表达狂犬病病毒G蛋白重组犬瘟热弱毒疫苗株的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狂犬病(Rabies)是由狂犬病病毒(Rabies virus, RV)引起的一种人兽共患传染病,在全球范围内流行,以急性、渐进性和致死性脑炎为特征。狂犬病是目前病死率最高的传染病之一,一旦出现神经症状病死率几乎高达100%。全球每年死于狂犬病的人数高达55,000,主要发生在非洲和亚洲的发展中国家。近年来,我国狂犬病疫情呈现了快速回升的趋势,每年造成的死亡人数均在2,000以上,已经成为一个严重的公共卫生问题。据统计,99%以上人间狂犬病死亡病例因狂犬病犬咬伤所致。对于人间狂犬病的控制,最有效的措施是通过疫苗接种从源头上控制犬狂犬病。传统的狂犬病弱毒疫苗成本低廉,但存在毒力残留或致病性回复突变的安全隐患;灭活疫苗安全、有效,但成本昂贵。因此,研制安全、有效,成本低廉的动物狂犬病疫苗,仍具现实意义。
     反向遗传技术的发展与成熟使得不分节段的单股负链RNA病毒作为疫苗载体成为可能。犬瘟热(Canine distemper, CD)是由副粘病毒科的犬瘟热病毒(Canine distemper virus, CDV)引起的犬、貂和狐狸等肉食动物的一种重要传染病,在全球广泛分布,严重影响着养犬业及经济动物养殖业的健康发展。弱毒疫苗接种能有效预防该病,应用广泛。利用CD弱毒疫苗株为载体,构建重组二联活疫苗,可实现一苗两防,有利于提高狂犬病免疫覆盖率,提高免疫质量,节省狂犬病免疫的经济成本。
     为此,本研究以我国生产中应用的CD弱毒疫苗株CDV/R-20/8为亲本毒株,建立了该毒株的反向遗传操作系统。救获的犬瘟热弱毒疫苗株rCDV保持了野生型CDV/R-20/8的细胞培养生长特性,二者在Vero细胞上的多步生长曲线基本一致,生长滴度在相同的时间内达到峰值,最高生长滴度均为1×10~(6.5)TCID_50/mL。为评估CDV作为活病毒载体表达外源蛋白基因的潜力,构建了表达增强型绿色荧光蛋白(EGFP)的重组犬瘟热病毒rCDV-EGFP。重组病毒rCDV-EGFP在Vero细胞上的生长特性与亲本株rCDV相似,最高生长滴度可达1×10~(6.5)TCID_50/mL。该重组病毒具有良好的Vero细胞生长适应性及遗传稳定性,在Vero细胞上连续传代10代次后,仍能稳定、高效的表达EGFP。结果表明,CDV疫苗株CDV/R-20/8具有作为活病毒疫苗载体的潜力,为研制防制狂犬病和犬瘟热的重组二联活载体疫苗奠定了基础。
     在此基础上,进一步构建了表达RV弱毒疫苗株ERA G蛋白的重组犬瘟热弱毒疫苗株rCDV-RVG。该重组CDV保持了亲本毒株rCDV对Vero细胞的良好适应性和稳定性,可达到高水平的生长滴度,最高生长滴度可达1×10~(6.25)TCID50/mL。rCDV-RVG和rCDV按3×10~4TCID_50/30_μL/只和1×10~5TCID_50/100_μL/只的剂量,分别经脑内和肌肉注射途径接种小鼠,观察3周,所有接种小鼠未见任何明显的狂犬病症状;rCDV-RVG和rCDV无论肌肉接种小鼠,还是脑内接种小鼠,与相应的PBS接种对照小鼠相比,观察期间的体重变化均无显著性差异。结果表明,RV G蛋白基因的插入、表达并没有增强疫苗载体CDV对小鼠的致病力。同时,rCDV-RVG按1×10~5TCID_50/100_μL/只的剂量经肌肉注射途径接种小鼠,可诱导显著的RV中和抗体反应。免疫后3周应用致死剂量的RV街毒GX/09株进行攻击。结果免疫小鼠全部获得保护,而对照小鼠全部发病死亡。结果表明,rCDV-RVG对小鼠具有的良好的生物安全性和的免疫原性。
     为进一步评估重组病毒对犬的免疫原性,rCDV-RVG和rCDV分别按1×10~6TCID_50/1mL/只的剂量,经肌肉注射途径接种3月龄比格犬5只,初次免疫后3周以相同剂量、途径加强免疫一次。免疫后持续观察,定期检测免疫犬血清中CDV和RV中和抗体。结果rCDV-RVG初次免疫后1周和3周,免疫犬血清中的RV中和抗体滴度平均值分别为1.48IU和32.11IU。第二次免疫后2周,RV中和抗体反应显著增强,其平均值可达96.71IU。rCDV-RVG诱导的RV中和抗体反应可持续一年以上,初次免疫后70周,免疫犬血清中的RV中和抗体滴度平均值仍>0.5IU,即保护动物抵抗致死剂量RV街毒攻击的最小滴度。结果提示,重组病毒rCDV-RVG两次免疫接种,可为免疫犬提供1年以上的有效保护。免疫后70周进行第3次免疫,结果诱导更为显著的加强免疫反应,第3次免疫后1周,血清RV中和抗体滴度平均值升至281.4IU。与此同时,rCDV-RVG和rCDV初次免疫后3周,均诱导显著的CDV中和抗体反应,第二次免疫后CDV中和抗体水平迅速上升。一年后进行第3次免疫,二者均可诱导更加显著的加强免疫反应,而且rCDV-RVG诱导的CDV中和抗体滴度峰值与亲本株rCDV的相比无显著性差异。
     本研究结果表明,重组病毒rCDV-RVG具有良好的生物安全性和免疫原性,是一个有希望的新型狂犬病、犬瘟热重组二联活疫苗候选株。
Rabies is a widespread zoonosis caused by the rabies virus (RV) and causes acute, progressive, andfatal encephalitis. The disease is currently one of the deadliest infectious diseases and is almost100%fatal once the neurologic symptoms appear. Worldwide there are approximately55,000human deaths peryear due to rabies, mostly in developing countries of Africa and Asia. Since2003, the annual number ofhuman deaths has been growthing in our country and was above2,000. Now, rabies is a serious publichealth problem in our country. However, the exposure to rabid dogs is still the main cause of over99%of human deaths worldwide. For preventing human rabies, the most efficient strategy is to eliminate thedisease in dogs through vaccination. The manufacturing costs of routine rabies attenuated vaccines arelow, but their residual virulence or pathogenic mutations can sometimes cause the disease of vaccinatedanimals. Although, inactivated cell culture rabies vaccines are safe and effective, their manufacturingcosts are high. Therefore, effective, safe, and affordable rabies vaccines are still being sought.
     The development of reverse genetics has provided a powerful tool to create recombinantnonsegmented negative-strand RNA virus-based bivalent vaccine. Canine distemper (CD) is awidespread infectious disease of most carnivores, such as dogs, minks, foxes and so on, caused bycanine distemper virus (CDV), a morbillivirus of family Paramyxoviridae. Now, CD is a very seriousproblem for dogs industry and economic animals industry worldwide. However, vaccination of CDattenuated vaccines is an efficient method to prevent CDV infection. Therefore, CDV-based liveattenuated vaccine serve as a bivalent vaccine can prevent rabies and CD, which will contribute toimprove the rabies vaccine vaccination rate of dogs and the quality of immunization. It will save theeconomic costs of rabies vaccine immunization.
     In this study, we established a reverse genetics system of the attenuated CDV vaccine strainCDV/R-20/8. The rescued CDV, rCDV, was almost indistinguishable from the parental strainCDV/R-20/8. There are no difference in growth properties between rCDV and the parental wild virus inVero cells. And, the rCDV and the parental strain grew to similar levels and reached peak titers of106.5TCID50/mL at72h post-infection. To investigate the potential of CDV serve as a live vaccine vectorexpressing the foreign proteins, we generated a recombinant CDV, rCDV-EGFP, expressing theenhanced green fluorescent protein (EGFP) by using reverse genetics. The rCDV-EGFP has the similarbiological characteristics with parental rCDV, including high growth titer (10~(6.5)TCID50/mL) andexcellent adaptability and genetic stability in Vero cell. After serially passages10times in Vero cells, therecombinant CDV still kept a high level expression of EGFP. These results indicated that theCDV/R-20/8attenuated vaccine strain has the potential to serve as a live vaccine vector.
     CDV is a promising live viral vector to develop a bivalent vaccine against RV and CDV infection.In the present study, we generated a recombinant CDV, rCDV-RVG, expressing the RV vaccine strainERA G protein by using the reverse genetics. The rCDV-RVG grew to similar levels with rCDV and reached peak titer of10~(6.25)TCID_50/mL at72h post-infection. This titer was approximately one-quarterof a log lower than that of rCDV. To assess the pathogenicity and immunogenicity of recombinant CDV,mice were injected intracerebrally (i.c.) with3×104TCID50in a volume of30μL or intramuscularly (i.m.)with105TCID50in a volume of100μL of the rescued viruses. All of the mice showed no apparent signsof disease after inoculation. There was no significant difference in the body weight changes among thethree i.m. inoculated groups or the three i.c. inoculated groups with rCDV-RVG, rCDV and PBS. Theseresults demonstrated that the insertion and expression of RV G gene did not increase the virulence of theCDV vector in mice. Mice inoculated i.m. with10~5TCID_50of the rCDV-RVG developed a strong RVneutralizing antibody response, which completely protected mice from challenge with a lethal dose ofstreet virus GX/09strain at3weeks post-vaccination. However, all control mice died of rabies afterchallenge. These results indicated that the rCDV-RVG is safe and immunogenic in mice.
     To further assess the immunogenicity of the recombinant virus rCDV-RVG, two groups of five3-month-old Beagle dogs were i.m. inoculated with1mL10~6TCID_50of rCDV or rCDV-RVG,respectively. At3weeks after initial vaccination, the dogs received a second vaccine dose, respectively.Dogs inoculated with the rCDV-RVG developed a strong and long-lasting RV neutralizing antibodyresponse. The mean titer of RV neutralizing antibodies was1.48IU at1week after the first dose androse to32.11IU at3weeks after the first dose. After receiving the second dose, the rCDV-RVGvaccinated dogs showed signally boost responses to RV neutralizing antibody. The mean titer of RVneutralizing antibodies for the group was96.71IU at2weeks after the second dose. RV neutralizingantibodies induced by rCDV-RVG can sustain for more than a year. At70weeks post-vaccination, themean titer of RV neutralizing antibodies was>0.5IU; the minimum NA titer required to protect animalsfrom challenge with RV street virus. These result suggested that two times vaccination of rCDV-RVGprovides effective protection for>1year in dogs. After receiving the third dose at70weekspost-vaccination, the rCDV-RVG vaccinated dogs showed substantial re-boost responses to RVneutralizing antibody. The mean titer of RV neutralizing antibodies for the group sharply increased to281.4IU at1week after the third dose. Meanwhile, rCDV and rCDV-RVG induced a remarkable CDVneutralizing antibody response in dogs at3weeks after the first dose. The titers of CDV neutralizingantibody for the two groups sharply increased after the second dose. After receiving the third dose at70weeks post-vaccination, all the rCDV-vaccinated and rCDV-RVG-vaccinated dogs showed substantialre-boost responses to CDV neutralizing antibodies. And, there was no significant difference in the peaksof CDV neutralizing antibody titers between the two groups.
     These results demonstrate that the rCDV-RVG is safe and immunogenic in dogs and a promising,novel and live bivalent vaccine candidate against CD and rabies.
引文
1.王琪,葛金英,焦利红,等.鸡传染性法氏囊病病毒超强株VP2基因重组新城疫病毒胚胎免疫安全性及效力试验.中国预防兽医学报,2010,32:695-698.
    2.卫生部,公安部,农业部,等.中国狂犬病防治现状.2009. http://www.moh.gov.cn/publicfiles///business/cmsresources/mohjbyfkzj/cmsrsdocument/doc6163.doc.
    3. Adelus-Neveu F., Saint-Gerand A.L., Fayet G., et al. Hundestaupe: lehren aus einer epizootie infrankreich. Prakt Tierarzt1991,10:866-871.
    4. Anderson L.J., Williams L.P. Jr., Layde J.B., et al. Dixon and W. G. Winkler. Nosocomial rabies:investigation of contacts of human rabies cases associated with a corneal transplant. Am J PublicHealth1984,74:370-372.
    5. Appel M.J., Reggiardo C., Summers B. A., et al. Canine distemper virus infection andencephalitis in javelinas (collared peccaries). Arch Virol1991,119:147-152.
    6. Appel M.J., Yates R.A., Foley G.L., et al. Canine distemper epizootic in lions, tigers, andleopards in NorthAmerica. J Vet Diagn Invest1994,6:277-288.
    7. Ayele W., Fekadu M., Zewdie B., et al. Immunogenicity and efficacy of Fermi-type nerve tissuerabies vaccine in mice and in humans undergoing post-exposure prophylaxis for rabies inEthiopia. Ethiop Med J2001,39:313-321.
    8. Baron M.D. and Barrett T.. Rescue of rinderpest virus from cloned cDNA. Journal of virology1997,71:1265-1271.
    9. Bartlett E.J., Amaro-Carambot E., Surman S. R., et al. Human parainfluenza virus type I(HPIV1) vaccine candidates designed by reverse genetics are attenuated and efficacious inAfrican green monkeys. Vaccine2005,23:4631-4646.
    10. Baumgartner W., Alldinger S., Beineke A., et al. Canine distemper virus--an agent looking fornew hosts. Dtsch Tierarztl Wochenschr2003,110:137-142.
    11. Bellinger D.A., Chang J., Bunn T. O., et al. Rabies induced in a cat by high-egg-passage Flurystrain vaccine. J Am Vet MedAssoc1983,183:997-998,965.
    12. Black J.G. and Lawson K.F.. The safety and efficacy of immunizing foxes (Vulpes vulpes) usingbait containing attenuated rabies virus vaccine. Can J Comp Med1980,44:169-176.
    13. Bukreyev A.. Successful topical respiratory tract immunization of primates against Ebola virus.J. Virol.2007,81:6378-6388.
    14. Bukreyev A., Huang Z., Yang L., et al. Recombinant newcastle disease virus expressing aforeign viral antigen is attenuated and highly immunogenic in primates. Journal of virology2005,79:13275-13284.
    15. Bukreyev A., Lamirande E.W., Buchholz U.J., et al. Mucosal immunisation of African greenmonkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARScoronavirus spike protein for the prevention of SARS. The Lancet2004,363:2122-2127.
    16. Bukreyev A., Skiadopoulos M.H., Murphy B.R., et al. Nonsegmented negative-strand viruses asvaccine vectors. Journal of virology2006,80:10293.
    17. Bukreyev A., Skiadopoulos M.H., Murphy B.R., et al. Nonsegmented negative-strand viruses asvaccine vectors. J Virol2006,80:10293-10306.
    18. Bukreyev A., Yang L., Zaki S. R., et al. A single intranasal inoculation with aparamyxovirus-vectored vaccine protects guinea pigs against a lethal-dose Ebola virus challenge.Journal of virology2006,80:2267-2279.
    19. Buonocore L., Blight K.J., Rice C.M., et al. Characterization of vesicular stomatitis virusrecombinants that express and incorporate high levels of hepatitis C virus glycoproteins. J Virol2002,76:6865-6872.
    20. Carpenter J.W., Appel M.J., Erickson R.C., et al. Fatal vaccine-induced canine distemper virusinfection in black-footed ferrets. J AmVet MedAssoc1976,169:961-964.
    21. CDC. Investigation of rabies infections in organ donor and transplant recipients--Alabama,Arkansas, Oklahoma, and Texas,2004. MMWR Morb Mortal Wkly Rep2004,53:586-589.
    22. CDC. Human vaccinia infection after contact with a raccoon rabies vaccine bait-Pennsylvania,
    2009. MMWR Morb Mortal Wkly Rep2009,58:1204-1207.
    23. Celis E., Karr R.W., Dietzschold B., et al. Genetic restriction and fine specificity of human Tcell clones reactive with rabies virus. J Immunol1988,141:2721-2728.
    24. Chen W., Hu S., Qu L., et al. A goat poxvirus-vectored peste-des-petits-ruminants vaccineinduces long-lasting neutralization antibody to high levels in goats and sheep. Vaccine2010,28:4742-4750.
    25. Cirone F., Elia G., Campolo M., et al. Immunogenicity of an inactivated oil-emulsion caninedistemper vaccine inAfrican wild dogs. J Wildl Dis2004.,40:343-346.
    26. Cogliano V.J., Grosse Y., Baan R. A., et al. Meeting report: summary of IARC monographs onformaldehyde,2-butoxyethanol, and1-tert-butoxy-2-propanol. Environmental HealthPerspectives2005,113:1205-1208.
    28. Coleman P.G., Fevre E.M. and Cleaveland S.. Estimating the public health impact of rabies.Emerg Infect Dis2004,10:140-142.
    27. Constantine D.G.. Rabies transmission by nonbite route. Public Health Rep1962,77:287-289.
    29. Curran M.D., O'Loan D., Rima B. K., et al. Nucleotide sequence analysis of phocine distempervirus reveals its distinctness from canine distemper virus. Vet Rec1990,127:430-431.
    30. Deem S.L., Spelman L.H., Yates R.A., et al. Canine distemper in terrestrial carnivores: a review.J Zoo Wildl Med2000,31:441-451.
    31. Dietzschold B., Li J., Faber M., et al. Concepts in the pathogenesis of rabies. Future Virol2008,3:481-490.
    32. Dietzschold B., Wunner W. H., Wiktor T. J., et al. Characterization of an antigenic determinantof the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci USA1983,80:70-74.
    33. Durbin A.P., Skiadopoulos M.H., McAuliffe J.M., et al. Human parainfluenza virus type3(PIV3) expressing the hemagglutinin protein of measles virus provides a potential method forimmunization against measles virus and PIV3in early infancy. Journal of virology2000,74:6821-6831.
    34. Egan M.A., Chong S.Y., Rose N.F., et al. Immunogenicity of attenuated vesicular stomatitisvirus vectors expressing HIV type1Env and SIV Gag proteins: comparison of intranasal andintramuscular vaccination routes. AIDS Res Hum Retroviruses2004,20:989-1004.
    35. Ek-Kommonen C., Sihvonen L., Pekkanen K., et al. Outbreak off canine distemper invaccinated dogs in Finland. Vet Rec1997,141:380-383.
    36. Esh J.B., Cunningham J.G. and Wiktor T. J.. Vaccine-induced rabies in four cats. J Am Vet MedAssoc1982,180:1336-1339.
    37. Faber M., Li J., Kean R.B., et al. Effective preexposure and postexposure prophylaxis of rabieswith a highly attenuated recombinant rabies virus. Proc Natl Acad Sci USA2009,106:11300-11305.
    38. Faber M., Pulmanausahakul R., Hodawadekar S.S., et al. Overexpression of the rabies virusglycoprotein results in enhancement of apoptosis and antiviral immune response. J Virol2002,76:3374-3381.
    39. Faber M., Pulmanausahakul R., Nagao K., et al. Identification of viral genomic elementsresponsible for rabies virus neuroinvasiveness. Proc Natl Acad Sci USA2004,101:16328-16332.
    40. Fehlner-Gardiner C., Nadin-Davis S., Armstrong J., et al. Era vaccine-derived cases of rabies inwildlife and domestic animals in Ontario, Canada,1989-2004. J Wildl Dis2008,44:71-85.
    41. Fellowes O.N., Dimopoullos G.T. and Callis J.J.. Isolation of vesicular stomatitis virus from aninfected laboratory worker. AmJ Vet Res1955,16:623-626.
    42. Foley H.D., McGettigan J.P., Siler C.A., et al. A recombinant rabies virus expressing vesicularstomatitis virus glycoprotein fails to protect against rabies virus infection. Proc Natl Acad SciUSA2000,97:14680-14685.
    43. Frisk A.L., Konig M., Moritz A., et al. Detection of canine distemper virus nucleoprotein RNAby reverse transcription-PCR using serum, whole blood, and cerebrospinal fluid from dogs withdistemper. J Clin Microbiol1999,37:3634-3643.
    44. Fu Z.F. Rabies and rabies research: past, present and future. Vaccine1997,15Suppl:S20-24.
    45. Fu Z.F., Rupprecht C.E., Dietzschold B., et al. Oral vaccination of racoons (Procyon lotor) withbaculovirus-expressed rabies virus glycoprotein. Vaccine1993,11:925-928.
    46. Gao W.T., Soloff A.C., Lu X.H., et al. Protection of mice and poultry from lethal H5N1avianinfluenza virus through adenovirus-based immunization. Journal of virology2006,80:1959-1964.
    47. Gassen U., Collins F.M., Duprex W.P., et al. Establishment of a rescue system for caninedistemper virus. J Virol2000,74:10737-10744.
    48. Ge J., Deng G., Wen Z., et al. Newcastle disease virus-based live attenuated vaccine completelyprotects chickens and mice from lethal challenge of homologous and heterologous H5N1avianinfluenza viruses. J Virol2007,81:150-158.
    49. Ge J., Tian G., Zeng X., et al. Generation and evaluation of a Newcastle disease virus-based H9avian influenza live vaccine. Avian Dis2010,54:294-296.
    50. Ge J., Wang X., Tao L., et al. Newcastle disease virus-vectored rabies vaccine is safe, highlyimmunogenic, and provides long-lasting protection in dogs and cats. J Virol2011,85:8241-8252.
    51. Geisbert T.W., Daddario-DiCaprio K.M., Williams K.J.N., et al. Recombinant vesicularstomatitis virus vector mediates postexposure protection against Sudan Ebola hemorrhagic feverin nonhuman primates. Journal of virology2008,82:5664-5668.
    52. Gemma T., Iwatsuki K., Shin Y.S., et al. Serological analysis of canine distemper virus using animmunocapture ELISA. J Vet Med Sci1996,58:791-794.
    53. Gorham J. The epizootiology of distemper. Journal of the American Veterinary MedicalAssociation1966,149:610-612.
    54. Hanson R.P.. Newcastle disease,7th ed. Iowa: Iowa State University Press,1978.
    55. Hanson R.P., Rasmussen A.F. Jr., Brandly C. A., et al. Human infection with the virus ofvesicular stomatitis. J Lab Clin Med1950,36:754-758.
    56. Hattwick M.A., Hochberg F.H., Landrigan P.J., et al. Skunk-associated human rabies. JAMA1972,222:44-47.
    57. Hellenbrand W., Meyer C., Rasch G., et al. Cases of rabies in Germany following organtransplantation. Euro Surveill2005,10:E050224.6.
    58. Hughes G.J., Paez A., Boshell J., et al. A phylogenetic reconstruction of the epidemiologicalhistory of canine rabies virus variants in Colombia. Infect Genet Evol2004,4:45-51.
    59. Ito N., Sugiyama M., Yamada K., et al. Characterization of M gene-deficient rabies virus withadvantages of effective immunization and safety as a vaccine strain. Microbiol Immunol2005,49:971-979.
    60. Iverson L.E. and Rose J.K.. Localized attenuation and discontinuous synthesis during vesicularstomatitis virus transcription. Cell1981,23:477-484.
    61. Jackson A.C. and Wunner W.H.. Rabies,2nd ed. Boston: Elsevier/Academic Press,2007.
    62. Javier R.S., Kunishita T., Koike F., et al. Semple rabies vaccine: presence of myelin basicprotein and proteolipid protein and its activity in experimental allergic encephalomyelitis. JNeurol Sci1989,93:221-230.
    63. Johnson K.M., Vogel J.E. and Peralta P.H.. Clinical and serological response tolaboratory-acquired human infection by Indiana type vesicular stomatitis virus (VSV). Am JTrop Med Hyg1966,15:244-246.
    64. Johnson R., Glickman L.T., Emerick T.J., et al. Canine distemper infection in pet dogs: I.Surveillance in Indiana during a suspected outbreak. J AmAnim Hosp Assoc1995,31:223-229.
    65. Jones S.M., Feldmann H., Str her U., et al. Live attenuated recombinant vaccine protectsnonhuman primates against Ebola and Marburg viruses. Nature medicine2005,11:786-790.
    66. Kanesa-thasan N., Smucny J.J., Hoke C.H. Jr, et al. Safety and immunogenicity of NYVAC-JEVand ALVAC-JEV attenuated recombinant Japanese encephalitis virus--poxvirus vaccines invaccinia-nonimmune and vaccinia-immune humans. Vaccine2000,19:483-491.
    67. Kapadia S.U., Rose J.K., Lamirande E., et al. Long-term protection from SARS coronavirusinfection conferred by a single immunization with an attenuated VSV-based vaccine. Virology2005,340:174-182.
    68. Kennedy S., Smyth J., Cush P., et al. Histopathologic and immunocytochemical studies ofdistemper in seals. Veterinary Pathology Online1989,26:97.
    69. Kieny M.P., Lathe R., Drillien R., et al. Expression of rabies virus glycoprotein from arecombinant vaccinia virus. Nature1984,312:163-166.
    70. Kinkade A. and Ware C.F.. The DARC conspiracy--virus invasion tactics. Trends Immunol2006,27:362-367.
    71. Knobel D.L., Cleaveland S., Coleman P.G., et al.2005. Re-evaluating the burden of rabies inAfrica andAsia. Bull World Health Organ,83:360-368.
    72. Krebs J.W., Mandel E.J., Swerdlow D.L., et al. Rabies surveillance in the United States during
    2003. J AmVet MedAssoc2004,225:1837-1849.
    73. Krebs J.W., Mondul A.M., Rupprecht C.E., et al. Rabies surveillance in the United States during
    2000. J AmVet MedAssoc2001,219:1687-1699.
    74. Krebs J.W., Wheeling J.T. and Childs J.E.. Rabies surveillance in the United States during2002.J Am Vet MedAssoc2003,223:1736-1748.
    75. Lafay F., Benejean J., Tuffereau C., et al. Vaccination against rabies: construction andcharacterization of SAG2, a double avirulent derivative of SADBern. Vaccine1994,12:317-320.
    76. Lauder I., Martin W., Gordon E., et al. A survey of canine distemper. Vet. Rec1954,66:623-631.
    77. Lippmann O.. Human conjunctivitis due to the Newcastle-disease virus of fowls. Americanjournal of ophthalmology1952,35:1021-1028.
    78. Müller G., Siebert U., Wünschmann A., et al. Immunohistological and serological investigationof morbillivirus infection in harbour porpoises (Phocoena phocoena) from the German Balticand North Sea. Veterinary Microbiology2000,75:17-25.
    79. Müller G., Wünschmann A., Baumg rtner W., et al. Immunohistological and serologicalinvestigations of morbillivirus infection in Black Sea harbour porpoises (Phocoena phocoena).Veterinary Microbiology2002,87:183-190.
    80. Macfarlan R.I., Dietzschold B. and Koprowski H.. Stimulation of cytotoxic T-lymphocyteresponses by rabies virus glycoprotein and identification of an immunodominant domain. MolImmunol1986,23:733-741.
    81. Machida N., Izumisawa N., Nakamura T., et al. Canine distemper virus infection in a maskedpalm civet (Paguma larvata). J Comp Pathol1992,107:439-443.
    82. Machida N., Kiryu K., Oh-ishi K., et al. Pathology and epidemiology of canine distemper inraccoon dogs (Nyctereutes procyonoides). J Comp Pathol1993,108:383-392.
    83. Mahy B., Barrett T., Evans S., et al. Characterization of a seal morbillivirus. Nature1988,336:115.
    84. Martinez-Sobrido L., Gitiban N., Fernandez-Sesma A., et al. Protection against respiratorysyncytial virus by a recombinant Newcastle disease virus vector. Journal of virology2006,80:1130-1139.
    85. Martinez L. Global infectious disease surveillance. Int J Infect Dis2000,4:222-228.
    86. McCoy K., Tatsis N., Korioth-Schmitz B., et al. Effect of preexisting immunity to adenovirushuman serotype5antigens on the immune responses of nonhuman primates to vaccine regimensbased on human-or chimpanzee-derived adenovirus vectors. Journal of virology2007,81:6594-6604.
    87. McCullough B., Krakowka S. and Koestner A.. Experimental canine distemper virus-induceddemyelination. Lab Invest1974,31:216-222.
    88. McCullough B., Krakowka S. and Koestner A.. Experimental canine distemper virus-inducedlymphoid depletion. Am J Pathol1974,74:155-170.
    89. McCullough B., Krakowka S., Koestner A., et al. Demyelinating activity of canine distempervirus isolates in gnotobiotic dogs. J Infect Dis1974,130:343-350.
    90. Mehta S.R., Granger C.B., Boden W.E., et al. Early versus delayed invasive intervention inacute coronary syndromes. The New England journal of medicine2009,360:2165-2175.
    91. Ming P., Du J., Tang Q., et al. Molecular characterization of the complete genome of a streetrabies virus isolated in China. Virus Res2009,143:6-14.
    92. Mori T., Shin Y.S., Okita M., et al. The biological characterization of field isolates of caninedistemper virus from Japan. J Gen Virol1994.,75:2403-2408.
    93. Morimoto K., McGettigan J.P., Foley H.D., et al. Genetic engineering of live rabies vaccines.Vaccine2001,19:3543-3551.
    94. Moritz A., Frisk A. and Baumg tner W.. The evaluation of diagnostic procedures for thedetection of canine distemper virus infection. Eur. J. Comp. Anim. Pract2000,10:37-47.
    95. Nakaya T., Cros J., Park M.S., et al. Recombinant Newcastle disease virus as a vaccine vector.Journal of virology2001,75:11868-11873.
    96. Nelson C.B., Pomeroy B.S., Schrall K., et al. An outbreak of conjunctivitis due to Newcastledisease virus (NDV) occurring in poultry workers. American journal of public health and thenation's health1952,42:672-678.
    97. Nolan S.M., Skiadopoulos M.H., Bradley K., et al. Recombinant human parainfluenza virustype2vaccine candidates containing a3' genomic promoter mutation and L polymerasemutations are attenuated and protective in non-human primates. Vaccine2007,25:6409-6422.
    98. Osinubi M.O., Wu X., Franka R., et al. Enhancing comparative rabies DNA vaccineeffectiveness through glycoprotein gene modifications. Vaccine2009,27:7214-7218.
    99. Parks C.L., Wang H.P., Kovacs G.R., et al. Expression of a foreign gene by recombinant caninedistemper virus recovered from cloned DNAs. Virus Res2002,83:131-147.
    100. Plattet P., Zweifel C., Wiederkehr C., et al. Recovery of a persistent Canine distemper virusexpressing the enhanced green fluorescent protein from cloned cDNA. Virus Res2004,101:147-153.
    101. Pomeroy L.W., Bjornstad O.N. and Holmes E.C.. The evolutionary and epidemiologicaldynamics of the paramyxoviridae. Journal of molecular evolution2008,66:98-106.
    102. Pulmanausahakul R., Faber M., Morimoto K., et al. Overexpression of cytochrome C by arecombinant rabies virus attenuates pathogenicity and enhances antiviral immunity. J Virol2001,75:10800-10807.
    103. Qiao J., Meng Q., Chen C., et al. Characterization of a new dog isolate of canine distemper virusfrom China. Acta virologica2011,55:303-310.
    104. Radecke F., Spielhofer P., Schneider H., et al. Rescue of measles viruses from cloned DNA. TheEMBO journal1995,14:5773.
    105. Reed L. and Muench H.. A simple method of estimating fifty percent endpoints. Am. J. Hyg1938,27:493-497.
    106. Reuter J.D., Vivas-Gonzalez B.E., Gomez D., et al. Intranasal vaccination with a recombinantvesicular stomatitis virus expressing cottontail rabbit papillomavirus L1protein providescomplete protection against papillomavirus-induced disease. J Virol2002,76:8900-8909.
    107. Roberts A., Kretzschmar E., Perkins A.S., et al. Vaccination with a recombinant vesicularstomatitis virus expressing an influenza virus hemagglutinin provides complete protection frominfluenza virus challenge. J Virol1998,72:4704-4711.
    108. Roberts A., Reuter J.D., Wilson J.H., et al. Complete protection from papillomavirus challengeafter a single vaccination with a vesicular stomatitis virus vector expressing high levels of L1protein. J Virol2004,78:3196-3199.
    109. Roelke-Parker M.E., Munson L., Packer C., et al. A canine distemper virus epidemic inSerengeti lions (Panthera leo). Nature1996,379:441-445.
    110. Rose N.F., Marx P. A., Luckay A., et al. An effective AIDS vaccine based on live attenuatedvesicular stomatitis virus recombinants. Cell2001,106:539-549.
    111. Rose N.F., Roberts A., Buonocore L., et al. Glycoprotein exchange vectors based on vesicularstomatitis virus allow effective boosting and generation of neutralizing antibodies to a primaryisolate of human immunodeficiency virus type1. J Virol2000,74:10903-10910.
    112. Schmidt A.C., McAuliffe J.M., Murphy B.R., et al. Recombinant bovine/human parainfluenzavirus type3(B/HPIV3) expressing the respiratory syncytial virus (RSV) G and F proteins canbe used to achieve simultaneous mucosal immunization against RSV and HPIV3. Journal ofvirology2001,75:4594-4603.
    113. Schmidt A.C., Wenzke D.R., McAuliffe J.M., et al. Mucosal immunization of rhesus monkeysagainst respiratory syncytial virus subgroups A and B and human parainfluenza virus type3byusing a live cDNA-derived vaccine based on a host range-attenuated bovine parainfluenza virustype3vector backbone. Journal of virology2002,76:1089-1099.
    114. Schnell M.J., Mebatsion T. and Conzelmann K.K.. Infectious rabies viruses from cloned cDNA.EMBO J1994,13:4195-4203.
    115. Schumacher C.L., Coulon P., Lafay F., et al. SAG-2oral rabies vaccine. Onderstepoort J Vet Res1993,60:459-462.
    116. Seif I., Coulon P., Rollin P.E., et al. Rabies virulence: effect on pathogenicity and sequencecharacterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J Virol1985,53:926-934.
    117. Sharpe S., Polyanskaya N., Dennis M., et al. Induction of simian immunodeficiency virus(SIV)-specific CTL in rhesus macaques by vaccination with modified vaccinia virus Ankaraexpressing SIV transgenes: influence of pre-existing anti-vector immunity. The Journal ofgeneral virology2001,82:2215-2223.
    118. Shoji Y., Inoue S., Nakamichi K., et al. Generation and characterization of P gene-deficientrabies virus. Virology2004,318:295-305.
    119. Silin D., Lyubomska O., Ludlow M., et al. Development of a challenge-protective vaccineconcept by modification of the viral RNA-dependent RNA polymerase of canine distempervirus. J Virol2007,81:13649-13658.
    120. Skiadopoulos M.H., Surman S., Tatem J.M., et al. Identification of mutations contributing to thetemperature-sensitive, cold-adapted, and attenuation phenotypes of the live-attenuatedcold-passage45(cp45) human parainfluenza virus3candidate vaccine. Journal of virology1999,73:1374-1381.
    121. Skiadopoulos M.H., Surman S.R., Durbin A.P., et al. Long nucleotide insertions between theHN and L protein coding regions of human parainfluenza virus type3yield viruses withtemperature-sensitive and attenuation phenotypes. Virology2000,272:225-234.
    122. Skiadopoulos M.H., Surman S.R., Riggs J.M., et al. A chimeric human-bovine parainfluenzavirus type3expressing measles virus hemagglutinin is attenuated for replication but is stillimmunogenic in rhesus monkeys. Journal of virology2001,75:10498-10504.
    123. Skiadopoulos M.H., Surman S.R., Riggs J.M., et al. Evaluation of the replication andimmunogenicity of recombinant human parainfluenza virus type3vectors expressing up tothree foreign glycoproteins. Virology2002,297:136-152.
    124. Smith G.L., Mackett M. and Moss B.. Infectious vaccinia virus recombinants that expresshepatitis B virus surface antigen. Nature1983,302:490.
    125. Smith J.S., Yager P.A. and Baer G.M.. A rapid reproducible test for determining rabiesneutralizing antibody. Bulletin of the World Health Organization1973,48:535-541.
    126. Spann K.M., Collins P.L. and Teng M.N.. Genetic recombination during coinfection of twomutants of human respiratory syncytial virus. Journal of virology2003,77:11201-11211.
    127. Srinivasan A., Burton E.C., Kuehnert M.J., et al. Transmission of rabies virus from an organdonor to four transplant recipients. N Engl J Med2005,352:1103-1111.
    128. Summers B.A., Greisen H.A. and Appel M.J.. Canine distemper encephalomyelitis: variationwith virus strain. J Comp Pathol1984,94:65-75.
    129. Tang R.S., Mahmood K., MacPhail M., et al. A host-range restricted parainfluenza virus type3(PIV3) expressing the human metapneumovirus (hMPV) fusion protein elicits protectiveimmunity inAfrican green monkeys. Vaccine2005,23:1657-1667.
    130. Tang R.S., Schickli J.H., MacPhail M., et al. Effects of human metapneumovirus and respiratorysyncytial virus antigen insertion in two3' proximal genome positions of bovine/humanparainfluenza virus type3on virus replication and immunogenicity. Journal of virology2003,77:10819-10828.
    131. Tang X., Luo M., Zhang S., et al. Pivotal role of dogs in rabies transmission, China. EmergInfect Dis2005,11:1970-1972.
    132. Tao L., Ge J., Wang X., et al. Molecular basis of neurovirulence of flury rabies virus vaccinestrains: importance of the polymerase and the glycoprotein R333Q mutation. J Virol2010,84:8926-8936.
    133. Tims T., Briggs D.J., Davis R.D., et al. Adult dogs receiving a rabies booster dose with arecombinant adenovirus expressing rabies virus glycoprotein develop high titers of neutralizingantibodies. Vaccine.2000,18:2804-2807.
    134. Tokusumi T., Iida A., Hirata T., et al. Recombinant Sendai viruses expressing different levels ofa foreign reporter gene. Virus Research2002,86:33-38.
    135. Tokusumi T., Iida A., Hirata T., et al. Recombinant Sendai viruses expressing different levels ofa foreign reporter gene. Virus Research2002,86:33-38.
    136. Tordo N., Poch O., Ermine A., et al. Walking along the rabies genome: is the large G-Lintergenic region a remnant gene? Proc NatlAcad Sci USA1986,83:3914-3918.
    137. Toro G., Vergara I. and Roman G.. Neuroparalytic accidents of antirabies vaccination withsuckling mouse brain vaccine. Clinical and pathologic study of21cases. Arch Neurol1977,34:694-700.
    138. Tuffereau C., Leblois H., Benejean J., et al. Arginine or lysine in position333of ERA and CVSglycoprotein is necessary for rabies virulence in adult mice. Virology1989,172:206-212.
    139. Van Moll P., Alldinger S., Baumg rtner W., et al. Distemper in wild carnivores: anepidemiological, histological and immunocytochemical study. Veterinary Microbiology1995,44:193-199.
    140. Wang F., Yan X., Chai X., et al. Differentiation of canine distemper virus isolates in fur animalsfrom various vaccine strains by reverse transcription-polymerase chain reaction-restrictionfragment length polymorphism according to phylogenetic relations in china. Virol J2011,8:85.
    141. Weingartl H.M., Berhane Y., Caswell J.L., et al. Recombinant nipah virus vaccines protect pigsagainst challenge. Journal of virology2006,80:7929-7938.
    142. Wertz G.W., Moudy R. and Ball L.A.. Adding genes to the RNA genome of vesicular stomatitisvirus: positional effects on stability of expression. J Virol2002,76:7642-7650.
    143. Wertz G.W., Perepelitsa V.P. and Ball L.A.. Gene rearrangement attenuates expression andlethality of a nonsegmented negative strand RNA virus. Proceedings of the National Academyof Sciences of the United States ofAmerica1998,95:3501-3506.
    144. Whetstone C.A., Bunn T.O., Emmons R.W., et al. Use of monoclonal antibodies to confirmvaccine-induced rabies in ten dogs, two cats, and one fox. J Am Vet Med Assoc1984,185:285-288.
    145. Wilde H., Khawplod P., Khamoltham T., et al. Rabies control in South and Southeast Asia.Vaccine2005,23:2284-2289.
    146. Winkler W.G. and Baer G.M.. Rabies immunization of red foxes (Vulpes fulva) with vaccine insausage baits. Am J Epidemiol1976,103:408-415.
    147. Wohlsein P., Müller G., Haas L., et al. Antigenic characterization of phocine distemper viruscausing mass mortality in2002and its relationship to other morbilliviruses. Archives ofvirology2007,152:1559-1564.
    148. World Health Organization. WHO Expert Consultation on Rabies: first report. World HealthOrganization, Geneva.2005.
    149. Yang Z., Wyatt L.S., Kong W., et al. Overcoming immunity to a viral vaccine by DNA primingbefore vector boosting. Journal of virology2003,77:799-803.
    150. Yi L., Cheng S., Xu H., et al. Development of a combined canine distemper virus specificRT-PCR protocol for the differentiation of infected and vaccinated animals (DIVA) and geneticcharacterization of the hemagglutinin gene of seven Chinese strains demonstrated in dogs.Journal of virological methods2012,179:281-287.
    151. Yoshikawa Y., Ochikubo F., Matsubara Y., et al. Natural infection with canine distemper virus ina Japanese monkey (Macaca fuscata). Vet Microbiol1989,20:193-205.
    152. Zhao H. and Peeters B.P.H.. Recombinant Newcastle disease virus as a viral vector: effect ofgenomic location of foreign gene on gene expression and virus replication. Journal of generalvirology2003,84:781-788.
    153. Zhao J.J., Yan X.J., Chai X.L., et al. Phylogenetic analysis of the haemagglutinin gene of caninedistemper virus strains detected from breeding foxes, raccoon dogs and minks in China.Veterinary Microbiology2010,140:34-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700