学报,1994,46:417-426。
    21.朱辉、朱幸、包永德,鲫鱼脑mRNA在中华大蟾蜍卵母细胞中的表达,第一届全国神经科学学术会议论文摘要汇编。生理通讯增刊号,1992,3:61-62.
    22.朱辉、朱幸、包永德,鲫鱼脑氨基酸类神经递质受体在两栖类卵母细胞中的表达,生理学报,1995,47(1):1-10。
    23.左嘉客、朱光、徐国江、王幽兰,孕酮诱发蟾蜍卵母细胞成熟作用部位的探讨,实验生物学报。1984,17(1):103-113。
    24. Adams MD, Celniker SE, Holt RA., The genome sequence of Drosophila melanogaster. Science., 2000,287:2185-2195.
    25. Arias, H.R., Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem. Int.,2000,36:595-645.
    26. Arias, H.R., Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Research Review.,1997,25:133-191.
    27. Ataulfo Martlnez-Torres and Ricardo Miledi., Expression of Caenorhabditis elegans neurotransmitter receptors and ion channels in Xenopus oocytes. PNAS.,2006,13:5120-5124.
    28. Ballivet, M., Alliod, C., Bertrand, S., Bertrand, D., Nicotinic acetylcholine receptors in the nematode Caenorhabditis elegans. J. Mol. Biol.,1996,258:261-269.
    29. Barish, ME., A transient calcium-dependent chloride current in the immature Xenopus oocytes. J. Physiol.,1983,342:309-325.
    30. Barkas T, Mauron A, Roth B, Alliod C, Tzartos S J, Ballivet M., Mapping the main immunogenic region and toxin-binding site of the nicotinic acetylcholine receptor. Science.,1987,235:77-80.
    31. Barnard EA, Miledi R, Sumikawa K., Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. Lond.,1982, B215:241-246.
    32. Bass BL., RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem.,2002, 71:817-846.
    33. Bass, C., Lansdell, S.J., Millar, N.S., Schroeder, I., Turberg, A., Field, L.M., Williamson, M.S., Molecular characterization of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalidesfelis (Siphonaptera:Pulicidae). Insect Biochem. Mol. Biol,2006,36:86-96.
    34. Bate, L. and Gardiner, M., Genetics of idiopathic epilepsy. In:Techniques in the Behavioural and Neural Sciences.(Crusio, W.E.and Gerlai, R.T., eds), Elsevier Science, UK.,1999,820-840.
    35. Baumann A, Jonas P, Gundelfinger ED., Sequence of Da2, a novel a-like subunit of Drosophila nicotinic acetylcholine receptors. Nucl Acids Res.,1990,18:3640.
    36. Breer H, Benke D. Synthesis of acetylcholine receptors in Xenopus oocytes induced by poly(A)+-mRNA from Locust nervous tissue. Nature.,1985,72:213-4.
    37. Bertrand, D., Ballivet. M., Gomez, M., Bertrand, S., Phannavong, B. and Gundelfinger, E.D., Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate 02 subunit and Drosophila a subunits. Eur. J. Neurosci.,1994,6:869-875.
    38. Bertrand, D., Changeux, J. P., Nicotinic receptor:an allosteric protein specialized for intercellular communication. Seminars in Neuroscience,1995,7:75-90.
    39. Betz, H., Ligand-gated ion channels in the brain:the amino acid receptor superfamily. Neuron., 1990,5:383-392.
    40. Boorman JPB, Groot-Kormelink PJ, Sivilotti LG., Stoichiometry of human recombinant neuronal nicotinic receptors containing the β3 subunit expressed in Xenopus oocytes. J Physiol,2000.,529: 565-577.
    41. Boulter J, Connolly J, Deneris E., Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc Natl Acad Sci USA.,1987,84:7763-7.
    42. Boulter J, Evans K, Goldman D, Martin G, Treco D, Heinemann S., Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor a-subunit. Nature 1986; 319:368-74.
    43. Boulter J, O'Shea-Greenfield A, Duvoisin RM, Connolly JG, Wada E, Jensen A., a3, a5, and β4: three members of the rat neuronal nicotinic acetylcholine receptor-related gene family form a gene cluster. J Biol Chem.,1990,265:4472-82.
    44. Bossy B, Ballivet M, Spierer P., Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. EMBO J.,1988,7:611-8.
    45. Breer, H.and Sattelle, D.B., Molecular properties and functions of insect acetylcholine receptors. J. Insect Physiol,1987,33:771-790.
    46. Brejc, K., Dijk, W.J., Klaassen, R.V., Schuurmans, M., Oost, J., Smit, A.B., Sixma, T.K., Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature.,2001,411:269-276.
    47. Broadbent, S., Groot-Kormelink, P.J., Krashia, P.A., Harkness, P.C., Millar, N.S., Beato, M., Sivilotti, L.G., Incorporation of the β3 subunit has a dominant-negative effect on the function of recombinant central-type neuronal nicotinic receptors. Mol. Pharmacol.,2006,70:1350-1356.
    48. Brown, L.A., Jones, A.K., Buckingham, S.D., Mee, C.J., Sattelle, D.B., Contributions from Caenorhabditis elegans functional genetics to antiparasitic drug target identification and validation: Nicotinic acetylcholine receptors, a case study. International Journal for Parasitology.,2006,36: 617-624.
    49. Brown, R.W.B., Collins, A.C., Lindstrom, J.M., Whiteaker, P., Nicotinic a5 subunit deletion reduces high-affinity agonist activation without altering nicotinic receptor numbers. J. Neurochem., 2007,103:204-215.
    50. Buckingham, S.D., Biggin, P.C., Sattelle, B.M., Brown, L.A., Sattelle, D.B., Insect GABA receptors: splicing, editing, and targeting by antiparasitics and insecticides. Mol. Pharmacol.,2005,68: 942-951.
    51. Casida, J.E., Quistad, G.B., Golden age of insecticide research:past, present and future. Ann. Rev. Entomol,1998,43:1-16.
    52. Cavarra MS, Kotisias BA., Chloride channel blockers activate an endogenous cationic current in oocytes of Bufo arenarum J. Neuroethology.,2004,190:531-537.
    53. Changeux J-P, Heidmann T, Popot J-L, Sobel A., Reconstitution of a functional acetylcholine regulator under defined conditions. FEBS Lett.,1979,105:181-7.
    54. Chavez RA, Maloof J, Beeson D, Newsom-Davis J, Hall ZW., Subunit folding and ad heterodimer formation in the assembly of the nicotinic acetylcholine receptor. Comparison of the mouse and human alpha subunits. J Biol Chem.,1992,267:23028-34.
    55. Choo YM, Lee BH, Lee KS, Kim BY, Li J, Kim JG, Lee JH, Sohn HD, Nah SY, Jin B R., Pr-lynxl, a modulator of nicotinic acetylcholine receptors in the insect. Mol. Cell. Neurosci.,2008,38: 224-235.
    56. Clark PBS, Schwartz RD, Paul SM., Nicotinic binding in rat brain:autoradiograPhic comparison of [3H]acetycholine, [3H]nicotine and [125I]:a-bungarotoxin.JNeurosci.1985;5:1307-15.
    57. Claudio T, Green WN, Hartman DS, Hayden D, Paulson HL, Sigworth FJ., Genetic reconstitution of functional acetylcholine receptor channels in mouse fibroblasts. Science.,1987,238:1688-94.
    58. Corringer, P.J., Le Novere, N. and Changeux, J.P., Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol,2000,40:431-458.
    59. Couturier S, Erkman L, Valera S, Rungger D, Bertrand S, Boulter J., a5, a3, and non-a3. Three clustered avian genes encoding neuronal nicotinic acetylcholine receptor-related subunits. J Biol Chem.,1990,265:17560-7
    60. Dale, H.H., The actin of certain esters and ethers of choline and their relation to muscarine. J. Pharmacol. Exp. Ther,1914,6:147-190.
    61. Dascal N., The use of Xenopus oocytes for the study of ion channels. Ibid.,1987,22(4):317-387.
    62. Dellisanti, CD., Yao, Y., Stroud, J.C., Wang, Z.Z., Chen, L., Crystal structure of the extracellular domain of nAChR alpha 1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat. Neurosci.,2007, 10:953-62.
    63. Deneris ES, Boulter J, Swanson LW, Patrick J, Heinemann S., P3:a new member of nicotinic acetylcholine receptor gene family is expressed in brain. J Biol Chem.,1989,264:6268-72.
    64. Deneris ES, Connolly J, Boulter J,Wada E,Wada K, Swanson LW., Primary structure and expression of P2:a novel subunit of neuronal nicotinic acetylcholine receptors. Neuron.,1988,1:45-54.
    65. Deneris ES, Connolly J, Rogers SW, Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptor.Trends Pharlllacol Sci.,1991,12:34-40.
    66. Dick DA, Fry DJ., Sodium fluxes in single amphibian oocytes:further studies and a new model. J.Physiol.,1975,247(1):91-116.
    67. Drenan RM, Grady SR, Whiteaker P, McClure-Begley T, McKinney S, Miwa JM, affinity., In vivo activation of midbrain dopamine neurons via sensitized, high-ct6* nicotinic acetylcholine receotors. Neuron.,2008,60:123-36.
    68. Dumont JW., Oogenesis in Xenopus laevis(Daudin), Stage of oocyte development in laboratory maintained animals[J].J Morphol.,1972,136:153-180.
    69. Duvoisin, R.M., Deneris, E.S., Patrick, J., Heinemann, S., The functional diversity of the neuronal nicotinic acetylcholine receptors is increased by a novel subunit:β4. Neuron.,1989,3:487-496.
    70. Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E., Heinemann, S., a9:an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell,1994,18: 705-715.
    71. Elgoyhen, A.B., Vetter, D.E., Katz, E., Rothlin, C.V., Heineman, S.F., Boulter, J., α10:a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Proc.Natl. Acad. Sci. U.S.A.,2001,98:3501-3506.
    72. Fayyazuddin A, Bellen H., Genetic analysis of a novel acetylcholine receptor subunit from Drosophila. Soc Neurosci Abstr.,2002,520-37.
    73. Fleming JT, Riina HA, Sattelle DB., Acetylcholine and GABA receptors of Caenorhabditis elegans expressed in Xenopus oocytes. J Physiol.,1991,438:371.
    74. Forsayeth JR, Franco Jr A, Rossi AB, Lansman JB, Hall ZW., Expression of functional mouse muscle acetylcholine receptors in Chinese hamster ovary cells J Neurosci.,1990,10:2771-9.
    75. Fucile, S., Barabino, B., Palma, E., Grassi, F., Limatola, C., Mileo, A.M., Alema, S., Ballivet, M., Eusebi, F., a5 subunit forms functional a3β4α5 nAChRs in transfected human cells. Neuroreport., 1997,8:2433-2436.
    76. Fucile, S., Matter, J.M., Erkman, L., Ragozzino, D., Barabino, B., Grassi, F., Alema, S., Ballivet, M., Eusebi, F., The neuronal a6 subunit forms functional heteromeric acetylcholine receptors in human transfected cells. Eur. J. Neurosci.,1998,10:172-178.
    77. Fujita N, Nelson N, Fox TD, Claudio T, Lindstrom J, Riezman H., Biosynthesis of the Torpedo californica acetylcholine receptor a subunit in yeast.Science.,1986,231:1284-7.
    78. Galzi, J.L., Changeux, J.P., Neuronal nicotinic receptors:molecular organization and regulations. Neuropharmacology.,1995,34:563-582.
    79. Galzi, J.L., Devillers-Thierys-Thiery, A., Hussy, N., Bertrand, S., Changeux, J.P., Bertrand, D., Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature.,1992,359:500-505.
    80. G. D. Kutuzova, E. A. Lomonosov, N. I. Tarasova, N. N. Ugarova and A. A. Bogdanov., Synthesis and pathway of Luciola mingrelica firefly luciferase in Xenopus laevis frog oocytes and in cell-free systems.Biochimie.,1989,579-583.
    81. Gerd Gade, Heather G. Marco, Dietmar Richter, Robert J. Weaver., Structure-activity studies with endogenous allatostatins for Periplaneta americana:Expressed receptor compared with functional bioassay. Journal of Insect Physiology.,2008,988-99.
    82. Gershoni J., Expression of the a-bungarotoxin binding site of the nicotinic acetylcholine receptor by Escherichia coli transformants. Proc Natl Acad Sci USA.,1987,84:4318-21.
    83. Gerzanich, V, Kuryatov, A., Anand, R., Lindstrom, J., "Orphan" a6 nicotinic AChR subunit can form a functional heteromeric acetylcholine receptor. Mol. Pharmacol.,1997,51:320-327.
    84. Gerzanich, V., Wang, F., Kuryatov, A., Lindstrom, J., a5 subunit alters desensitization, pharmacology, Ca2+ permeability and Ca2+ modulation of human neuronal a3 nicotinic receptors. J. Pharm. Exp. Ther.,1998,286:311-320.
    85. Giraudat J, Devillers-Thiery A, Auffray C, Rougeon F, Changeux JP., Identification of a cDNA clone coding for the acetylcholine binding subunit of Torpedo marmorata acetylcholine receptor. EMBOJ.,1982,713-7.
    86. Goldman D, Deneris E, LuytenW, Kochhar A, Patrick J, Heinemann S., Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system. Cell,1987,48:965-73.
    87. Gopalakrishnan M, Buisson B, Touma E, Giordano T, Campbell JE, Hu IC, Stable expression and pharmacological properties of the human α7 nicotinic acetylcholine receptor. Eur J Pharmacol., 1995,290:237-46.
    88. Gotti, C, Clementi, F., Neuronal nicotinic receptors:from structure to pathology. Progress in Neurobiol,2004,74:363-396.
    89. Grassi F, Palma E, Mileo AM, Eusebi F., The densensitization of embryonic mouse muscle receptor depends on the cellular environment. Eur J Physiol,1995,430:787-94.
    90. Grauso M, Reenan RA, Culetto E, Sattelle DB., Novel putative nicotinic acet ylcholine receptor subunit genes, Da5, Da6 and Da7, in Drosophila melano gaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics.,2002,160:1519-33.
    91. Grutter, T., Changeux, J. P., Nicotinic receptors in wonderland. Trends.Biochem. Sci.,2001,26: 459-463.
    92. Gu Y, Franco Jr A, Gardner PD, Lansman JB, Forsayeth JR, Hall ZW., Properties of embryonic and adult muscle acetylcholine receptors transiently expressed in COS cells. Neuron,1990,5:147-57.
    93. Gundelfinger, E.D., How complex is the nicotinic receptor system of insects. Trends in Neurosci., 1992,15:206-211.
    94. Gurdon JB, Lane CD, Woodland HR, Marbaix G, Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature.,1971,233(5316):177-82.
    95. Han, Z.-Y., Le Novere, N., Zoli, M., Hill, J.A., Champtiaux, N., Changeux, J.-P., Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur. J. Neurosc.,2000,12:3664-3674.
    96. Han, Z.-Y., Zoli, M., Cardona, A., Bourgeois, J.-P., Changeux, J.-P., Le Novere, N., Localization of [3H]nicotine, [3H]cytisine, [3H]epibatidine, and [125I] a-bungarotoxin binding sites in the brain of Macaca mulatta. J. Comp. Neurol,2003,461; 49-60.
    97. Hermsen, B., Stetzer, E., Thees, R., Heiermann, R., Schrattenholz, A., Ebbinghans, U., Kretschmer, A., Methfessel, C, Reinhardt, S., Maelicke, A., Neuronal nicotinic receptors in the locust Locusta migratoria:clonging and expression. J. Biol. Chem.,1998,273,18394-18404.
    98. Hermans-Borgmeyer I, Zopf D, Ryseck R-P, Hovemann B, Betz H, Gundelfinger ED., Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila EMBOJ,1986,5:1503-8.
    99. Hoopengardner B, Bhalla T, Staber C, Reenan R., Nervous system targets of RNA editing identified by comparative genomics. Science,2003,301:832-836.
    100. Huang, Y., Williamson, M. S., Devonshire, A. L., Windass, J. D., Lansdell, S. j., Millaa, N. S., Cloning, heterologous expression and co-assembly of Mppl, a nicotinic acetylcholine receptor subunit from the aphid Myzuspersicae, Neurosci, Lett.,2000,284:116-120.
    101. Hucho, F., Tsetlin, V.I., Machold, J., The emerging three-dimensional structure of a receptor:the nicotinic acetylcholine receptor. European Journal of Biochemistry,1996,239:539-557.
    102. Huganir RL, Schell MA, Racker E., Reconstitution of the purified acetylcholine receptor from Torpedo californica. FEBS Lett,1979,108:155-60.
    103. Ingela Kindas-Mugge, CD.Lane and G. Kreil., Insect protein synthesis in frog cells:The translation of honey bee promelittin messenger RNA in Xenopus oocytes Journal of Molecular Biology Volume 87, Issue 3,1974,451-462.
    104. Jansen KU, Conroy WG, Claudio T, Fox TD, Fujita N, Hamill O., Expression of the four subunits of the Torpedo californica nicotinic acetylcholine receptor in Saccharomyces cerevisiae. J Biol Chem., 1989,264:15022-7.
    105. Jin Y, Tian N, Cao J, Liang J, Yang Z, Lv J., RNA editing and alternative splicing of the insect nAChR subunit a6 transcript:Evolutionary conservation, divergence, and regulation. BMC Evol. Biol.,2007,1186/1471-2148-7-98.
    106. Jones, A.K., Brown, A.M. and Sattelle, D.B., Insect nicotinic acetylcholine receptor gene families: from genetic model organisms to vector, pest and beneficial species. Invert. Neurosci,2007,7: 67-73.
    107. Jones, A.K., Elgar, G., Sattelle, D.B., The nicotinic acetylcholine receptor gene family of the pufferfish, Fugu rubripes. Genomics.,2003,82:441-451.
    108. Jones, A.K., Sattelle, D.B., Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. BioEssays.,2004,26:39-49.
    109. Jones, A.K., Brown, L.A., Sattelle, D.B., Insect nicotinic acetylcholine receptor gene families:from genetic model organism to vector, pest and beneficial species. Invert. Neurosci.,2007,7:67-73.
    110. Jones AK, Grauso M, Sattelle DB., The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics.,2005,85:176-187.
    111. Jones, A.K., Raymond-Delpech, V, Thany, S.H., Gauthier, M., Sattelle, D.B., The nicotinic acetylcholine receptor gene family of the honey bee, Apis mellifera. Genome Res.,2006,16: 1422-1430.
    112. Jones, A.K., Sattelle D.B., The cys-loop ligand-gated ion channel gene superfamily of the red flour beetle, Tribolium castaneum. BMC Genomics,2007,8:327
    113. Jones, G., Willett, P., Glen, R.C., LeACh, A.R., Taylor, R., Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol,1997,267:727-748.
    114. J. Tan, Z. Liu, T.-D. Tsai, S.M. Valles, A.L. Goldin, K. Dong, Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin Insect Biochemistry and Molecular Biology,2002,32:445-45.
    115. Klaassen A, Glykys J, Maguire J, Labarca C, Mody I, Boulter J., Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal dominant frontal lobe epilepsy. Proc Natl Acad Sci USA 2006,103:19152-7.
    116. Kullberg, R., Owens, J.L., CamACho, P., Mandel, G., Brehm, P., Multiple conductance classes of mouse nicotinic acetylcholine receptors expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A., 1990,87:2067-2071.
    117. Lane CD., The fate of genes, messengers, and proteins introduced into Xenopus oocytes. Current Topics of Dev. Biol.1983,18:89-116.
    118. Langley, J.N., On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and curare. J. Physiol,1905,33:374-413.
    119. Lansdell, S.J., Millar, N.S., The influence of nicotinic receptor subunit composition upon agonist, a-bungarotoxin and insecticide (imidacloprid) binding affinity. Neuropharmcol.,2000,39:671-679.
    120. Lansdell, S.J., Millar, N.S., Molecular characterisation of Dα6 and Dα7 nicotinic acetylcholine receptor subunits from Drosophila:formation of a high-affinity α-bungarotoxin binding site revealed by expression of subunit chimeras. J. Neurochem.,2004,90:479-489.
    121. Lansdell, S.J., Schmitt, B., Betz, H., Sattelle, D.B., Millar, N.S., Temperature-sensitive expression of Drosophila neuronal nicotinic acetylcholine receptors. J. Neurochem.,1997,68:1812-1819.
    122. LaPolla RJ, Mayne KM, Davidson N., Isolation and characterization of a cDNA clone for the complete protein coding region of the 8 subunit of the mouse acetylcholine receptor. Proc Natl Acad Sci USA 1984,81:7970-4.
    123. Liman ER,Tytgat J, Hess P., Subunit stoichiometry of a mammalian K+channel determined by construction of multimeric cDNAs.Neuron 1992,9:861-71.
    124. Liu, Y., Brehm, P., Expression of subunit-omitted mouse nicotinic acetylcholine receptors in Xenopus laevis oocytes. J. Physiol.,1993,470:349-363.
    125. Liu Z., Han Z., Liu S., Zhang Y., Song F., Yao X. and Gu J., Amino acids outside of the loops that define the agonist binding site are important for ligand binding to insect nicotinic acetylcholine receptors. J. Neurochem.,2008,1471-4159.
    126. Liu, Z., Han, Z., Zhang, Y, Song, F., Yao, X., Liu, S., Gu, J. and Millar, N.S., Heteromeric co-assembly of two insect nicotinic acetylcholine receptor a subunits:influence on sensitivity to neonicotinoid insecticides. J. Neurochem.,2009a,108:498-506.
    127. Liu,.Z.W., Han, Z.J., Wang, Y.C., Zhang, L.C., Zhang, H.W., Liu, C.J., Selection for imidacloprid resistance in Nilaparvata lugens:crossresistance patterns and possible mechanisms. Pest. Manag. Sci.,2003.59:770-775.
    128. Liu, Z.W., Han, Z.J., Fitness costs of laboratory-selected imidacloprid resistance in brown planthopper, Nilaparvata lugens Stal. Pest. Manag. Sci.,2006,62:279-282.
    129. Liu, Z., Williamson, M.S., Lansdell, S.J., Denholm, I., Han, Z., Millar, N.S., A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens(brovn planthopper). Proc. Natl. Acad. Sci. USA,2005,102:8420-8425.
    130. Liu, Z., Williamson, M.S., Lansdell, S.J., Han, Z., Denholm, I. and Millar, N.S., A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. J. Neurochem.,2006,99:1273-1281.
    131. Liu, Z., Yao, X. and Zhang Y., Insect nicotinic acetylcholine receptors (nAChRs):important amino acid residues contributing to neonicotinoid insecticides selectivity and resistance. Afr. J. Biotechnol, 2008,7:4935-4939.
    132. Liu, Z.W., Cao, G.C., Li, J., Bao, H.B., Zhang, Y.X., Identification of two Lynx proteins in Nilaparvata lugens and the modulation on insect nicotinic acetylcholine receptors. J. Neurochem., 2009b,110:1707-1714.
    133. Louise Bate, Mark Gardiner, Genetics of inherited epilepsies. Epileptic Disorders. Volume 1, Number 1,7-19, Mars 1999, Synthese.
    134. Lutz Auerswald, Necla Birgiil, Gerd Gade, Hans-Jurgen Kreienkamp and Dietmar Richte, Structural, Functional, and Evolutionary Characterization of Novel Members of the Allatostatin Receptor Family from Insects Biochemical and Biophysical Research Communications.,2001,282, 904-909.
    135. Maas S, Rich A, Nishikura K., A-to-I RNA editing:Recent news and residual mysteries. J Biol Chem 2003,278:1391-1394.
    136. M. Amar, P. Thorna, S. Wonnacott, GG Lunt, A nicotine acetylcholine receptor subunit from insect brain forms a non-desensitising homo-oligomeric nicotinic acetylcholine receptor when expressed in Xenopus oocytes Neuroscience Letters 1995,107-110.
    137. Matsuda, K., Shimomura, M., Kondo, Y., Ihara, M., Hashigami, K., Yoshida, N., Raymond, V., Mongan, N.P., Freeman, J.C., Komai, K., Sattelle, D.B., Role of loop D of the a7 nicotinic acetylcholine receptor in its interaction with the insecticide imidacloprid and related neonicotinoids. Br. J. Pharmacol.,2000,130:981-986.
    138. Matsuda, K., Buckingham, S.D., Kleier, D., Rauh, J.J., Grauso, M. and Sattelle, D.B., Neonicotinoids:insecticides acting on insect nicotinic acetylcholine receptors. Trends. Pharm. Sci., 2001,22:573-580.
    139. Matsuda, K., Kanaoka, S., Akamatsu, M., Sattelle, D.B., Diverse actions and target-site selectivity of neonicotinoids:structural insights. Mol. Pharmacol,2009,76:1-10.
    140. Matsuda, K., Shimomura, M., Ihara, M., Akamatsu, M. and Sattelle, D.B., Neonicotinoids show selective and diverse actions on their nicotinic receptor targets:electrophysiology, molecular biology, and receptor modeling studies. Biosci. Biotechnol. Biochem.,2005,69:1442-1452.
    141.Methfessel C, Witzemann V, Takahashi T, Mishina M, Numa S, Sakmann B. Patch clamp measurements on Xenopus leavis oocytes:urrents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch 1986,407:577-88.
    142. Miledi R, Grohovaz F, LimbrikcAR. Acetylcholine receptors at the rat neuromuscular junction as revealed by deep etching. Pore R Soc Lond B Biol,1982,215(1199):147-54.
    143. Millar, N.S., Heterologous expression of mammalian and insect neuronal nicotinic acetylcholine receptors in cultured cell lines. Biochem. Soc. Trans.,1999,27:944-950.
    144. Millar, N.S., Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochem. Soc. Trans.,2003,31:869-874.
    145. Millar, N.S., Denholm, I., Nicotinic acetylcholine receptors:targets for commercially important insecticides. Invert. Neurosci.,2007,7:53-66.
    146. Millar, Neil.S., Gotti, C., Diversity of vertebrate nicotinic acetylcholine receptors. Neuropharmacology.,2009,56:237-246.
    147. Millar, N.S., Lansdell, S.J., Characterisation of insect nicotinic acetylcholine receptors by heterologous expression. In:Thany S.H. (Ed.), Insect Nicotinic Acetylcholine Receptors. Landes Bioscience, Minnesota,2009.
    148. Mishina M, Kurosaki T, Tobimatsu T, Morimoto Y, NodaM, Yamamoto T, Expression of functional acetylcholine receptor from cloned cDNAs. Nature 1984,307:604-8.
    149. Mishina M,Takai T, Imoto K, Noda M, Takahashi T, Numa S, Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 1986,313:364-9.
    150. Mishina M, Tobimatsu T, Tanaka K, Fujita Y, Fukuda K, Kurasake M, Location of functional regions of acetylcholine receptor a-subunit by site directed mutagenesis. Nature 1985,313:364-9.
    151.Mongan, N.P., Jones, A.K., Smith, G.R., Sansom, M.S.P., Sattelle, D.B., Novel alpha 7-like nicotinic acetylcholine receptor subunits in the nematode Caenorhabditis elegans. Protein Sci., 2002,11,1162-1171.
    152. Nef P, Mauron A, Stalder R, Alliod C, Ballivet M. Structure, linkage and sequence of the two genes encoding the δ and ε subunits of the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 1984,81:7975-9.
    153. Nelson N, Anholt R, Lindstrom J, Montal M. Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers. Proc Natl Acad Sci USA 1980,77:3057-61.
    154. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutana, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., Numa, S., Structural homology of Torpedo californica acetylcholine receptor sybunits. Nature,1983,302:251-255.
    155. Orr, N., Hasler, J., Watson, G., Mitchell, J., Gustafson, G., Gifford, J., Geng, C., Chouinard, S., Cook, K., Spinosad:from nature to green chemistry to novel mode of action. In:11th IUPAC International Congress of Pesticide Chemistry Abstracts,2006,27.
    156. Papke, R.L., Boulter, J., Patrick, J., Heinemann, S., Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes. Neuron,1989,3:589-596.
    157. Parker I, Ivorra I. A slowly inactivating potassium current in native oocytes of Xenopus laevis. Proc. R. Soc. Lond.1990, B238:369-381.
    158. Paulson HL, Claudio T. Temperature-sensitive expression of all-Torpedo and Torpedo-rat hybrid AChR in mammalian muscle cells. J Cell Biol 1990,110:1705-17.
    159. Peng J-H, Lucerno L, Fryer J, Herl J, Leonard SS, Lukas RJ. Inducible, heterologous expression of human a7-nicotinic acetylcholine receptors in a native nicotinic receptor-null human clonal line.Brain Res 1999,825:172-9.
    160. Pons S, Fattore L, Tolu S, Porcu E, Mclntosh JM, Changeux J-P, Crucial role of a4 and a6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self administration. J Neurosci 2008,28:12318-27.
    161. Portillo, V., Jagannathan, S., Wolstenholme, A.J., Distribution of glutamate-gated chloride channel subunits in the parasitic nematode Haemonchus contortus. J. Comp. Neurol,2003,462:213-222.
    162. RAChel O'Donnell Olson, Zhiqi Li, Yoshiko Nomura, Weizhong Song, Ke Dong Molecular and functional characterization of voltage-gated sodium channel variants from Drosophila melanogaster Insect Biochemistry and Molecular Biology,2008,604-61.
    163. Rafael V, Luc B, Luisa L, Marcela C. Bufo marinus oocytes as a model for ion channel protein expression and functional characterization for electrophysiological studies. Cellular Physiology and Biochemistry,2004,14:197-202.
    164. Ragozzino D, Fucile S, Giovannelli A, Grassi F, Mileo AM, Ballivet M, Functional properties of neuronal nicotinic acetylcholine receptor channels expressed in transfected human cells. Eur J Neurosci 1997,9:480-8.
    165. Ren K, Thinschmidt J, Liu J, Al L, Papke RL, King MA, α7 Nicotinic receptor gene delivery into mouse hippocampal neurons leads to functional receptor expression, improved spatial memory-related performance, and tau hyperphosphorylation. Neuroscience 2007,145:314-22
    166. Rogelio OA, Edith G, Ricardo M. Muscarinic receptor heterogeneity in follicle-enclosed Xenopus oocytes[J]. J Physiol,1999,521:409-19.
    167. Rogers SW, Gahring LC, Papke RL, Heinemann S. Identification of cultured cells expressing ligand-gated cationic channels. Protein Exp Purif 1991,2:108-16.
    168. Salgado, V.L., Saar, R., Desensitizing and non-desensitizing subtypes of alpha-bungarotoxin sensitive nicotinic acetylcholine receptors in cockroach neurons. J. Insect Physiol.,2004,50: 867-879.
    169. Sands, S.B., Barish, M.E., Calcium permeability of neuronal nicotinic acetylcholine receptors in PC12 cells. Brain Res.,1991,560:38-42.
    170. Sattelle, D.B., Acetylcholine receptor of insects. Adv. Insect. Physiol.,1980,15:215-315.
    171. Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC. Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. Bioessays 2005, 27:366-376.
    172. Sawruk, E., Hermsans-Borgmeyer, I., Gundelfinger, E.D., Characterization of an invertebrate nicotinic acetylcholine receptor gene:the ard gene of Drosophila melanogaster, FEBS Lett.1988, 235,40-46
    173. Schindler H, Quast U. Functional acetylcholine receptor from Torpedo marmorata in planar membranes. Proc Natl Acad Sci USA 1980,77:3052-6.
    174. Schmauss C, Howe JR. RNA editing of neurotransmitter receptors in the mammalian brain. Sci STKE2002,133:26.
    175. Schroeder, M. E., Flattum, R. F., The mode of action and neurotoxic properties of the nhtomethylene heterocycle insecticides. Pestic. Bio. Physiolo,1984,22:148-160.
    176. Schoepfer R, Conroy WG, Whiting P, Gore M, Lindstrom J. Brain a-bungarotoxin binding protein cDNAs and mabs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 1990,5:35^8
    177. Schulz, R., Bertrand, S., Chamaon, K., Smalla, K.-H., Gundelfinger, E.D. and Bertrand, D., Neuronal nicotinic acetylcholine receptors from Drosophila:two different types of a subunits coassemble within the same receptor complex. J. Neurochem.,2000,74:2537-2546.
    178. Seeburg PH, Higuchi M, Sprengel R. RNA editing of brain glutamate receptor channels: Mechanism and physiology. Brain Res Rev 1998,26:217-229.
    179. Sgard, F., Charpantier, E., Bertrand, S., Walker, N., Caput, D., Graham, D., Bertrand, D., Besnard, F., A novel human nicotinic receptor subunit, α10, that confers functionality to the a9-subunit. Mol. Pharmacol.,2002,61:150-159.
    180. Shao, Y.M., Dong, K., Zhang, C.X., The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori. BMC Genomics,2007,8:324.
    181. Shimomura, M., Okuda, H., Matsuda, K., Komai, K., Akamatsu, M., Sattelle, D.B., Effects of mutations of a glutamine residue in loop D of the a7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands. Brit. J. Pharmocol,2002,137:162-169.
    182. Shimomura M, Yokota M, Okumura M, Matsuda K, Akamatsu M, Sattelle DB, Komai K, Combinatorial mutations in loops D and F strongly influence responses of the a7 nicotinic acetylcholine receptor to imidacloprid. Brain Research.,2003,991:71-77.
    183. Shimomura, M., Yokota, M., Matsuda, K., Sattelle, D.B., Komai, K., Roles of loop C and the loop B-C interval of the nicotinic receptor a subunit in its selective interactions with imidacloprid in insects. Neuroscience Letters,2004,363:195-198.
    184. Shimomura, M., Satoh, H., Yokota, M., Ihara, M., Matsuda, K., Sattelle, D.B., Insect-vertebrate chimeric nicotinic acetylcholine receptors identify a region, loop B to the N-terminus of the Drosophila Da2 subunit, which contributes to neonicotinoid sensitivity. Neurosci. Lett.,2005, 385:168-172.
    185. Shimomura, M., Yokota, M., Ihara, M., Akamatsu, M., Sattelle, D.B. And Matsuda, K. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site. Mol. Pharmacol,2006,70:1255-1263.
    186. Shao, Y.M., Dong, K., Zhang, C.X., The nicotinic acetylcholine receptor gene family of the silkworm, Bombyx mori. BMC Genomics 8,2007,324 1186/1471-2164-8-324.
    187. S.P. Fraser, M.B.A. Djamgoz, P.N.R. Usherwood, J. O'Brien,M.G. Darlison and E.A. Barnard Amino acid receptors from insect muscle:electrophysiological characterization in Xenopus oocytes following expression by injection of mRNA Molecular Brain Research Volume 8, Issue 4, October 1990,331-341.
    188. Squire MD, Tornfie C, Baylis HA, Fleming JT, Barnard EA, Sattelle DB. Molecular cloning and functional expression of a Caenorhabditis elegans nicotinic acetylcholine receptor subunit(acr-2). Receptors Channels 1995,3:107-15.
    189. Sumikawa K, Houghton M, Emtage JS, Richards BM, Barnard EA. Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes. Nature 1981, 292:862-4.
    190. Susumu lzumi, Sumio Tojo and Shiro Tomino Translation of fat body mRNA from the silkworm, Bombyx mori Insect Biochemistry Volume 10, Issue 4,1980,429-434.
    191. Stevens, C. F., Channel Families In The Brain. Nature,1987,328:198-199.
    192. Strader, C. D., Fong, T.M., Tota, M.R., Underwood, D., Dixon, R.A.F., Structure and function of G protein-coupled receptors. Ann. Rev. Biochem.,1994,63:101-132.
    193. Soreq, H. The biosynthesis of biologically active proteins in mRNA-microinjected Xenopus oocytes. CRC Critical Reviews in Biochemistry,1985,18(3):199-238.
    194. Takai T, NodaM, Furutani Y, Takahashi H, NotakeM, Shimizu S, Primary structure of P subunit precursor of calf-muscle acetylcholine receptor deduced from cDNA sequence. Eur J Biochem, 1984,144:11-7
    195. Tanabe T, Noda M, Furutani Y, Takai T, Takahashi H, Tanaka K, Primary structure of β subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur J Biochem, 1984,144:11-7.
    196. Tapper AR, McKinney SL, Nashmi R, Schwarz J, Deshpande P, Labarca C, Nicotine activation of a4* receptors:sufficient for reward, tolerance, and sensitization. Science,2004,306:1029-32.
    197. Taranda J, Maison SF, Ballestero JA, Katz E, Savino J, Vetter DE, A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection. PLoS Biol,2009,7:71-83.
    198. Tchou, S. and Y.L.Wang, L'hibernation, facteur determinant de la maturation ovulaire chezle Crapaud(Bufo bufo asiaticus). Scientia sinica,1963,12(8):1161-1164.
    199. Teper Y, Whyte D, Cahir E, Lester HA, Grady SR, Marks MJ, Nicotine-induced dystonic arousal complex in a mouse line harboring a human autosomal-dominant nocturnal frontal lobe epilepsy mutationJ Neurosci,2007,19:10128-42.
    200. Tomizawa M, Otsuka H, Miyamoro T, Eldefrawi ME, Yamamoto I, Pharmacological characteristics of insect nicotinic acetylcholine receptor with its ion channel and the comparison of the effect of nicotinoids and neonicotinoids. Journal of Pesticide Science.,1995,20:57-64.
    201. Tomizawa M, Casida J E, Structure and diversity of insect nicotinic acetylcholine receptors. Pest Management Science,2001,57:914-922.
    202. Tomizawa M, Zhang N, Durkin KA, Olmstead MM, Casida JE, The neonicotinoid electronegative pharmacophore plays the crucial role in the high affinity and selectivity for the Drosophila nicotinic receptor:an anomaly for the nicotinoid cation-π interaction model. Biochemistry,2003, 42:7819-7827.
    203. Tomizawa, M. and Casida, J.E., Neonicotinoid insecticide toxicity:mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol.,2005,45:247-268.
    204. Tomizawa, M., Millar, N.S., Casida, J.E., Pharmacological profiles of recombinant and native insect nicotinic acetylcholine receptors. Insect Biochemistry and Molecular Biology,2005,35:1347-1355.
    205. Tomizawa, M., Casida, J.E., Molecular Recognition of Neonicotinoid Insecticides:The Determinants of Life or Death. Acc. Chem. Res.,2009,42:260-269.
    206. Tomizawa, M., Lee, D.L.and Casida, J.E., Neonicotinoid insecticides:molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J. Agric. Food Chem.,2000,48: 6016-6024.
    207. Treinin M, Gillo B, Liebman L, Chalfie M. Two functionally dependent acetylcholine subunits are encoded in a single Caenorhabditis elegans operon.ProcNatl Acad Sci USA 1998; 95:15492-5.
    208. Unwin, N., Nicotinic acetylcholine receptor channel at 9 Angstrom resolution. Journal of molecular Biology,1993,229:1101-1124.
    209. Unwin, N., Acetylcholine receptor channel imaged in the open state. Nature,1995,373:37-43.
    210. Unwin, N., Projection structure of nicotinic acetylcholine receptor:distinct conformations of the a subunits. J. Mol. Biol,1996,257:586-596.
    211. Unwin, N., Refined structure of the nicotinic acetylcholine receptor at 4 A resolution. J. Mol. Biol, 2005,346:967-989.
    212. Usherwood, P.N.R., Insect glutamate receptors. Adv. Insect. Physiol,1994,24:309-341.
    213. Valerie Raymond, Alain Hamon, Yves Grau, Bruno Lapied DmGluRA, a Drosophila metabotropic glutamate receptor,activates G-protein inwardly rectifying potassium channels in Xenopus oocytes Neuroscience Letters 269,1999,1-4.
    214. Vetter, D.E., Katz, E., Maison, S.F., Taranda, J., Turcan, S., Ballestero, J., Liberman, M.C., Elgoyhen, A.B., Boulter, J., The α10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocohlear system. Proc. Natl. Acad. Sci. USA,2007,104: 20594-20599.
    215. Wachtel H, Kandel ER Conversion of synaPtic cscitation to inhibition of a dual chemical synapse.J Neurophysiol,1971,34:56-8.
    216. Wada K, BallivetM, Boulter J, Connolly J,Wada E, Deneris ES, et al. Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science,1988,240:330-4
    217. Whiting P, Schoepfer R, Lindstrom J, Priestley T. Structural and pharmacological characterization of the major brain nicotinic acetylcholine receptor subtype stably expressed in mouse fibroblasts. Mol Pharmacol,1991,40:463-72.
    218. Wong ET, Holstad SG, Mennerick SJ, Hong SE, Zorumski CF, Isenberg KE. Pharmacological and physiological properties of a putative ganglionic nicotinic receptor a3p4, expressed in transfected eucaryotic cells. Mol Brain Res,1995,28:101-9.
    219. Wu WC-S, Raftery MA. Carbamylcholine-induced rapid cation efflux from reconstituted membrane vesicles containing purified acerylcholine receptor.Biochem Biophys Res Commun,1979, 89:26-35.
    220. Yao, X., Song, F., Chen, F., Zhang, Y., Gu, J., Liu, S. and Liu, Z., Amino acids within loops D, E and F of insect nicotinic acetylcholine receptor β subunits influence neonicotinoid selectivity. Insect Biochem. Mol. Biol,2008,38:834-840.
    221.Yoshida K, Imura M.Nicotinic cholinergic receptors in brain synaptosomes. Brain Res,1979, 172:453-9.
    222. Y. Shirai, A.M. Hosie, S.D. Buckingham, C.W. Holyoke Jr., H.A. Baylis, D.B. Sattelle, Actions of picrotoxinin analogues on an expressed, homo-oligomeric GABA receptor of Drosophila melanogaster Neuroscience Letters 189,1995,1-4.
    223. Zhang, Y., Liu, Z., Han, Z., Song, F., Yao, X., Shao, Y., Li, J. and Millar, N.S., Functional co-expression of two insect nicotinic receptor subunits (Nla3 and Nla8) reveals the effects of a resistance-associated mutation (Nlα3Y151S) on neonicotinoid insecticides. J. Neurochem.,2009, 110:1855-1862.
    224. Zhiqi Liu, Jianguo Tan, Steven M. Valles, Ke Dong Synergistic interaction between two cockroACh sodium channel mutations and a tobacco budworm sodium channel mutation in reducing channel sensitivity to a pyrethroid insecticide bisect Biochemistry and Molecular Biology 32,2002,397-40.
    225. Zhu G, Okada M, Yoshida S, Ueno S, Mori F, Takahara T, Rats harboring S284L Chrna4 mutation show attenuation of synaptic and extrasynaptic GABAergic transmission and exhibit nocturnal frontal lobe epilepsy phenotypeJ Neurosci,2008,28:12465-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700