小反刍兽疫病毒西藏株N基因人工合成、表达及检测方法建立的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小反刍兽疫(peste des petits ruminants, PPR)是由小反刍兽疫病毒引起的一种山羊、绵羊等小反刍兽类的急性接触传染性疾病,特别是山羊易感,具有很高的感染率与致死率。临床上以高热、坏死性胃炎和肺炎为特征。该病首次报道是在西非的科特迪瓦,随后,阿拉伯半岛、以色列、伊拉克、约旦、尼日利亚、塞尔维亚和加纳等国家都报道发生过此病。目前世界各国对此病都予以高度重视,美国、韩国、印度等国家都在积极进行相关方面的研究工作。2007年7月,我国西藏阿里地区的日土、革吉、札达等县暴发了小反刍兽疫疫情,造成当地羊只的大量死亡。对当地的养羊业造成了巨大的经济损失,此病的流行也对我国西藏周边地区的养羊业构成了严重的威胁。我国对该病的研究工作较少,为此,中央政府高度重视,责令相关政府部门和机构对该病进行严格监控并加强相关技术和理论的研究。
     目前,该病尚无有效的治疗方法,主要是靠疫苗免疫以及血清学监控来预防此病的蔓延。然而该病属于高致病性传染病,一般实验室无法进行病原操作。并且首次传入我国,缺乏此方面的研究基础。本研究基于建立完善的血清学检测方法,应用化学合成的N蛋白,制备N蛋白单表位抗体,建立两种不同方式的ELISA检测方法。对方法进行了优化,提高其稳定性、重复性和敏感度,样品检测结果表明:方法的实用性强,结果确实可靠,科学有效,能够应用于临床实践中。主要研究内容包括:
     1西藏株小反刍兽疫N蛋白的化学合成
     首先应用DNAstar和RNA structure等软件对GenBank所发表的西藏株小反刍兽疫N蛋白序列进行了编辑修改,避免了复杂的二级结构,改造了酶切位点,优化了稀有密码子,全基因的核苷酸序列和原序列同源性仅71.9%,氨基酸序列同源性100%,以便于基因序列能够在大肠杆菌中原核表达。然后参考了目前国际较为先进的基因化学合成的方法,设计并合成了20对引物,引物长度大部分在60bp,相邻引物方向相反,并且序列重复21bp。分别以5对引物为材料,在无模板的状态下,通过PCR反应化学合成4段长度在404~414bp的双链DNA片段。然后以上述4段DNA片段为模板,以最外侧引物为引物,通过overlap-PCR法化学合成了可以表达西藏株小反刍兽疫N蛋白的基因。测序比对后,针对在合成过程中出现的定点突变进行了人工回复突变。最后成功克隆入载体simple pMD-19T。再次测序结果表明所合成的基因序列正确,长度1578bp,和预期相符。
     2N蛋白基因的克隆、表达、产物纯化纯化及免疫性质鉴定
     同源重组法是目前较为流行且便捷的克隆方式;特别适合长片段核苷酸的克隆。本研究运用此方法进行分子克隆,首先设计在原基因片段加入15bp和载体两端重合序列的引物,通过PCR获得克隆所需的外源基因(原N基因两端各加入15bp线性化载体两端的序列),然后把载体酶切线性化,利用同源重组酶的作用,一次性把长达约1600bp的核苷酸片段成功克隆入长达5900bp的表达载体pET-32a。测序后正确的克隆转化入大肠杆菌株Bl21-DE3-plysS。用IPTG进行诱导,尝试了其不同浓度、诱导时间、诱导温度等条件下的表达产量,并且尽量增加可溶性蛋白的表达量。所表达的总蛋白使用N蛋白单克隆抗体进行western-blot检测。最适诱导条件下的表达产物的上清通过离子亲和层析法纯化,优化洗脱液的咪唑含量。研究结果表明:化学合成的长达1600bp的N基因通过同源重组法可以简单而且低背景的克隆入5900bp的表达载体pET-32a;可以通过原核系统正确表达N蛋白;所表达蛋白用HIS标签可以纯化,纯化产物纯度高于95%;表达的蛋白可与此蛋白的单克隆抗体可以较好的结合。
     3小反刍兽疫间接ELISA方法的建立及与商品化试剂盒检测对比
     为建立特异性强、灵敏度高的PPR间接ELISA方法,本文研究了间接ELISA的抗原包被浓度、血清稀释浓度、封闭液、封闭时间、血清稀释液、血清作用时间、二抗和底物作用时间等参数。在不同的条件下,选择阳性血清OD值:阴性血清OD值比值最大的条件为最适检测条件。降低了阴性背景值,提高了阳性值。在最佳化条件的基础上选择了198份阴性血清的平均P/N值加二倍标准差作为·cut off值。试剂盒批内和批间的变异系数均小于10%,验证了此ELISA方法的稳定性。对比商品化竞争ELISA试剂盒,敏感性和特异性分别为96.7%和96.1%,丰富了国内PPRV血清学的检测。
     4单表位多肽抗血清的制备及免疫性质鉴定
     化学方法合成了小反刍兽疫N蛋白中4个重要的抗原表位的多肽,以这4段多肽作为抗原分别用PPRV阳性血清和RPV阳性血清进行ELISA检测,结果表明19个氨基酸的多肽RPGRPRGETPGQLLLEIMP可以较好的区分两种血清。然后用此多肽作为抗原免疫了5只家免,制备了抗血清,血清抗体滴度在90d后较高(1:64000滴度)。最后通过ELISA方法继续验证抗体的滴度,分别包被了原核表达的N蛋白和多肽,进行了间接ELISA的测定,结果表明90天后抗体滴度最高,所制备的抗体更适合与原核表达产物N蛋白结合,为建立竞争ELISA检测方法奠定了基础。
     5小反刍兽疫抗血清检测的竞争ELISA方法的建立
     利用化学合成的多肽免疫兔得到兔单表位抗血清,以N蛋白作为捕获抗原,用兔的高免血清和待检血清竞争,建立竞争ELISA方法以便用于国内小反刍兽疫的血清学监测。研究表明最佳化的检测条件为:包被抗原浓度为320ng/g1,100μl/孔为最适抗原包被浓度;倍比稀释待检阴阳性血清和竞争兔高免血清,测得PI差距最大为50.8,抗原抗体的结合及竞争时间为1小时。选取489份已知PPRV抗体阴性的血清(山羊198份,绵羊291份)用来测定合适的阴阳性阈值。所有样品的平均值为18.07,标准差为8.39,阈值则为35.特异性和敏感性分别为96.18%和91.29%。20份血清的批内重复率从1.9%-5.8%,批间为1.4%-5.0%。所建立的方法具有很好的特异性和敏感性,重复效果好。丰富了国内PPRV血清学检测的研究。相对上述所建立的间接ELISA,具有操作性强、准确性高、适用广泛等特点。
     6竞争ELISA检测小反刍兽疫抗体水平
     自2007年7月小反刍兽疫在我国西藏地区暴发以来,西藏地区羊只进行了大量的免疫。本研究主要从两个方面对西藏地区和上海市崇明岛的羊只血清样品进行分析,首先用所研制的竞争ELISA试剂盒对西藏部分县和上海市崇明岛的血清样本进行了检测,计算阳性率,显示各地免疫效果。其次对所检测的血清PI值进行统计,显示PPRV抗体水平。为西藏地区免疫计划提供材料。
Peste des petits ruminants (PPR) is a acute infectious disease of small ruminants with a high infection and death rate caused by the PPR virus. It is characterized by high fever, necrotizing gastritis and pneumonia on clinical. The disease was first reported in West Africa, then, the Arabian Peninsula, Israel, Iraq, Jordan, Nigeria, Serbia and Ghana and other countries have reported the disease occurred. At present all countries around the world attach great importance to this disease, and the USA, South Korea, India and other countries are actively carrying on the related research work.
     In July,2007, PPR broke out at Ali soil, leather Kyrgyzstan, Zanda and other counties, causing a large number of the local sheep and goat death. Because the disease is new, there is little research on its diagnosis and detection method of infection. This study is to establish ELISA method by chemical synthesis of N protein. The main research includes:
     1The chemical synthesis of the Tibetan PPRV-N protein
     Firstly, for the purpose of expressing in E.coli, simplifying the complex secondary structure, transforming the restriction enzyme cutting site, and optimizing the rare codons, an overall reconstruction of the Tibetan PPRV-N protein sequence published on GenBank took place by the software such as DNAstar and RNA structure. The homology between the renovated nucleotide sequences and the original sequences is71.9%, and the homology of the both amino acid sequences is100%. Then20pairs of primers were designed and synthesized on the current international advanced chemical synthesis method of gene. Most of the primers were60bp long, and the adjacency opposite primers had21bp repeat sequences. DNA sequences of404bp to414bp were synthesized by polymerase chain reaction (PCR) with5pairs of primers in the non-template condition. Then with the four DNA fragments above as templates, the lateral primers for amplification primers, the gene that expressed the Tibetan PPRV-N protein was synthesized by overlap-PCR method. After comparison, site-directed mutation that appeared in the synthetic process was made a specific modification. Finally the N gene was successfully cloned into the vector simple pMD-19T. The second results showed that the synthetic sequencing of genetic sequences was correct,1578bp length, as expected.
     2Cloning, expression, purification and identification of the antigenicity of N gene
     Homologous recombination is the most popular and convenient way of cloning, especially for the cloning of long-nucleotide fragment. So in our study this method was used to conduct the molecular cloning. First, the vector primers (15bp) at both ends of coincidence were added into the original gene sequence, and the exogenous genes required for cloning were obtained (Both ends of the original N gene were added into a15bp linearized vector sequence). Close behind acquiring the need genes, linearizing vector occurred, in the role of the homologous recombination enzyme, accompanied with the ribonucleotide sequence (about1600bp) coloned into pET-32a expression vector(5900bp). After sequencing, the correct clone was transformed into E. coli strains B121-DE3-plysS. E. coli bacteria were induced with IPTG to get the expression yields under the conditions of concentration, induction time, induction temperature and the others, and maximized the amount of soluble protein. Total expressed protein bonded to its N monoclonal antibody was detected by western-blot. Under the optimal induction conditions, the supernatant of the expressed product was purified by ion affinity chromatography, which optimized the imidazole content of eluent buffer. The result showed that:the N gene (1600bp) synthesized, was cloned into pET-32a expression vector (5900bp); the N protein could be correctly expressed by prokaryotic; expressed protein could be purified by HIS label, and the purity of purified product can be higher than95%; the expressed protein and its monoclonal antibody could be combined well.
     3Establishment of indirect ELISA, and compared with the commercial kit
     This study was aimed to measure and ascertain the reaction in PPR indirect ELISA: concentration of coating antibody, dilution of serum, blocking solution, action time of serum, second antibody and substrate. Under different conditions, we chose the max ratio of positive serum OD and negative serum OD as the optimum test conditions to decrease the negative value and increase the positive value. In the optimal conditions we selected the average value of P/N among198negative serum plus two times of the standard deviation as the cut off value. Kit inter and intra coefficients of variation was less than10%, verifying the stability of this ELISA method. Compared with commercial competitive ELISA kit, sensitivity and specificity were96.7%and96.1%, which enrich the serological testing of domestic PPRV.
     4Prepration of single epitope peptide antiserum and immune characterization testing
     The four major epitope peptides of PPR N protein were chemical synthesized, and the4peptides were used as antigen to be ELISA tested by PPRV-positive serum and RPV-positive serum. The results showed that the19amino acid peptide (RPGRPRGETPGQLLLEIMP) could discriminate the two kinds of serum (PPR and RP) wells. This peptide was used as antigen to immunize5rabbits to produce antibodies. The antibody level significantly raised after90days (titer1:64000). Finally, the antibody titer was verified on ELISA method, and the coated original nuclear proteins and peptides were determined on indirect ELISA. The results indicated that the antibody titers reached its maxlmum after90days, and the prepared antibody was suitable to bind with N protein through prokaryotic expression. This study established the foundation of the competitive ELISA.
     5Establishment of competitive ELISA method and comparison with commercial kits
     The Nucleocapsid (N) protein of Peste des petits ruminants virus (PPRV) was successfully expressed by prokaryotic as the capture antigen. One epitope (RSGKPRGETPGQLLPEIMQ) of the N protein was chosen and chemically synthesized to immunize rabbits, which showed much higher binding capacity with PPR antibodies than the rinderpest virus (RPV) antibody. The immunized serum was against the single epitope and the tested serum was competitive first antibody. We developed the competitive ELISA(C-ELISA) method to monitor the PPRV antigen in our country. The results of study showed that the optimal antigen concentration is32ng/well, the tested-serum dilution is1:5and the single epitope antibody dilution is1:1000. The cut off value was35, which was derived from mean of negative sera plus diploid standard deviation. Compared with the commercial competitive ELISA test, the sensitivity and specificity of this C-ELISA were96.18%and91.29%respectively by testing1039serum samples.
     6Detection of PPR sera
     Since PPR outbreak in Tibet in China in July2007, a large number of goats were immunized in Tibet. Three main aspects of Tibetan serum samples were analyzed:Firstly, the competitive ELISA kits were used to test serum samples in some counties of Tibet and the positive rate was calculated, showing the immune effect. Secondly, the calculation of PI value showed PPRV antibody level. The result served for immunization programs in Tibet.
引文
[1]al-Naeem A, Abu Elzein EM, al-Afaleq AI. Epizootiological aspects of peste des petits ruminants and rinderpest in sheep and goats in Saudi Arabia[J]. Rev Sci Tech,2000,19(3):855-858.
    [2]王志亮,包静月,吴晓东等.我国首例小反刍兽疫诊断报告[J].中国动物检疫,2007,8(24):24-26.
    [3]Lefevre PC, Diallo A. Peste des petits ruminants[J]. Revue scientifique et technique (International Office of Epizootics),1990,9(4):935.
    [4]Lefevre PC, Diallo A. Peste des petits ruminants[J]. Rev Sci Tech,1990,9(4):935-981.
    [5]Couacy-Hymann E, Bidjeh K, Angba A, et al. Protection of goats against rinderpest by vaccination with attenuated peste des petits ruminants virus[J]. Res Vet Sci,1995,59(2):106-109.
    [6]Diop M, Sarr J, Libeau G. Evaluation of novel diagnostic tools for peste des petits ruminants virus in naturally infected goat herds[J]. Epidemiol Infect,2005,133(4):711-717.
    [7]Couacy-Hymann E, Bodjo C, Danho T, et al. Evaluation of the virulence of some strains of peste-des-petits-ruminants virus (PPRV) in experimentally infected West African dwarf goats [J]. Vet J,2007,173(1):178-183.
    [8]Fujii Y, Sakaguchi T, Kiyotani K, et al. Involvement of the leader sequence in Sendai virus pathogenesis revealed by recovery of a pathogenic field isolate from cDNA[J]. J Virol,2002,76(17): 8540-8547.
    [9]Kul O, Kabakci N, Atmaca HT, et al. Natural peste des petits ruminants virus infection:novel pathologic findings resembling other morbillivirus infections[J]. Vet Pathol,2007,44(4):479-486.
    [10]Brown CC, Mariner JC, Olander HJ. An immunohistochemical study of the pneumonia caused by peste des petits ruminants virus [J]. Vet Pathol,1991,28(2):166-170.
    [11]Toplu N. Characteristic and non-characteristic pathological findings in peste des petits ruminants (PPR) of sheep in the Ege district of Turkey[J]. J Comp Pathol,2004,131(2-3):135-141.
    [12]Gulyaz V, Ozkul A. Pathogenicity of a local peste des petits ruminants virus isolate in sheep in Turkey[J]. Trop Anim Health Prod,2005,37(7):541-547.
    [13]Kumar P, Tripathi BN, Sharma AK, et al. Pathological and immunohistochemical study of experimental peste des petits ruminants virus infection in goats[J]. J Vet Med B Infect Dis Vet Public Health,2004,51(4):153-159.
    [14]Yener Z, Salam YS, Temur A, et al. Immunohistochemical detection of peste des petits ruminants viral antigens in tissues from cases of naturally occurring pneumonia in goats[J]. Small Ruminant Research,2004,51(3):273-277.
    [15]Khan HA, Siddique M, Sajjad ur R, et al. The detection of antibody against peste des petits ruminants virus in sheep, goats, cattle and buffaloes[J]. Trop Anim Health Prod,2008,40(7): 521-527.
    [16]Rowland AC, Scott GR, Ramachandran S, et al. A comparative study of peste des petits ruminants and Kata in West African Dwarf goats[J]. Trop Anim Health Prod,1971,3(4):241-247.
    [17]Al-Majali AM, Hussain NO, Amarin NM, et al. Seroprevalence of, and risk factors for, peste des petits ruminants in sheep and goats in Northern Jordan[J]. Prev Vet Med,2008,85(1-2):1-8.
    [18]Galbraith SE, McQuaid S, Hamill L, et al. Rinderpest and peste des petits ruminants viruses exhibit neurovirulence in mice[J]. J Neurovirol,2002,8(1):45-52.
    [19]Ozkul A, Akca Y, Alkan F, et al. Prevalence, distribution, and host range of Peste des petits ruminants virus, Turkey[J]. Emerg Infect Dis,2002,8(7):708-712.
    [20]Shaila MS, Shamaki D, Forsyth MA, et al. Geographic distribution and epidemiology of peste des petits ruminants viruses[J]. Virus research,1996,43(2):149-153.
    [21]Das SC, Baron MD, Barrett T. Recovery and characterization of a chimeric rinderpest virus with the glycoproteins of peste-des-petits-ruminants virus:homologous F and H proteins are required for virus viability[J]. J Virol,2000,74(19):9039-9047.
    [22]Diallo A, Minet C, Le Goff C, et al. The threat of peste des petits ruminants:progress in vaccine development for disease control[J]. Vaccine,2007,25(30):5591-5597.
    [23]Yoneda M, Shiotani M, Miura R. Development of reverse genetics of morbilliviruses and application to pathological analysis[J]. In.
    [24]Bourdin P, Laurent-Vautier A. Note Sur la structure du virus de la peste des petits ruminants[J]. Rev Elev Med Vet Pays Trop,1967,20:383-386.
    [25]Bailey D, Banyard A, Dash P, et al. Full genome sequence of peste des petits ruminants virus, a member of the Morbillivirus genus[J]. Virus Res,2005,110(1-2):119-124.
    [26]Rassa JC, Wilson GM, Brewer GA, et al. Spacing constraints on reinitiation of paramyxovirus transcription:the gene end U tract acts as a spacer to separate gene end from gene start sites[J]. Virology,2000,274(2):438-449.
    [27]Muthuchelvan D, Sanyal A, Sarkar J, et al. Comparative nucleotide sequence analysis of the phosphoprotein gene of peste des petits ruminants vaccine virus of Indian origin[J]. Res Vet Sci, 2006,81(1):158-164.
    [28]信爱国,杨仁标,向文彬.小反刍兽疫研究进展[J].中国预防兽医学报,2003,25(2):152-154
    [29]Haffar A, Libeau G, Moussa A, et al. The matrix protein gene sequence analysis reveals close relationship between peste des petits ruminants virus (PPRV) and dolphin morbillivirus[J]. Virus Res,1999,64(1):69-75.
    [30]Dhar P, Muthuchelvan D, Sanyal A, et al. Sequence analysis of the haemagglutinin and fusion protein genes of peste-des-petits ruminants vaccine virus of Indian origin[J]. Virus Genes,2006, 32(1):71-78.
    [31]Muthuchelvan D, Sanyal A, Singh RP, et al. Comparative sequence analysis of the large polymerase protein (L) gene of peste-des-petits ruminants (PPR) vaccine virus of Indian origin[J]. Arch Virol, 2005,150(12):2467-2481.
    [32]Bodjo SC, Lelenta M, Couacy-Hymann E, et al. Mapping the Peste des Petits Ruminants virus nucleoprotein:identification of two domains involved in protein self-association[J]. Virus Res,2008, 131(1):23-32.
    [33]Libeau G, Lefevre PC. Comparison of rinderpest and peste des petits ruminants viruses using anti-nucleoprotein monoclonal antibodies[J]. Vet Microbiol,1990,25(1):1-16.
    [34]Barrett T, Underwood B. Comparison of messenger RNAs induced in cells infected with each member of the morbillivirus group[J]. Virology,1985,145(1):195-199.
    [35]Rahaman A, Srinivasan N, Shamala N, et al. The fusion core complex of the peste des petits ruminants virus is a six-helix bundle assembly[J]. Biochemistry,2003,42(4):922-931.
    [36]Mahapatra M, Parida S, Egziabher BG, et al. Sequence analysis of the phosphoprotein gene of peste des petits ruminants (PPR) virus:editing of the gene transcript[J]. Virus Res,2003,96(1-2):85-98.
    [37]Mahapatra M, Parida S, Baron MD, et al. Matrix protein and glycoproteins F and H of Peste-des-petits-ruminants virus function better as a homologous complex[J]. J Gen Virol,2006, 87(Pt 7):2021-2029.
    [38]Lamb RA, Kolakofsky D, Paramyxoviridae. the viruses and their replication[J]. Fields virology, 2001,1:1305-1340.
    [39]殷震,刘景华.动物病毒学[M].第2版.北京:科学出版社,1997.
    [40]王明俊.兽医生物制品学[M].北京:中国农业出版社,1997.
    [41]Seth S, Shaila MS. The hemagglutinin-neuraminidase protein of peste des petits ruminants virus is biologically active when transiently expressed in mammalian cells[J]. Virus Res,2001,75(2): 169-177.
    [42]Bourdin P, Rioche M, Laurent A. Use of a tissue culture vaccine in the prevention of small ruminant plague in Dahomey[J]. Rev Elev Med Vet Pays Trop,1970,23(3):295-300.
    [43]Gibbs EP, Taylor WP, Lawman MJ. The isolation of adenoviruses from goats affected with peste des petits ruminants in Nigeria[J]. Res Vet Sci,1977,23(3):331-335.
    [44]Scott GR. Rinderpest and peste des petits ruminants[J]. Virus diseases of food animals,1981,2: 401-432.
    [45]Shaila MS, Purushothaman V, Bhavasar D, et al. Peste des petits ruminants of sheep in India[J]. Vet Rec,1989,125(24):602.
    [1]Abraham G, Berhan A. The use of antigen-capture enzyme-linked immunosorbent assay (ELISA) for the diagnosis of rinderpest and peste des petits ruminants in ethiopia[J]. Trop Anim Health Prod, 2001,33(5):423-430.
    [2]Ayad SA, Mouaz MA, Kamel NA, et al. The production and evaluation of a standard reference peste des petits ruminants (PPR)-diagnostic antigen using a sonication technique[J]. Egypt J Immunol,2004,11(2):179-182.
    [3]Nahed AK, Hanan SA, Hanan MS, et al. The production and evaluation of a standard diagnostic peste des petits ruminants (PPR) hyperimmune serum prepared from the Egyptian antigen (Egypt 87) [J]. Egypt J Immunol,2004,11(1):9-14.
    [4]Gibbs EP, Taylor WP, Lawman MJ. The isolation of adenoviruses from goats affected with peste des petits ruminants in Nigeria[J]. Res Vet Sci,1977,23(3):331-335.
    [5]Abdollahpour G, Raoofi A, Najafi J, et al. Clinical and Para-clinical Findings of a Recent Outbreaks of Peste des Petits Ruminants in Iran[J]. J Vet Med B Infect Dis Vet Public Health,2006,53 Suppl 1:14-16.
    [6]Taylor WP, Abegunde A. The isolation of peste des petits ruminants virus from Nigerian sheep and goats[J]. Res Vet Sci,1979,26(1):94-96.
    [7]Nanda YP, Chatterjee A, Purohit AK, et al. The isolation of peste des petits ruminants virus from Northern India[J]. Veterinary microbiology,1996,51(3-4):207-216.
    [8]Govindarajan R, Koteeswaran A, Venugopalan AT, et al. Isolation of pestes des petits ruminants virus from an outbreak in Indian buffalo (Bubalus bubalis)[J]. Vet Rec,1997,141(22):573-574.
    [9]Majiyagbe KA, Nawathe DR, Abegunde A. Rapid diagnosis of peste des petits ruminants (PPR) infection, application of immunoelectroosmophoresis (IEOP) technique[J]. Rev Elev Med Vet Pays Trop,1984,37(1):11-15.
    [10]Sumption KJ, Aradom G, Libeau G, et al. Detection of peste des petits ruminants virus antigen in conjunctival smears of goats by indirect immunofluorescence[J]. Vet Rec,1998,142(16):421-424.
    [11]Singh RP, Sreenivasa BP, Dhar P, et al. A sandwich-ELISA for the diagnosis of Peste des petits ruminants (PPR) infection in small ruminants using anti-nucleocapsid protein monoclonal antibody[J]. Arch Virol,2004,149(11):2155-2170.
    [12]Libeau G, Diallo A, Colas F, et al. Rapid differential diagnosis of rinderpest and peste des petits ruminants using an immunocapture ELISA[J]. Vet Rec,1994,134(12):300-304.
    [13]Couacy-Hymann E, Bodjo C, Danho T, et al. Surveillance of wildlife as a tool for monitoring rinderpest and peste des petits ruminants in West Africa[J]. Rev Sci Tech,2005,24(3):869-877.
    [14]Diop M, Sarr J, Libeau G. Evaluation of novel diagnostic tools for peste des petits ruminants virus in naturally infected goat herds[J]. Epidemiol Infect,2005,133(4):711-717.
    [15]Saliki JT, House JA, Mebus CA, et al. Comparison of monoclonal antibody-based sandwich enzyme-linked immunosorbent assay and virus isolation for detection of peste des petits ruminants virus in goat tissues and secretions[J]. J Clin Microbiol,1994,32(5):1349-1353.
    [16]Saravanan P, Singh RP, Balamurugan V, et al. Development of a N gene-based PCR-ELISA for detection of Peste-des-petits-ruminants virus in clinical samples[J]. Acta Virol,2004, 48(4):249-255.
    [17]Singh RP, Sreenivasa BP, Dhar P, et al. Development of a monoclonal antibody based competitive-ELISA for detection and titration of antibodies to peste des petits ruminants (PPR) virus[J]. Vet Microbiol,2004,98(1):3-15.
    [18]Saravanan P, Sen A, Balamurugan V, et al. Rapid quality control of a live attenuated Peste des petits ruminants (PPR) vaccine by monoclonal antibody based sandwich ELISA[J]. Biologicals,2008, 36(1):1-6.
    [19]Singh RP, Bandyopadhyay SK, Sreenivasa BP, et al. Production and characterization of monoclonal antibodies to peste des petits ruminants (PPR) virus [J]. Vet Res Commun,2004,28(7):623-639.
    [20]Anderson J, McKay JA. The detection of antibodies against peste des petits ruminants virus in cattle, sheep and goats and the possible implications to rinderpest control programmes[J]. Epidemiol Infect,1994,112(1):225-231.
    [21]Lawson M, Meers J, Blechynden L, et al. The detection and quantification of feline immunodeficiency provirus in peripheral blood mononuclear cells using the polymerase chain reaction[J]. Vet Microbiol,1993,38(1-2):11-21.
    [22]Grail A, Harbour DA, Stokes CR, et al. Polymerase chain reaction and partial sequencing of a British isolate (T637) of feline immunodeficiency virus [J]. Vet Microbiol,1993,36(3-4):369-377.
    [23]Shaila MS, Shamaki D, Forsyth MA, et al. Geographic distribution and epidemiology of peste des petits ruminants viruses [J]. Virus research,1996,43(2):149-153.
    [24]Couacy-Hymann E, Roger F, Hurard C, et al. Rapid and sensitive detection of peste des petits ruminants virus by a polymerase chain reaction assay[J]. J Virol Methods,2002,100(1-2):17-25.
    [25]Balamurugan V, Sen A, Saravanan P, Singh RP, et al. One-step multiplex RT-PCR assay for the detection of peste des petits ruminants virus in clinical samples[J]. Vet Res Commun,2006, 30(6):655-666.
    [26]Michaud V, Gil P, Kwiatek O, et al. Long-term storage at tropical temperature of dried-blood filter papers for detection and genotyping of RNA and DNA viruses by direct PCR[J]. J Virol Methods, 2007,146(1-2):257-265.
    [27]Forsyth MA, Barrett T. Evaluation of polymerase chain reaction for the detection and characterisation of rinderpest and peste des petits ruminants viruses for epidemiological studies[J]. Virus Res,1995,39(2-3):151-163.
    [28]Bundza A, Afshar A, Dukes TW, et al. Experimental peste des petits ruminants (goat plague) in goats and sheep[J]. Canadian Journal of Veterinary Research,1988,52(1):46.
    [29]Balamurugan V, Sen A, Saravanan P, et al. Development and characterization of a stable vero cell line constitutively expressing Peste des petits ruminants virus (PPRV) hemagglutinin protein and its potential use as antigen in enzyme-linked immunosorbent assay for serosurveillance of PPRV[J]. Clin Vaccine Immunol,2006,13(12):1367-1372.
    [30]Saliki JT, Libeau G, House JA, et al. Monoclonal antibody-based blocking enzyme-linked immunosorbent assay for specific detection and titration of peste-des-petits-ruminants virus antibody in caprine and ovine sera[J]. J Clin Microbiol,1993,31(5):1075-1082.
    [31]Libeau G, Diallo A, Calvez D, et al. A competitive ELISA using anti-N monoclonal antibodies for specific detection of rinderpest antibodies in cattle and small ruminants [J]. Veterinary microbiology, 1992,31(2-3):147-160.
    [32]Libeau G, Prehaud C, Lancelot R, et al. Development of a competitive ELISA for detecting antibodies to the peste des petits ruminants virus using a recombinant nucleoprotein[J]. Res Vet Sci, 1995,58(1):50-55.
    [33]Van Bressem MF, Van Waerebeek K, Fleming M, et al. Serological evidence of morbillivirus infection in small cetaceans from the Southeast Pacific[J]. Vet Microbiol,1998,59(2-3):89-98.
    [34]Choi KS, Nah JJ, Choi CU, et al. Monoclonal antibody-based competitive ELISA for simultaneous detection of rinderpest virus and peste des petits ruminants virus antibodies [J]. Vet Microbiol,2003, 96(1):1-16.
    [35]Choi KS, Nah JJ, Ko YJ, et al. Rapid competitive enzyme-linked immunosorbent assay for detection of antibodies to peste des petits ruminants virus[J]. Clin Diagn Lab Immunol,2005, 12(4):542-547.
    [36]Obi TU, McCullough KC, Taylor WP. The production of peste des petits ruminants hyperimmune sera in rabbits and their application in virus diagnosis[J]. Zentralbl Veterinarmed B,1990, 37(5):345-352.
    [37]Diallo A, Libeau G, Couacy-Hymann E, et al. Recent developments in the diagnosis of rinderpest and peste des petits ruminants[J]. Vet Microbiol,1995,44(2-4):307-317.
    [38]Renukaradhya GJ, Suresh KB, Rajasekhar M, et al. Competitive enzyme-linked immunosorbent assay based on monoclonal antibody and recombinant hemagglutinin for serosurveillance of rinderpest virus[J]. J Clin Microbiol,2003,41(3):943-947.
    [39]Singh RP, Saravanan P, Sreenivasa BP, et al. Comparison of diagnostic efficacy of a monoclonal antibody-based competitive ELISA test with a similar commercial test for the detection of antibodies to Peste des Petits Ruminants (PPR) virus[J]. Vet Res Commun,2006,30(3):325-330.
    [40]Balamurugan V, Singh RP, Saravanan P, et al. Development of an Indirect ELISA for the Detection of Antibodies against Peste-des-petits-ruminants Virus in Small Ruminants[J]. Veterinary research communications,2007,31(3):355-364.
    [41]Ismall T, Ahmad S, D'Souza-Ault M, et al. Cloning and expression of the nucleocapsid gene of virulent Kabete O strain of rinderpest virus in baculovirus:use in differential diagnosis between vaccinated and infected animals [J]. Virology,1994,,198(1):138-147.
    [42]Taylor WP. Protection of goats against peste-des-petits-ruminants with attenuated rinderpest virus[J]. Res Vet Sci,1979,27(3):321-324.
    [43]Rowland AC, Bourdin P. The histological relationship between "peste des petits ruminants" and kata in West Africa[J]. Rev Elev Med Vet Pays Trop,1970,23(3):301-307.
    [44]Diallo A, Taylor WP, Lefevre PC, et al. Attenuation of a strain of rinderpest virus:potential homologous live vaccine[J]. Rev Elev Med Vet Pays Trop,1989,42(3):311-319.
    [45]Wosu LO, Okiri JE, Enwezor PA. Optimal time for vaccination against Peste des petits ruminants (PPR) disease in goats in humid tropical zone in southern Nigeria[J]. Arch Roum Pathol Exp Microbiol,1990,49(3):283-291.
    [46]Adu FD, Joannis T, Nwosuh E, et al. Pathogenicity of attenuated peste des petits ruminants virus in sheep and goats [J]. Rev Elev Med Vet Pays Trop,1990,43(1):23-26.
    [47]Mariner JC, House JA, Mebus CA, et al. The use of thennostable Vero cell-adapted rinderpest vaccine as a heterologous vaccine against peste des petits ruminants[J]. Res Vet Sci,1993, 54(2):212-216.
    [48]Couacy-Hymann E, Bidjeh K, Angba A, et al. Protection of goats against rinderpest by vaccination with attenuated peste des petits ruminants virus [J]. Res Vet Sci,1995,59(2):106-109.
    [49]Awa DN, Ngagnou A, Tefiang E, et al. Post vaccination and colostral peste des petits ruminants antibody dynamics in research flocks of Kirdi goats and Foulbe sheep of north Cameroon[J]. Prev Vet Med,2002,55(4):265-271.
    [50]Yilma T. Genetically engineered vaccines for animal viral diseases[J]. J Am Vet Med Assoc,1994,, 204(10):1606-1615.
    [51]Yilma T. Applications of recombinant vaccinia virus for veterinary vaccines[J]. Dev Biol Stand, 1994,82:201-209.
    [52]Sinnathamby G, Renukaradhya GJ, Rajasekhar M, et al. Immune responses in goats to recombinant hemagglutinin-neuraminidase glycoprotein of Peste des petits ruminants virus:identification of a T cell determinant[J]. Vaccine,2001,,19(32):4816-4823.
    [53]Diallo A. Control of peste des petits ruminants:classical and new generation vaccines[J]. Dev Biol (Basel),2003,114:113-119.
    [54]Diallo A, Minet C, Berhe G, et al. Goat immune response to capripox vaccine expressing the hemagglutinin protein of peste des petits ruminants[J]. Ann N Y Acad Sci,2002,969:88-91.
    [55]Jones L, Giavedoni L, Saliki JT, et al. Protection of goats against peste des petits ruminants with a vaccinia virus double recombinant expressing the F and H genes of rinderpest virus[J]. Vaccine, 1993,11(9):961-964.
    [56]Das SC, Baron MD, Barrett T. Recovery and characterization of a chimeric rinderpest virus with the glycoproteins of peste-des-petits-ruminants virus:homologous F and H proteins are required for virus viability[J]. J Virol,2000,74(19):9039-9047.
    [57]Berhe G, Minet C, Le Goff C, et al. Development of a dual recombinant vaccine to protect small ruminants against peste-des-petits-ruminants virus and capripoxvirus infections [J]. J Virol,2003, 77(2):1571-1577.
    [58]Meyer G, Diallo A. The nucleotide sequence of the fusion protein gene of the peste des petits ruminants virus:the long untranslated region in the 5'-end of the F-protein gene of morbilliviruses seems to be specific to each virus[J]. Virus Res,1995,37(1):23-35.
    [1]Wang Z, Bao J, Wu X, et al. Peste des petits ruminants virus in Tibet[J]. China. Emerg Infect Dis, 2009,15(2):299-301.
    [2]Couacy-Hymann E, Bodjo C, Danho T, et al. Evaluation of the virulence of some strains of peste-des-petits-ruminants virus (PPRV) in experimentally infected West African dwarf goats [J]. Vet J,2007,173(1):178-183.
    [3]Smith J, Cook E, Fotheringham I, et al. Chemical synthesis and cloning of a gene for human beta-urogastrone[J]. Nucleic Acids Res,1982,10(15):4467-4482.
    [4]Majiyagbe KA, Nawathe DR, Abegunde A. Rapid diagnosis of peste des petits ruminants (PPR) infection, application of immunoelectroosmophoresis (IEOP) technique[J]. Rev Elev Med Vet Pays Trop,1984,37(1):11-15.
    [5]Jay E, MacKnight D, Lutze-Wallace C, et al. Chemical synthesis of a biologically active gene for human immune interferon-gamma. Prospect for site-specific mutagenesis and structure-function studies[J]. J Biol Chem,1984,259(10):6311-6317.
    [6]Sproat BS, Gait MJ. Chemical synthesis of a gene for somatomedin C[J]. Nucleic Acids Res,1985, 13(8):2959-2977.
    [7]Mandecki W, Bolling TJ. FokI method of gene synthesis[J]. Gene,1988,68(1):101-107.
    [8]Dillon PJ, Rosen CA. A rapid method for the construction of synthetic genes using the polymerase chain reaction[J]. Biotechniques,1990,9(3):298-300.
    [9]Prodromou C, Pearl LH. Recursive PCR:a novel technique for total gene synthesis[J]. Protein Eng, 1992,5(8):827-829.
    [10]Ciccarelli RB, Gunyuzlu P, Huang J, et al. Construction of synthetic genes using PCR after automated DNA synthesis of their entire top and bottom strands[J]. Nucleic acids research,1991, 19(21):6007.
    [11]Stemmer WPC, Crameri A, Ha KD, Brennan TM, et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides[J]. Gene,1995,164(1):49-53.
    [12]Strizhov N, Keller M, Mathur J, et al. A synthetic cryIC gene, encoding a Bacillus thuringiensis delta-endotoxin, confers Spodoptera resistance in alfalfa and tobacco[J]. Proc Natl Acad Sci U S A, 1996,93(26):15012-15017.
    [13]Gao X, Yo P, Keith A, et al. Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis:a novel method of primer design for high-fidelity assembly of longer gene sequences[J]. Nucleic acids research,2003,31(22):e143.
    [14]Sandhu GS, Aleff RA, Kline BC. Dual asymmetric PCR:one-step construction of synthetic genes[J]. Biotechniques,1992,12(1):14-16.
    [15]Young L, Dong Q. Two-step total gene synthesis method[J]. Nucleic Acids Res,2004,32(7):e59.
    [16]Yao QH, Huang XM, Peng RH, et al. Synthesis and sequence determination of ACC deaminase gene using successive expressive extension PCR method[J]. Acta Agricultural Shanghai,1999, 15:11-16.
    [17]Xiong AS, Yao QH, Peng RH, et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences[J]. Nucleic acids research,2004, 32(12):e98.
    [18]Xiong AS, Yao QH, Peng RH, et al. High level expression of a recombinant acid phytase gene in Pichia pastoris[J]. J Appl Microbiol,2005,98(2):418-428.
    [19]Peng RH, Yao QH, Xiong AS, et al. Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola[J]. Plant Cell Rep,2006,25(2):124-132.
    [20]Xiong AS, Yao QH, Peng RH, et al. Isolation, characterization, and molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris[J]. Journal of Biochemistry and Molecular Biology,2004,37(3):282-291.
    [21]Smith HO, Hutchison CA,3rd, Pfannkoch C, et al. Generating a synthetic genome by whole genome assembly:phiX174 bacteriophage from synthetic oligonucleotides[J]. Proc Natl Acad Sci U SA,2003,100(26):15440-15445.
    [22]Saier MH. Differential codon usage:a safeguard against inappropriate expression of specialized genes[J]. FEBS letters,1995,362(1):1-4.
    [23]Buckland R, Giraudon P, Wild F. Expression of measles virus nucleoprotein in Escherichia coli:use of deletion mutants to locate the antigenic sites[J]. J Gen Virol,1989,70 (Pt 2):435-441.
    [24]Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli[J]. Curr Opin Biotechnol,1995,6(5):494-500.
    [25]Wu X, J rnvall H, Berndt KD, et al. Codon optimization reveals critical factors for high level expression of two rare codon genes in Escherichia coli:RNA stability and secondary structure but not tRNA abundance[J]. Biochemical and biophysical research communications,2004, 313(1):89-96.
    [26]Wang Z, Bao J, Wu X, et al. Peste des Petits Ruminants Virus in Tibet, China[J]. Emerging Infectious Diseases,2009,15(2):299.
    [27]Carr PA, Park JS, Lee YJ, et al. Protein-mediated error correction for de novo DNA synthesis[J]. Nucleic Acids Res,2004,32(20):e162.
    [28]Xiong AS, Yao QH, Peng RH, et al. High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris[J]. Appl Microbiol Biotechnol,2006, 72(5):1039-1047.
    [29]Xiong AS, Yao QH, Peng RH, et al. PCR-based accurate synthesis of long DNA sequences[J]. Nat Protoc,2006, 1(2):791-797.
    [30]Xiong AS, Yao QH, Peng RH, et al. PCR-based accurate synthesis of long DNA sequences[J]. Nature Protocols,2006,1(2):791-797.
    [31]Hoover DM, Lubkowski J. DNAWorks:an automated method for designing oligonucleotides for PCR-based gene synthesis[J]. Nucleic Acids Res,2002,30(10):e43.
    [32]Binkowski BF, Richmond KE, Kaysen J, et al. Correcting errors in synthetic DNA through consensus shuffling[J]. Nucleic acids research,2005,33(6):e55.
    [33]Urban A, Neukirchen S, Jaeger KE. A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR[J]. Nucleic acids research,1997,25(11):2227.
    [1]Balamurugan V, Sen A, Saravanan P, et al. Development and characterization of a stable vero cell line constitutively expressing Peste des petits ruminants virus (PPRV) hemagglutinin protein and its potential use as antigen in enzyme-linked immunosorbent assay for serosurveillance of PPRV [J]. Clin Vaccine Immunol,2006,13(12):1367-1372.
    [2]Abraham G, Sintayehu A, Libeau G, et al. Antibody seroprevalences against peste des petits ruminants (PPR) virus in camels, cattle, goats and sheep in Ethiopia [J]. Prev Vet Med,2005, 70(1-2):51-57.
    [3]Kwiatek O, Minet C, Grillet C, et al. Peste des petits ruminants (PPR) outbreak in Tajikistan [J]. J Comp Pathol,2007,136(2-3):111-119.
    [4]Osman NA, Ali AS, ME AR, et al. Antibody seroprevalences against Peste des Petits Ruminants (PPR) virus in sheep and goats in Sudan [J]. Trop Anim Health Prod,2009,41(7):1449-1453.
    [5]Singh RP, Saravanan P, Sreenivasa BP, et al. Prevalence and distribution of peste des petits ruminants virus infection in small ruminants in India [J]. Rev Sci Tech,2004,23(3):807-819.
    [6]Gibbs EP, Taylor WP, Lawman MJ, et al. Classification of peste des petits ruminants virus as the fourth member of the genus Morbillivirus [J]. Intervirology,1979, 11(5):268-274.
    [7]Libeau G, Diallo A, Colas F, et al. Rapid differential diagnosis of rinderpest and peste des petits ruminants using an immunocapture ELISA [J]. Vet Rec,1994,134(12):300-304.
    [8]Libeau G, Prehaud C, Lancelot R, et al. Development of a competitive ELISA for detecting antibodies to the peste des petits ruminants virus using a recombinant nucleobrotein [J]. Research in Veterinary Science,1995,58(1):50-55.
    [9]Couacy-Hymann E, Roger F, Hurard C, et al. Rapid and sensitive detection of peste des petits ruminants virus by a polymerase chain reaction assay [J]. J Virol Methods,2002,100(1-2):17-25.
    [10]Saravanan P, Sen A, Balamurugan V, et al. Rapid quality control of a live attenuated Peste des petits ruminants (PPR) vaccine by monoclonal antibody based sandwich ELISA [J]. Biologicals,2008, 36(1):1-6.
    [11]Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR [J]. J Clin Microbiol,2002,40(6):2153-2162.
    [12]Zhou YM, Yang RQ, Tao SC, et al. The design and application of DNA chips for early detection of SARS-CoV from clinical samples [J]. J Clin Virol,2005,33(2):123-131.
    [13]Wang D, Gao H, Zhang R, et al. Single nucleotide polymorphism discrimination assisted by improved base stacking hybridization using oligonucleotide microarrays [J]. Biotechniques,2003, 35(2):300-302,304,306 passim.
    [14]Bao JY, Wang ZL, Li L, et al. [Sequence analysis of the nucleocapsid gene and genome promoter region of peste des petits ruminants virus of Chinese origin] [J]. Bing Du Xue Bao,2008, 24(6):464-471.
    [15]Bailey D, Banyard A, Dash P, et al. Full genome sequence of peste des petits ruminants virus, a member of the Morbillivirus genus [J]. Virus Res,2005,110(1-2):119-124.
    [16]Dhar P, Muthuchelvan D, Sanyal A, et al. Sequence analysis of the haemagglutinin and fusion protein genes of peste-des-petits ruminants vaccine virus of Indian origin [J]. Virus Genes,2006, 32(1):71-78.
    [17]Kerur N, Jhala MK, Joshi CG. Genetic characterization of Indian peste des petits ruminants virus (PPRV) by sequencing and phylogenetic analysis of fusion protein and nucleoprotein gene segments [J]. Res Vet Sci,2008,85(1):176-183.
    [18]Sinnathamby G, Seth S, Nayak R, et al. Cytotoxic T cell epitope in cattle from the attachment glycoproteins of rinderpest and peste des petits ruminants viruses [J]. Viral Immunol,2004, 17(3):401-410.
    [19]Mitra-Kaushik S, Nayak R, Shaila MS. Identification of a cytotoxic T-cell epitope on the recombinant nucleocapsid proteins of Rinderpest and Peste des petits ruminants viruses presented as assembled nucleocapsids [J]. Virology,2001,279(1):210-220.
    [20]Choi KS, Nah JJ, Ko YJ, et al. Rapid competitive enzyme-linked immunosorbent assay for detection of antibodies to peste des petits ruminants virus [J]. Clin Diagn Lab Immunol,2005, 12(4):542-547.
    [21]Yadav V, Balamurugan V, Bhanuprakash V, et al. Expression of Peste des petits ruminants virus nucleocapsid protein in prokaryotic system and its potential use as a diagnostic antigen or immunogen [J]. Journal of virological methods,2009.
    [1]Abu Elzein EM, Hassanien MM, Al-Afaleq AI, et al. Isolation of peste des petits ruminants from goats in Saudi Arabia [J]. The Veterinary Record,1990,127(12):309.
    [2]Diallo A, Barrett T, Barbron M, et al. Differentiation of rinderpest and peste des petits ruminants viruses using specific cDNA clones [J]. Journal of virological methods,1989,23(2):127-136.
    [3]Ismail TM, Yamanaka MK, Saliki JT, et al. Cloning and expression of the nucleoprotein of peste des petits ruminants virus in baculovirus for use in serological diagnosis [J]. Virology,1995, 208(2):776-778.
    [4]Jones L, Giavedoni L, Saliki JT, et al. Protection of goats against peste des petits ruminants with a vaccinia virus double recombinant expressing the F and H genes of rinderpest virus [J]. Vaccine, 1993,11(9):961-964.
    [5]Gargadennec L, Lalanne A. La peste des petits ruminants [J]. Bull Serv Zoo Epiz AOF,1942, 5:16-21.
    [6]Taylor WP. The distribution and epidemiology of peste des petits ruminants [J]. Preventive Veterinary Medicine,1984,2(1-4):157-166.
    [7]Wang Z, Bao J, Wu X, et al. Peste des petits ruminants virus in Tibet, China [J]. Emerg Infect Dis, 2009,15(2):299-301.
    [8]Bodjo SC, Kwiatek O, Diallo A, et al. Mapping and structural analysis of B-cell epitopes on the morbillivirus nucleoprotein amino terminus [J]. Journal of General Virology,2007,88(4):1231.
    [9]Gibbs EP, Taylor WP, Lawman MJP, et al. Classification of Peste des Petits Ruminants Virus as the Fourth Member of the Genus Morbillivirus. Intervirology 1979,11(5):268-274.
    [10]Dhar P, Sreenivasa BP, Barrett T, et al. Recent epidemiology of peste des petits ruminants virus (PPRV) [J]. Veterinary microbiology,2002,88(2):153-159.
    [11]Shaila MS, Shamaki D, Forsyth MA, et al. Geographic distribution and epidemiology of peste des petits ruminants viruses [J]. Virus research,1996,43(2):149-153.
    [12]Wang Z, Bao J, Wu X, et al. Peste des Petits Ruminants Virus in Tibet, China [J]. Emerging Infectious Diseases,2009,15(2):299.
    [13]Francki RIB, Fauquet CM, Knudson DL, et al. Classification and nomenclature of viruses:fifth report of the International Committee on Taxonomy of Viruses [J].1991.
    [14]Diallo A, Barrett T, Barbron M, et al. Cloning of the nucleocapsid protein gene of peste-des-petits-ruminants virus:relationship to other morbilliviruses [J]. Journal of General Virology,1994,75(1):233.
    [15]Ismall T, Ahmad S, D'Souza-Ault M, et al. Cloning and expression of the nucleocapsid gene of virulent Kabete O strain of rinderpest virus in baculovirus:use in differential diagnosis between vaccinated and infected animals [J]. Virology,1994,198(1):138-147.
    [16]Yadav V, Balamurugan V, Bhanuprakash V, et al. Expression of Peste des petits ruminants virus nucleocapsid protein in prokaryotic system and its potential use as a diagnostic antigen or immunogen [J]. Journal of virological methods,2009.
    [1]Taylor WP. The distribution and epidemiology of peste des petits ruminants [J]. Preventive Veterinary Medicine,1984,2(1-4):157-166.
    [2]Gibbs EP, Taylor WP, Lawman MJP, et al. Classification of Peste des Petits Ruminants Virus as the Fourth Member of the Genus Morbillivirus [J]. Intervirology,1979, 11(5):268-274.
    [3]Viscidi RP, Hill PM, Li S, et al. Diagnosis and differentiation of HTLV-I and HTLV-Ⅱ infection by enzyme immunoassays using synthetic peptides [J]. JAIDS Journal of Acquired Immune Deficiency Syndromes,1991,4(12):1190.
    [4]Brattegaard K, Soroh D, Zadi F, et al. Insensitivity of a synthetic peptide-based test (Pepti-LAV 1-2) for the diagnosis of HIV infection in African children [J]. AIDS,1995,9(6):656-657.
    [5]Zhao K, Liu Q, Yu R, et al. Screening of specific diagnostic peptides of swine hepatitis E virus [J]. Virol J,2009,6:186.
    [6]Libeau G, Prehaud C, Lancelot R, et al. Development of a competitive ELISA for detecting antibodies to the peste des petits ruminants virus using a recombinant nucleobrotein [J]. Research in Veterinary Science,1995,58(1):50-55.
    [7]Diallo A, Barrett T, Lefevre PC, et al. Comparison of proteins induced in cells infected with rinderpest and peste des petits ruminants viruses [J]. J Gen Virol,1987,68 (Pt 7):2033-2038.
    [8]Diallo A, Barrett T, Barbron M, et al. Cloning of the nucleocapsid protein gene of peste-des-petits-ruminants virus:relationship to other morbilliviruses [J]. Journal of General Virology,1994,75(1):233.
    [9]Lee BS, Huang JS, Jayathilaka GD, et al. Production of antipeptide antibodies [J]. Methods in molecular biology (Clifton, NJ),2010,657:93.
    [10]Havecker ER, Wallbridge LM, Hardcastle TJ, et al. The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci [J]. The Plant Cell Online,2010,22(2):321.
    [11]Dechamma HJ, Dighe V, Kumar CA, et al. Identification of T-helper and linear B epitope in the hypervariable region of nucleocapsid protein of PPRV and its use in the development of specific antibodies to detect viral antigen [J]. Veterinary microbiology,2006,118(3-4):201-211.
    [12]Barrett T, Visser IK, Mamaev L, et al. Dolphin and porpoise morbilliviruses are genetically distinct from phocine distemper virus [J]. Virology,1993.193(2):1010-1012.
    [13]Hoyland JA. Dixon JA. Berry JL, et al. A comparison of in situ hybridisation, reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ-RT-PCR for the detection of canine distemper virus RNA in Paget's disease [J]. Journal of virological methods,2003,109(2):253-259.
    [14]Buckland R, Giraudon P, Wild F. Expression of measles virus nucleoprotein in Escherichia coli:use of deletion mutants to locate the antigenic sites [J]. J Gen Virol,1989,70 (Pt 2):435-441.
    [15]Choi KS, Nah JJ, Choi CU, et al. Monoclonal antibody-based competitive ELISA for simultaneous detection of rinderpest virus and peste des petits ruminants virus antibodies [J]. Vet Microbiol,2003, 96(1):1-16.
    [16]Ohishi K, Kamata H, Yamanouchi K, et al. Identification of T-helper cell epitopes in the hypervariable region of the nucleocapsid (N) protein of rinderpest virus (RPV) in cattle [J]. Vaccine, 2000,18(27):3077-3081.
    [17]Choi KS, Nah JJ, Ko YJ, et al. Characterization of immunodominant linear B-cell epitopes on the carboxy terminus of the rinderpest virus nucleocapsid protein [J]. Clin Diagn Lab Immunol,2004, 11(4):658-664.
    [18]Hickman CJ, Khan AS, Rota PA, et al. Use of synthetic peptides to identify measles nucleoprotein T-cell epitopes in vaccinated and naturally infected humans [J]. Virology,1997,235(2):386-397.
    [19]Marttila J, Ilonen J, Norrby E, et al. Characterization of T cell epitopes in measles virus nucleoprotein [J]. J Gen Virol,1999,80 (Pt 7):1609-1615.
    [20]Schirle M, Weinschenk T, Stevanovic S. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens [J]. J Immunol Methods,2001,257(1-2):1-16.
    [21]Matsuda T, Kurohane K, Imai Y. Di-(2-ethylhexyl) phthalate enhances skin sensitization to isocyanate haptens in mice [J]. Toxicology letters,2010,192(2):97-100.
    [22]Yi YS, Ayala-Lo pez W, Kularatne SA, et al. Folate-Targeted Hapten Immunotherapy of Adjuvant-Induced Arthritis:Comparison of Hapten Potencies [J]. Molecular Pharmaceutics,2009, 6(4):1228-1236.
    [1]Gargadennec L, Lalanne A. La peste des petits ruminants [J]. Bull Serv Zoo Epiz AOF,1942, 5:16-21.
    [2]Jones L, Giavedoni L, Saliki JT, et al. Protection of goats against peste des petits ruminants with a vaccinia virus double recombinant expressing the F and H genes of rinderpest virus [J]. Vaccine, 1993, 11(9):961-964.
    [3]Ismail TM, Yamanaka MK, Saliki JT, et al. Cloning and expression of the nucleoprotein of peste des petits ruminants virus in baculovirus for use in serological diagnosis [J]. Virology,1995, 208(2):776-778.
    [4]Taylor WP. The distribution and epidemiology of peste des petits ruminants [J]. Preventive Veterinary Medicine,1984,2(1-4):157-166.
    [5]Lefevre PC, Diallo A. Peste des petits ruminants [J]. Revue scientifique et technique (International Office of Epizootics),1990,9(4):935.
    [6]Lefevre PC, Diallo A, Schenkel F, et al. Serological evidence of peste des petits ruminants in Jordan [J]. The Veterinary Record,1991,128(5):110.
    [7]Kwiatek O, Minet C, Grillet C, et al. Peste des petits ruminants (PPR) outbreak in Tajikistan [J]. Journal of comparative pathology,2007,136(2-3):111-119.
    [8]Shaila MS, Purushothaman V, Bhavasar D, et al. Peste des petits ruminants of sheep in India [J]. Vet Rec,1989,125(24):602.
    [9]Nanda YP, Chatterjee A, Purohit AK, et al. The isolation of peste des petits ruminants virus from Northern India [J]. Veterinary microbiology,1996,51(3-4):207-216.
    [10]Mondal AK, Chottopadhyay AP, Sarkar SD, et al. Report on epizootiological and clinicopathological observations on peste des petits ruminants (PPR) of goats in west Bengal [J]. Ind J Anim Health,1995,34:145-148.
    [11]Shaila MS, Shamaki D, Forsyth MA, et al. Geographic distribution and epidemiology of peste des petits ruminants viruses [J]. Virus research,1996,43(2):149-153.
    [12]Govindarajan R, Koteeswaran A, Venugopalan AT, et al. Isolation of pestes des petits ruminants virus from an outbreak in Indian buffalo (Bubalus bubalis) [J]. Vet Rec,1997,141(22):573-574.
    [13]Dhar P, Sreenivasa BP, Barrett T, et al. Recent epidemiology of peste des petits ruminants virus (PPRV) [J]. Veterinary microbiology,2002,88(2):153-159.
    [14]Wang Z, Bao J, Wu X, et al. Peste des Petits Ruminants Virus in Tibet, China. Emerging Infectious Diseases 2009,15(2):299.
    [15]Imagawa DT. Relationships among measles, canine distemper and rinderpest viruses [J]. Progress in medical virology Fortschritte der medizinischen Virusforschung Progres en virologie medicale, 1968,10:160.
    [16]Orvell C, Norrby E. Further studies on the immunologic relationships among measles, distemper, and rinderpest viruses [J]. The Journal of Immunology,1974,113(6):1850.
    [17]Gibbs EP, Taylor WP, Lawman MJ, et al. Classification of peste des petits ruminants virus as the fourth member of the genus Morbillivirus [J]. Intervirology,1979,11(5):268-274.
    [18]Hall WW, Lamb RA, Choppin PW. The polypeptides of canine distemper virus:synthesis in infected cells and relatedness to the polypeptides of other morbilliviruses [J]. Virology,1980, 100(2):433-449.
    [19]Diallo A, Barrett T, Barbron M, et al. Differentiation of rinderpest and peste des petits ruminants viruses using specific cDNA clones [J]. J Virol Methods,1989,23(2):127-136.
    [20]Munir M, Siddique M, Ali Q. Comparative efficacy of standard AGID and precipitinogen inhibition test with monoclonal antibodies based competitive ELISA for the serology of Peste des Petits Ruminants in sheep and goats [J]. Trop Anim Health Prod,2009,41(3):413-420.
    [21]Singh RP, Saravanan P, Sreenivasa BP, et al. Comparison of diagnostic efficacy of a monoclonal antibody-based competitive ELISA test with a similar commercial test for the detection of antibodies to Peste des Petits Ruminants (PPR) virus [J]. Vet Res Commun,2006,30(3):325-330.
    [22]Singh RP, Sreenivasa BP, Dhar P, et al. Development of a monoclonal antibody based competitive-ELISA for detection and titration of antibodies to peste des petits ruminants (PPR) virus [J]. Vet Microbiol,2004,98(1):3-15.
    [23]Obi TU, Patrick D. The detection of peste des petits ruminants (PPR) virus antigen by agar gel precipitation test and counter-immunoelectrophoresis [J]. J Hyg (Lond),1984,93(3):579-586.
    [24]Obi TU, McCullough KC, Taylor WP. The production of peste des petits ruminants hyperimmune sera in rabbits and their application in virus diagnosis [J]. Zentralbl Veterinarmed B,1990, 37(5):345-352.
    [25]Saliki JT, Libeau G, House JA, et al. Monoclonal antibody-based blocking enzyme-linked immunosorbent assay for specific detection and titration of peste-des-petits-ruminants virus antibody in caprine and ovine sera [J]. Journal of clinical microbiology,1993,31(5):1075.
    [26]Libeau G, Diallo A. Calvez D, et al. A competitive ELISA using anti-N monoclonal antibodies for specific detection of rinderpest antibodies in cattle and small ruminants [J]. Veterinary microbiology, 1992,31 (2-3):147-160.
    [27]Anderson J, McKay JA. The identification of antibodies against peste des petits ruminants virus in cattle, sheep and goats and the possible implications to rinderpest control programs [J]. Epidemiology and Infection,1994,112:225-231.
    [28]Libeau G, Prehaud C, Lancelot R, et al. Development of a competitive ELISA for detecting antibodies to the peste des petits ruminants virus using a recombinant nucleobrotein [J]. Research in Veterinary Science,1995,58(1):50-55.
    [29]Singh RP, Sreenivasa BP, Dhar P, et al. Development and evaluation of a monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of rinderpest virus antibodies [J]. Rev Sci Tech,2000,19(3):754-763.
    [30]Dhar P, Sreenivasa BP, Barrett T, et al. Recent epidemiology of peste des petits ruminants virus (PPRV) [J]. Vet Microbiol,2002,88(2):153-159.
    [31]Sreenivasa BP, Dhar P, Singh RP, et al. Evaluation of an indigenously developed homologous live-attenuated cell culture vaccine against peste des petits ruminants infection of small ruminants [J]. In:2000; 2000.
    [32]Zhao K, Liu Q, Yu R, et al. Screening of specific diagnostic peptides of swine hepatitis E virus [J]. Virol J,2009,6:186.
    [33]Lin GZ, Zheng FY, Zhou JZ, et al. An indirect ELISA of classical swine fever virus based on quadruple antigenic epitope peptide expressed in E.coli [J].2010 Virol Sin,25(1):71-76.
    [1]Bao J, Li L, Wang Z, Barrett T, et al. Development of one-step real-time RT-PCR assay for detection and quantitation of peste des petits ruminants virus [J]. J Virol Methods,2008, 148(1-2):232-236.
    [2]Choi KS, Nah JJ, Choi CU, et al. Monoclonal antibody-based competitive ELISA for simultaneous detection of rinderpest virus and peste des petits ruminants virus antibodies [J]. Vet Microbiol,2003, 96(1):1-16.
    [3]Rajak KK, Sreenivasa BP, Hosamani M, et al. Experimental studies on immunosuppressive effects of peste des petits ruminants (PPR) virus in goats [J]. Comp Immunol Microbiol Infect Dis,2005, 28(4):287-296.
    [4]Choi KS, Nah JJ, Ko YJ, et al. Antigenic and immunogenic investigation of B-cell epitopes in the nucleocapsid protein of peste des petits ruminants virus [J]. Clin Diagn Lab Immunol,2005, 12(1):114-121.
    [5]Taylor WP. Protection of goats against peste-des-petits-ruminants with attenuated rinderpest virus [J]. Res Vet Sci,1979,27(3):321-324.
    [6]Taylor WP, al Busaidy S, Barrett T. The epidemiology of peste des petits ruminants in the Sultanate of Oman [J]. Vet Microbiol,1990,22(4):341-352.
    [7]Diallo A, Minet C, Berhe G, et al. Goat immune response to capripox vaccine expressing the hemagglutinin protein of peste des petits ruminants [J]. Ann N Y Acad Sci,2002,969:88-91.
    [8]Berhe G, Minet C, Le Goff C, et al. Development of a dual recombinant vaccine to protect small ruminants against peste-des-petits-ruminants virus and capripoxvirus infections [J]. J Virol,2003, 77(2):1571-1577.
    [9]Mahapatra M, Parida S, Baron MD, et al. Matrix protein and glycoproteins F and H of Peste-des-petits-ruminants virus function better as a homologous complex [J]. J Gen Virol,2006, 87(Pt 7):2021-2029.
    [10]Shaila MS, Shamaki D, Forsyth MA, et al. Geographic distribution and epidemiology of peste des petits ruminants virus [J]. Virus Res,1996,43(2):149-153.
    [1]Diallo A, Barrett T, Barbron M, et al. Cloning of the nucleocapsid protein gene of peste-des-petits-ruminants virus:relationship to other morbilliviruses [J]. Journal of General Virology,1994,75(1):233.
    [2]秦晓光,尹荣兰,沈国顺.小反刍兽疫的研究进展[J].现代畜牧兽医,2006(1):31-33.
    [3]Hoyland JA, Dixon JA, Berry JL, et al. A comparison of in situ hybridisation, reverse transcriptase-polymerase chain reaction (RT-PCR) and in situ-RT-PCR for the detection of canine distemper virus RNA in Paget's disease [J]. J Virol Methods,2003,109(2):253-259.
    [4]Buckland R, Giraudon P, Wild F. Expression of measles virus nucleoprotein in Escherichia coli:use of deletion mutants to locate the antigenic sites [J]. J Gen Virol,1989,70 (Pt 2):435-441.
    [5]Libeau G, Prehaud C, Lancelot R, et al. Development of a competitive ELISA for detecting antibodies to the peste des petits ruminants virus using a recombinant nucleobrotein [J]. Research in Veterinary Science,1995,58(1):50-55.
    [6]Choi KS, Nah JJ, Choi CU, et al. Monoclonal antibody-based competitive ELISA for simultaneous detection of rinderpest virus and peste des petits ruminants virus antibodies [J]. Vet Microbiol,2003, 96(1):1-16.
    [7]Ohishi K, Kamata H, Yamanouchi K, et al. Identification of T-helper cell epitopes in the hypervariable region of the nucleocapsid (N) protein of rinderpest virus (RPV) in cattle [J]. Vaccine 2000,18(27):3077-3081.
    [8]Forsyth MA, Barrett T. Evaluation of polymerase chain reaction for the detection and characterisation of rinderpest and peste des petits ruminants viruses for epidemiological studies [J]. Virus Res,1995,39(2-3):151-163.
    [9]Dhar P, Sreenivasa BP, Barrett T, et al. Recent epidemiology of peste des petits ruminants virus (PPRV) [J]. Vet Microbiol,2002,88(2):153-159.
    [10]Mitra-Kaushik S, Nayak R, Shaila MS. Identification of a cytotoxic T-cell epitope on the recombinant nucleocapsid proteins of Rinderpest and Peste des petits ruminants viruses presented as assembled nucleocapsids [J]. Virology,2001,279(1):210-220.
    [11]姚李四,陈颖,徐宝梁,等.RT-PCR检测小反刍兽疫病毒核酸方法的建立[J].中国动物检疫,2006,23(5):19-20.
    [12]Libeau G, Prehaud C, Lancelot R, et al. Development of a competitive ELISA for detecting antibodies to the peste des petits ruminants virus using a recombinant nucleoprotein [J]. Res Vet Sci, 1995,58(1):50-55.
    [13]Singh RP, Sreenivasa BP, Dhar P, et al. A sandwich-ELISA for the diagnosis of Peste des petits ruminants (PPR) infection in small ruminants using anti-nucleocapsid protein monoclonal antibody [J]. Arch Virol,2004,149(11):2155-2170.
    [14]Choi KS, Nah JJ, Ko YJ, et al. Rapid competitive enzyme-linked immunosorbent assay for detection of antibodies to peste des petits ruminants virus [J]. Clin Diagn Lab Immunol,2005, 12(4):542-547.
    [15]Matsuda T, Kurohane K, Imai Y:D.i-(2-ethylhexyl) phthalate enhances skin sensitization to isocyanate haptens in mice [J]. Toxicol Lett,192(2):97-100.
    [16]Yi YS, Ayala-Lo pez W, Kularatne SA, et al. Folate-Targeted Hapten Immunotherapy of Adjuvant-Induced Arthritis:Comparison of Hapten Potencies [J]. Molecular Pharmaceutics,2009, 6(4):1228-1236.
    [17]Havecker ER, Wallbridge LM, Hardcastle TJ, et al. The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci [J]. The Plant Cell Online,22(2):321.
    [18]Lee BS, Huang JS, Jayathilaka GD, et al. Production of antipeptide antibodies [J]. Methods Mol Biol,657:93-108.
    [19]Dechamma HJ, Dighe V, Kumar CA, et al. Identification of T-helper and linear B epitope in the hypervariable region of nucleocapsid protein of PPRV and its use in the development of specific antibodies to detect viral antigen [J]. Vet Microbiol,2006,118(3-4):201-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700