中华大蟾蜍卵母细胞质膜存在钙依赖性的氯离子通道
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究中华大蟾蜍卵母细胞内源性电压门控型离子通道的成份及其生理特性。
     方法:采用双微电极电压钳法。
     结果:(1)发现卵母细胞去极化至-30mv及更偏正时,有一持续的电压依赖性的外向电流出现。该电流被最大抑制剂量的钾离子通道拮抗剂TEA(10mmol/L)和4-AP(10mmol/L)协同作用时,只能被抑制到最大电流幅度的23.4±2.4%;
     (2)用无氯Ringer氏液与钾离子通道拮抗剂(TEA10mmol/L和4-AP10mmol/L)协同作用时,可将此电流基本抑制,仅剩2.2±0.2%。用氯离子通道拮抗剂NPPB(30μmol/L)与钾离子通道拮抗剂(TEA10mmol/L和4-AP10mmol/L)协同作用时,该电流也可被基本抑制,只剩2.1±0.2%;
     (3)用无钙Ringer氏液与钾离子通道拮抗剂(TEA10mmol/L和4-AP10mmol/L)协同作用时,可将此电流基本抑制,仅剩3.2±0.3%。用钙离子通道拮抗剂维拉帕米(40μmol/L),与钾离子通道拮抗剂(TEA10mmol/L和4-AP10mmol/L)协同作用时,该电流也可被基本抑制,只剩3.1±0.3%。
     结论:中华大蟾蜍卵母细胞质膜上除有钾离子通道之外,还存在钙依赖性的氯离子通道.
Objective: To study membrane properties of the fully-grown oocytes from toad, Bufo bufo gargarizans.
     Method: Two-microelectrode voltage-clamp(TEA)method was used.
     Results: (1)It was found that a sustained outward current was elicited by membrane depolarization to -30mv or more positive value. Potassium channel blockers(TEA10mmol/L and 4-AP10mmol/L) partly reduced the majority of outward current to 23.4±2.4%.(2)Bath application of Cl—-free Ringer’s solution and potassium channel blockers(TEA10mmol/L and 4-AP10mmol/L) could almost completely block the outward current, only remaining 2.2±0.2% .Bath application of chloride channel blocke(rNPPB30μmol/L)and potassium channel blockers(TEA10mmol/L and 4-AP10mmol/L) could almost completely block the outward current, only remaining 2.1±0.2%.Bath application of Ca2+-free Ringer’s solution and potassium channel blockers(TEA10mmol/L and 4-AP10mmol/L) could almost completely block the outward current, only remaining 3.2±0.3%.(3) Bath application of calcium channel blockers(Verapamil40μmol/L)and potassium channel blockers(TEA10mmol/L and 4-AP10mmol/L) could almost completely block the outward current, only remain 3.1±0.3%.
     Conclusion: It was firstly concluded that plasma membrane of Bufo oocyte exist calcium-dependent chloride channel, except potassium channel.
引文
1. Gurdon JB. Lane CD. Wood HR. et al. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature, 1971, 233:177-182.
    2. Dascal N. The use of Xenopus oocytes for the study of ion channeis. Ibid, 1987,22(4):317-387.
    3. 田辉凯,李学军.爪蟾卵母细胞表达体系在功能基因组学研究中的应用.国外 医学分子生物学分册,2002,24(4):193-196.
    4 .Dick DA, Fry DJ. Sodium fluxes in single amphibian oocytes: further studies and a new model. J. Physiol,1975,247(1):91-116.
    5. Barnard EA, Miledi R, Sumikawa K. Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes.Proc.R.Soc.Lond,1982,B215:241-246.
    6. Koltchine VV, Anantharam V, Bayley H, Alternative splicing of the NMDARI subunit affeits by calcium[J]. Moleculer Brain Res, 1996, 39(1-2):99-108.
    7. Lane CD. The fate of genes, messengers, and proteins introduced into Xenopus oocytes. Current Topics of Dev. Biol.1983, 18:89-116.
    8. Soreq,H. The biosynthesis of biologically active proteins in mRNA-microinjected Xenopus oocytes. CRC Critical Reviews in Biochemistry, 1985,18(3):199-238.
    9. Hollman M, O’Shea-Greenfield A, Rogers SW, Heinemann S. Cloning by functional expression of a member of the glutamate receptor family.Nature,1989,342:643-648.
    10.Dumont JW. Oogenesis in Xenopus laevis (Daudin),Stage of oocyte development in laboratory maintained animals[J].J Morphol, 1972, 136:153-180.
    11.顾全保、朱辉、李巍.红藻氨酸和 GABA 受体在中华大蟾蜍卵母细胞的表达.生理学报,1992,44(5):470-477.
    12.朱幸、朱辉、包永德.鸡视网膜谷氨酸受体和 GABA 受体在两栖类卵母细胞中的表达.生理学报,1994,46:417-426.
    13.朱辉、朱幸、包永德.鲫鱼脑 mRNA 在中华大蟾蜍卵母细胞中的表达。第一届全国神经科学学术会议论文摘要汇编。生理通讯增刊号,1992,3:61-62.
    14.朱辉、朱幸、包永德.鲫鱼脑氨基酸类神经递质受体在两栖类卵母细胞中的表达。生理学报,1995,47(1):1-10.
    15.张晓东、臧益民、谢安.用于离子通道基因表达的爪蟾卵母细胞的分离和培养.心脏杂志,2001,13:120-122.
    16.姚永、顾全保、朱辉.中华大蟾蜍卵母细胞质膜的外向整流型钾离子通道.生理学报,1992,44:461-469.
    17.顾全保、朱辉、姚永.大鼠脑神经递质受体和通道在中华大蟾蜍卵母细胞的表达.第一届中科院神经科学学术会议论文摘要,1990,p28.
    18.Barish,ME. A transient calcium-dependent chloride current in the immature Xenopus oocytes. J. Physiol.(Lond).1983,342:309-325.
    19.Boton R. Dascal N. Gillo B. and Lass Y.Tow calcium-actived chloride conductances in Xenopus laevis oocytes permeabilized with the ionophore A23187,J. Physical,(Long.)1989,408,511-534.
    20.Dascal,N. The use of Xenopus oocytes for the study of ion channels. Ibid,1987,22(4):317-387.
    21.Parker I, Ivorra I. A slowly inactivating potassium current in native oocytes of Xenopus laevis.Proc.R.Soc.Lond.1990,B238:369-381.
    22.Descal D. Snutch TP. Lucbbert H. Davidson N. and Lester HA. Expression and modulation of voltage-gated calcium channels after RNA injection in Xenopus oocytes. Science,1986,231:1147-1150.
    23.Baud C. Kado R. Introduction and disappearance of excitability in the oocytes of Xenopus laevis: a voltage-clamp study. J. Physiol, (Lond.) 1981,356:275-289.
    24.Tchou S, Wang YL. La succession d’ovogenese et l’impossibilite de maturation ovulaire chez le milieu a haute temperature pendant toute une annee. Scientia Scienca, 1963, 12(8):1165-1168.
    25.王幽兰.长年控制蟾蜍生殖期的研究.动物学报,1954, 6: 81-84.
    26.朱冼、王幽兰.长年高温养育对蟾蜍卵球发育和成熟的影响.Scientia Sinica,1963,12:1165-1168.
    27.赵剑星、朱光、徐国江、王幽兰.用实验条件改变离体高温卵巢卵对孕酮的应答能力.实验生物学报,1988,21:169-177.
    28.Dick DA, Fry DJ. Sodium fluxes in single amphibian oocytes:further studies and a new model. J Physiol, 1997,247(1):91-116.
    29.Cavarra MS, Kotisias BA. Chloride channel blockers activate an endogenous cationic current in oocytes of Bufo arenarum. J.Neuroethology,2004,190(7):531-537.
    30.Rafael V, Luc B, Luisa L, Marcela C. Bufo marinus oocytes as a model for ion channel protein expression and functional characterization for electrophysiological studies. Cellular Physiology and Biochemistry, 2004, 14:197-202.
    1. Gurdon JB. Lane CD. Wood HR. et al. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature, 1971,233:177-182.
    2. Dumont JW. Oogenesis in Xenopus laevis (Daudin),Stage of oocyte development in laboratory maintained animals[J].J. Morphol, 1972, 136:153-180.
    3. Parker I, Gundersen CB, Miledi R. Intracellular Ca2+ dependent and Ca2+ independent responses of rat brain serotonin receptors transplanted to Xenopus oocyte [J].Neurosci Res,1985,2:491-496.
    4. Buznikov GA. Shmukler YB. Lauder JM. From oocyta to neuron ;do neurotransmitters function in the same way throughout development? Cell Mol Neurobiol, 1996,16(5):537.
    5. 张晓东、臧益民、谢安.用于离子通道基因表达的爪蟾卵母细胞的分离和培养.心脏杂志,2001,13:120-122.
    6. Yang Q, Li ZW, Wei JB. Current resposes mediated by endogenous GABAB and GABAC receptors in Xenopus oocytes. Acta Physiologics Sinica, 2001, 53(4):311-315.
    7. 彭碧文,田红,肖邦宙,魏劲波,李之望.Zn2+对非洲爪蟾卵母细胞 ATP 激活电流的增强效应(海峡两岸神经递质及受体讨论会)论文摘要汇编.P:61-62,武汉.
    8. Dumont JN .Oogenesis in Xenopus laevis(Daudin) I Stages of oocyte development in laboratory maintained animals. J Morphol,1972,136:153-180.
    9. 皮艳俐,马季骅,张培华.卵母细胞在离子通道研究中的应用.武汉科技大学学报(自然科学版),2005,28(3):302-305.
    10. Galili G, Kawata EE, Smith LD, Larkins BA. Role of the 3’-ploy(A) sequence in translational regulation of mRNA in Xenopus laevis oocytes. J Biol Chem,1988,263(12):5764-5770.
    11. Boton R,Dascal N,Gillo B,Lass Y. Tow calcium-actived chloride conductancesin Xenopus laevis oocytes permeabilized with the ionophore A23187,J.Physical,(Long.)1989,408:511-534.
    12. Dascal,N. The use of Xenopus oocytes for the study of ion channels. Ibid,1987,22(4):317-387.
    13. Descal D, Snutch TP,Lucbbert H, Davidson N,Lester HA. Expression and modulation of voltage-gated calcium channels after RNA injection in Xenopus oocytes. Science,1986,231:1147-1150.
    14. Baud C,Kado R. Introduction and disappearance of excitability in the oocytes of Xenopus laevis: a voltage-clamp study. J. Physiol, (Lond.) 1981,356:275-289.
    15. Kasano K,Miledi R,Stinnakre J. Cholingeric and catecholaminergic receptors in the Xenopus oocytes membrane. J Physiol ,1982, 328:143.
    16. King BF,Wang S,Burnstock G. P2 purinoceptor-activated inward currents in follicular oocytes of Xenopus laevis. J Physiol,1996,494:17-28.
    17. Qing Yang,Li Zhi Wang,Wei Jin Bo. Current responses mediated by endogenous GABAB and GABAC receptors in Xenopus oocytes. Acta Physiol Sin, 2001, 53(4):271-275.
    18.田辉凯,李学军.爪蟾卵母细胞表达体系在功能基因组学研究中的应用.国外医学分子生物学分册,2002,24(4):193-196.
    19.王钦文,刘智胜,杨季清.卵母细胞基因表达系统的应用研究.陨阳医学院学报,2000,19(2):65-67.
    20. Hales KH, Meredith JE, Storti RV. Transcriptional and post- transcriptional regulation of maternal and zygotic cytoskeletal tropomyosin mRNA during Drosophila development correlates with specific morphogenic events [J]. Development Biology, 1994, 165(2):639-653.
    21. Guille M. Microinjection into Xenopus oocytes and embryos [J].Methods Mol Biol, 1992,127(2):111-123
    22. Hille B. Classical biophysics of the squid giant axon . In: Hille B, eds. Ionic Channels of Excitable Membrances,2nd ed. Sunderland: Sinauer Associates,1992,23-59.
    23. Aidly DJ, Stanfield P. Investigating channel activity. In: Aidly DJ, Stanfield P, eds. Ion Channels Molecules in Action. Cambridge University Press,1996,391:85-100.
    24. 刘泰逢.心肌细胞动作电位的研究方法.见:刘泰逢著.心肌电生理学.北京:北京大学出版社,1998,33-50.
    25.贾宏钧,王钟林,杨期东.电压钳技术.见:离子通道与心脑血管疾病(基础与临床)。人民卫生出版社,2001,6-8.
    26. Richeter JD, Smith LD. Differential capacity for translation and lack of competition between mRNAs that segregate to free and membrane-bound polymsomes. Cell,1981,27:183-191.
    27. Barnard EA, Miledi R, Sumikawa K. Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc Soc Lond Biol,1982,B215:241-246.
    28. Jansen KU, Conroy WG, Claudio T. Expression of the four subunits of the Torpedo californica nicotinic acetylcholine receptor in Saccharomyces cerevisiae. J Biol Chem, 1989, 264:15022-15027.
    29. Lessman CA, Marshall WS. Electrophysiology of in vitro insulin-induced and progester-one-induced reinitiation of oocyte meiosis in Rana pipiens.J.Exp.Zool,1984,231:266-275.
    30. Levitan ES, Schofield PR, Burt DR, Rhee LM. Structure and function basis for GABA receptor heterogeneity. Nature,1988,335:76-79.
    31. Umbach JA, Gundersen CB. Mercuric ions are potent noncompetitive antagonists of human brain kainite receptors expressed in Xenopus oocytes.Mol.Pharmacol,1989,36:582-588.
    32. Gryorczyk R, Schwarz W, Passow H. Potential dependence of the electrically silent anion exchange across the plasma membrane of Xenopus oocytes mediated by the Band-3 protein of mouse red blood cells. J.Membr.Biol,1987,99(2):127-136.
    33. Sumikawa K, Miledi R. Change in desensitization of cat muscle acetylcholine receptor caused by coexpression of Torpedo acetylcholine receptor subunitsin Xenopus oocytes. Proc Natl Acad Sci USA,1989,86(1):367-371.
    34. Gundersen CB, Miledi R, Parker II. Glutamate and kainite receptor induced by brain messenger RNA in Xenopus oocytes. Proc Soc Lond Biol, 1984,221(1223):127-143.
    35. Hollmann M, O’Shea-Greenfield A, Rogers SW, Heinemann S. Cloning by functional expression of a member of the glutamate receptor family. Nature, 1989,342:643-648.
    36. Kausalia Vijayaragavan,Aadrew J.Kinghorn,and Mohamed Chahine. Role of auxiliary β1-,β2-, and β3-subunits and their interaction with Nav 1.8 voltage-gated sodium channels. Biochemical and Biophysical Research Communications ,2004,319: 531-540.
    37. Jeong-Geun Lim,Hyun-Young Lee,Jeung-Eun Yun,Sang-Pyo Kim,Jong-Wook Park,etc. Taurine block of cloned ATP-sensitive K+ channels with different sulfonylurea receptor subunits expressed in Xenopus laevis oocytes. Biochemical Pharmacology,2004,68:901-910.
    38. Lijuan Ma,Chunxia Lin,Siyong Teng and Yongping Chai. Characterization of a novel Long QT Syndrome mutation G52R- KCNE1 in a Chinese family. Cardiovascular Research,2003,59:612-619.
    39. Lucas J.Herfst , Franck Potet, Connie R.Bezzina and W.Antoinette Groenewegen .Na+ channel mutation leading to loss of function and non-progressive cardiac conduction defects. Journal of Molecular and Cellular Cardiology,2003,35:549-557.
    40. Consuelo Plata,Jian Escamilla,Elba Carrillo,et al.AKAP79 increase the functional expression of skeletal muscle Ca2+ channels in Xenopus oocytes. Biochemical and Biophysical Research Communications,2004,316:189-194.
    41.Oron Y, Dascal N, Nadler E, et al. Inositol –1,4 5-triphosphate mimics muscarinic response in xenopus oocytes . Nature,1985, 313:141-143.
    42.Fvakler B, Glowatzki E, Zenner HP, Ruppersberg JP. Kir2.1 inward rectifier K+ channels are regulated independently by protein kinases and ATP hydrolysis. Neuron, 1994, 13:1413-1420.
    43. Guang-Qian Xiao , Daria Mochly-Rosen and Mohamed Boutjdir. PKC isozyme selective regulation of cloned human cardiac delayed slow rectifier K current . Biochemical and Biophysical Research Communications,2003,306:1019-1025.
    44. Edgar Zitron,Claudia Kiesecker,Sorja Luck,Sven Kathofer and Dierk Thomas。Human cardiac inward rectifying current Ikir2.2 is upregulated by activation of protein kinase A. Cardiovascular Research,2004,63:520-527.
    45. Hidekazu Koyama,Ken-Zchirou Morishige,Naohiko Takahashi,Jill S.Zanelli,David N.Fass and Yoshihisa Kurachi.FEBS Letters 1994,341:303-307.
    46. 徐林,等.四种心肌克隆钾通道的表达和电生理记录.中国心脏起搏与心电生理杂志,2004 , 18(2):108-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700