组织工程中应变对骨髓间充质干细胞增殖及成骨分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨髓间充质干细胞具有自我复制、未分化的特点,并可在不同条件下分化为中胚层起源的多种细胞,这些特点决定了其在组织工程中的重要地位。此外,机体内几乎所有的细胞都会受到力学因素的影响,所以有必要研究力学因素对骨髓间充质干细胞的作用,为其体外扩增、诱导分化提供一种新途径。
     本实验首先探索了分离、培养骨髓间充质干细胞的方法,并了解其一般生物学特性。其次,选取传至第3代(P_3)的骨髓间充质干细胞进行实验。加载大小为1000微应变、频率为0.5Hz(1秒拉伸,1秒缓解)的单向循环拉伸应变,每12小时拉伸30分钟,连续72小时。测定了未加载及应变加载后不同时间点碱性磷酸酶的活性;应变和(或)成骨条件培养基对骨髓间充质干细胞增殖及碱性磷酸酶活性的影响;加载组与未加载组细胞基质钙盐沉积情况;骨钙素的基因表达情况。最后,筛选适宜骨组织工程的支架材料。
     结果显示:应变加载组较非加载组碱性磷酸酶活性明显增强;应变加载后6h的碱性磷酸酶活性最强;应变能有效地促进骨髓间充质干细胞向成骨细胞分化,且诱导效能强于普遍采用的诱导条件培养基,但抑制了细胞的增殖速度。在几种材料中,生物陶瓷更适宜用作骨组织工程的支架。
Bone marrow-derived mesenchymal stem cells (BMSCs) are a population of cells capable of replicating as undifferentiated cells and that have the potential to differentiate to lineages of mesoblastic origin. And the characters of BMSCs have suggested the great value of this specific cell population for tissue engineering. Furthermore, complex mechanical forces are clearly involved in cell development in vivo. Therefore, it is necessary to investigate the effect of strain on proliferation and differentiation of BMSCs, and may provide increased insight in the role of strain on proliferation and osteogenic differentiation of BMSCs in vitro and lead to improved strategies in bone tissue engineering.In this study, the method of cell isolation and culture was mastered, and its general biology characteristics were realized. Next, BMSCs for the following experiments were at the same third passage. Using a four-point bending loads system, a uniform 1000με cyclic tension strain was applied to the cells at 0.5Hz (1s on, 1s off) for 30 minutes per 12 hours, and lasted out 72 hours. We assessed the ALP activity of unstrained plates and strained plates at different times, the proliferation and ALP activity of BMSCs under strain and/or osteogenic supplement medium, the matrix-deposited calcium, gene expression of osteocalcin (OCN). Lastly, four kinds of materials served as bone tissue-engineering scaffold was compared.The results suggested that strained cells expressed higher ALP activity than unstrained cells, and the ALP levels expressed by BMSCs is highest at the time of the 6th hour after being applied strain. We demonstrated that BMSCs, stretched by cyclic deformation of the cell substrate, inhibited their growth and accelerated their osteogenic differentiation. And we detected that p-TCP can serve as bone tissue-engineering scaffold materials more appropriately.
引文
[1] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-7.
    [2] Deng W, Obrocka M, Fischer I, et al. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun, 2001, 282(1): 148-52.
    [3] Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol, 1974, 2(2): 83-92.
    [4] Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002, 418(6893): 41-9.
    [5] Haynesworth SE, Goshima J, Goldberg VM, et al. Characterization of cells with osteogenic potential from human marrow. Bone, 1992, 13 (1): 81-8.
    [6] Jee Ws. The skeletal tissues. In: Weiss L,Ed. Cell and Tissue Biology [M]. Munich: Urban and Schwarzenberg, 1998: 213-253.
    [7] Kennedy M, Firpo M, Choi K, et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature, 1997, 386(6624): 488-93.
    [8] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997, 276(5309): 71-4.
    [9] Ferrari G, Cusella-De-Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998, 279(5356): 1528-30.
    [10] Suhonen JO, Peterson DA, Ray J, et al. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature, 1996, 383(6601): 624-7.
    [11] Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 1992, 255(5052): 1707-10.
    [12] Renfranz PJ, Cunningham MG, Mckay RD. Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell, 1991, 66(4):713-29.
    [13] Brustle O, Spiro AC, Karram K, et al. In vitro-generated neural precursors participate in mammalian brain development. Proc Natl Acad Sci U S A, 1997, 94(26): 14809-14.
    [14] Taylor G, Lehrer MS, Jensen PJ, et al. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell, 2000,102(4):451-61.
    [15] Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell, 1995, 80(l):83-93.
    [16] Schwab IR, Reyes M, Isseroff RR. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea, 2000, 19(4):421-6.
    [17] Bjornson CR, Rietze RL, Reynolds BA, et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science, 1999, 283(5401):534-7.
    [18] Jackson KA, Mi T, Goodbell MA. Hematopoietic potential of cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A, 1999, 96(25): 14482-6.
    [19] Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000, 61(4):364-70.
    [20] Kondo T, Raff M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science, 2000, 289(5485): 1754-7.
    [21] Phinney DG, Kopen G, Isaacson RI, et al. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth and differentiation. J Cell Biochem, 1999, 72(4):570-85.
    [22] Aubin JE. Osteoprogenitor cell frequency in rat bone marrow stromal populations: role for heterotypic cell-cell interactions in osteoblast differentiation. J Cell Biochem, 1999, 72(3):396-410.
    [23] Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res, 1988, 254(3):317-30.
    [24] Hanada K, Dennis JE, Caplan AI. Stimulatory effect of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res, 1997,12(10): 1606-14.
    [25] Hung SC, Chen NJ, Hsieh SL, et al. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells, 2002, 20(3): 249-58.
    [26] 郭子宽,刘晓丹,侯春美,等.人骨髓间充质干细胞体外分化为神经元样细胞.中国实验血液学杂志,2001,9(1):91-2。
    [27] 项鹏,夏文杰,张丽荣,等.成人骨髓间质干细胞定向诱导为神经元样细胞的研究.中国病理生理杂志,2001,17(5):385-7.
    [28] 戴宜武,徐如祥,姜晓丹,等.骨髓基质细胞体外诱导分化成神经元和胶质细胞.解剖学研究,2002,24(1):3-5.
    [29] Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002, 109(3): 337-46.
    [30] Oh SH, Miyazaki M, Kouchi H, et al. Hepatocyte growth factor induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro. Biochem Biophys Res Commun, 2000, 279(2): 500-4.
    [31] Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest, 1999, 103(5): 697-705.
    [32] Van Vlasselaer P, Falla N, Snoeck H, et al. Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin. Blood, 1994, 84(3): 753-63.
    [33] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-7.
    [34] Phinney DG, Kopen G, Isaacson RL, et al. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem, 1999, 72(4): 570-85.
    [35] Chen JL, Hunt P, McElvain M, et al. Osteoblast precursor cells are found in CD34+ cells from human bone marrow. Stem Cells, 1997, 15(5): 368-77.
    [36] Caplan AI. Mesenchymal stem cells. J Orthop Res, 1991, 9(5): 641-50.
    [37] Gronthos S, Graves SE, Ohta S, et al. The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood, 1994, 84(12):4164-73.
    [38] Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res, 1998, 16(2):155-62.
    [39] Goshima J, Goldberg VM, Caplan AI. The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells. Clin Orthop Relat Res, 1991, 8(269):274-83.
    [40] Kim H, Kim HW, Suh H. Sustained release of ascorbate-2-phosphate and dexamethasone from porous PLGA scaffolds for bone tissue engineering using mesenchymal stem cells. Biomaterials, 2003, 24(25):4671-9.
    [41] Chung CH, Golub EE, Forbes E, et al. Mechanism of action of beta-glycerophate on bone cell mineralization. Calcif Tissue Int, 1992, 51(4):305-11.
    [42] Goshima J, Goldberg VM, Caplan AI. The osteogenic potential of culture-expanded rat marrow mesenchymal cells assayed in vivo in calcium phosphate ceramic blocks. Clin Orthop Relat Res, 1991, 1(262):298-311.
    [43] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997, 276(5309):71-4.
    [44] Kitano Y, Radu A, Shaaban A, et al. Selection, enrichment, and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells. Exp Hematol, 2000, 28(12):1460-9.
    [45] Encina NR, Billotte WG, Hofmann MC. Immunomagnetic isolation ofosteoprogenitors from human bone marrow stromal. Lab Invest, 1999, 79(4):449-57.
    [46] Oreffo RO, Virdi AS, Triffitt JT. Retroviral marking of human bone marrowfibroblasts: in vitro expansion and localization in calvarial sites after subcutaneous transplantation in vivo. J Cell Physiol, 2001, 186(2):201-9.
    [47] Kinoshita S, Finnegan M, Bucholz RW, et al. Three-dimensional collagen gel culture promotes osteoblastic phenotype in bone marrow derived cells. Kobe J Med Sci, 1999,45(5):201-11.
    [48] Glowacki J, Mizuno S, Greenberger JS. Perfusion enhances functions of bone marrow stromal cells in three-dimensional culture. Cell Transplant, 1998, 7(3):319-26.
    [49] Reich KM, Gay CV, Frangos JA. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J Cell Physiol, 1990, 143(1):100-4.
    [50] Goodwin TJ, Prewett TL, Wolf DA, et al. Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J Cell Biochem, 1993, 51(3): 301-11.
    [51] McMahon JM, Boyde A, Bromage TG. Pattern of collagen fiber orientation in the ovine calcaneal shaft and its relation to locomotor-induced strain. Anat Rec, 1995, 242(2): 147-58.
    [52] Altaian GH, Lu HH, Horan RL, et al. Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng, 2002, 124(6): 742-9.
    [53] Yoshikawa T, Ohgushi H, Akahane M, et al. Analysis of gene expression in osteogenic cultured marrow/hydroxyapatite construct implanted at ectopic sites: a comparison with the osteogenic ability of cancellous bone. J Biomed Mater Res, 1998,41(4): 568-73.
    [54] Dong J, Uemura T, Kikuchi M, et al. Long-term durability of poroushydroxyapatite with low-pressure system to support osteogenesis of mesenchymal stem cells. Biomed Mater Eng, 2002, 12(2): 203-9.
    [55] Angele P, Yoo JU, Smith C, et al. Cyclic hydrostatic pressure enhances thechondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J Orthop Res, 2003, 21(3): 451-7.
    [56] van den Dolder J, Bancroft GN, Sikavitsas VI, et al. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. J Biomed Mater Res, 2003, 64(2): 235-4.
    [57] Altaian GH, Horan RL, Martin I, et al. Cell differentiation by mechanical stress. FASEB J, 2002, 16(2): 270-2.
    [58] Ouyang HW, Goh JC, Thambyah A, et al. Knitted poly-lactide-co-glycolide scaffold loaded with bone marrow stromal cells in repair and regeneration of rabbit Achilles tendon. Tissue Eng, 2003, 9(3): 431-9.
    [59] Pavlin D, Zadro R, Gluhak-Heinrich J. Temporal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo: early response of osteocalin and type Ⅰ collagen. Connect Tissue Res, 2001, 42(2): 135-48.
    [60] Brighton CT, Fisher JR Jr, Levine SE, et al. The biochemical pathway mediating the proliferative response of bone cells to a mechanical stimulus. J Bone Joint Surg Am, 1996, 78(9): 1337-47.
    [61] 杨红梅,罗颂椒,等.机械压力对大鼠下颌髁突软骨细胞增殖活性影响的体外研究.华西口腔医学杂志,1999,11(17):331-3.
    [62] Dallas SL, Zaman G, Pead MJ, et al. Early strain-related changes in cultured embryonic chick tibiotrs parallel those associated with adaptive modeling in vivo. J Bone Miner Res, 1993, 8 (3): 251-9.
    [63] Cillo JE, Gassner R, Koepsel RR, et al. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000, 90(2): 147-54.
    [64] Simmons CA, Matlis S, Thornton AJ, et al. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J Biomech, 2003, 36(8): 1087-96.
    [65] Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol, 1997, 59: 575-99.
    [66] 张舒,吴兴裕,李莹辉,等.力学信号在骨骼中的传导.航天医学与医学工程,2001,14(6):465-8.
    [67] Lazarus HM, Haynesworth SE, Gerson SL, et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant, 1995, 16(4): 557-64.
    [68] Cronkite EP. Haemopoietic stem cells: concepts and definitions. Blood cells, 1979, 5(3): 457-9.
    [69] De Kok IJ, Peter SJ, Archambault M, van den Bos C, Kadiyala S, et al. Investigation of allogeneic mesenchymal stem cell-based alveolar bone formation: preliminary findings. Clin Oral Implants Res, 2003, 14(4): 481-9.
    [70] Tabuchi C, Simmons DJ, Fausto A, et al. Bone deficit in ovariectomized rats. Functional contribution of the marrow stromal cell population and the effect of oral dihydrotachysterol treatment. J Clin Invest, 1986, 78(3): 637-42.
    [71] Angele P, Kujat R, Nerlich M, et al. Engineering of osteochondral tissue with bone marrow mesenchymal progenitor cells in a derivatized hyaluronan-gelatin composite sponge. Tissue Eng, 1999, 5(6): 545-54.
    [72] Young RG, Butler DL, Weber W, et al. Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J orthop Res, 1998, 16(4): 406-13.
    [73] Galmiche MC, Koteliansky VE, Briere J, et al. Stromal cells from human longterm marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood, 1993, 82(1): 66-76.
    [74] Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998, 279(5356): 1528-30.
    [75] Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A, 1999, 96(19): 10711-6.
    [76] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-7.
    [77] Theise ND, Nimmakayalu M, Gardner R, et al. Liver from bone marrow in humans. Hepatology, 2000, 32(1): 11-6.
    [78] Milne M, Quail JM, Baran DT. Dexamethasone stimulates osteogenic differentiation in vertebral and femoral bone marrow cell cultures: comparison of IGF-I gene expression. J Cell Biochem, 1998, 71 (3):382-91.
    [79] Minguell JJ, Erices A, Conger P. Mesenchymal stem cells. Exp Biol Med (Maywood), 2001, 226(6): 507-20.
    [80] D'Avis PY, Frazier CR, Shapiro JR, et al. Age-related changes in effects of insulin-like growth factor Ⅰ on human osteoblast-like cells. Biochem J, 1997, 324(Pt3): 753-60.
    [81] Deryugina EI, Muller-Sieburg CE. Stromal cells in long-term cultures: keys to the elucidation of hematopoietic development? Crit Rev Immunol, 1993, 13(2): 115-50.
    [82] 刘晓丹,郭子宽,李秀森,等.人骨髓间充质干细胞分离与培养方法的建立.军事医学科学院院刊,2000,24(4):282-284。
    [83] Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 1995, 18(12): 1417-26.
    [84] Mets T, Verdonk G. In vitro aging of human bone marrow-derived stromal cells. Mech Aging Dev, 16(1): 81-9.
    [85] Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem, 1997, 64(2):278-94.
    [86] Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci U S A, 2000, 97(7): 3213-8.
    [87] Colter DC, Sekiya I, Prockop D J, et al. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci U S A, 2001, 98(14):7841-5.
    [88] Caplan AI, Bruder SP. Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century. Trends Mol Med, 2001, 7(6):259-264.
    [89] Majumdar MK, Thiede MA, Mosca JD, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol, 1998, 176(1): 57-66.
    [90] Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cell. J Cell Physiol, 1999, 181 (1): 67-73.
    [91] Varghese S, Rydziel S, Canalis E. Basic fibroblast growth factor stimulates collagenase-3 promoter activity in osteoblasts through an activator protein-1-binding site. Endocrinology, 2000, 141 (6): 2185-91.
    [92] Tanaka H, Ogasa H, Barnes J, et al. Actions of bFGF on mitogenic activity and lineage expression in rat osteoprogenitor cells: effect of age. Mol Cell Endocrinol, 1999, 150(1-2): 1-10.
    [93] Locklin RM, Williamson MC, Beresford JN, et al. In vitro effects of growth factors and dexamethasone on rat marrow stromal cells. Clin Orthop Relat Res, 1995, 5(313): 27-35.
    [94] 雷军,程腊梅,谭孟群,等.血清及细胞因子对人骨髓间充质干细胞增殖的影响.湖南医科大学学报,2003,28(5):469-472.
    [95] Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cell. J Cell Physiol, 1999, 181 (1):67-73.
    [96] Haynesworth SE, Goshima J, Goldberg VM, et al. Characterization of cells with osteogenic potential from human marrow. Bone, 1992, 13(1):81-8.
    [97] Gronthos S, Graves SE, Ohta S, et al. The STRO-1~+ fraction of adult human bone marrow contains the osteogenic precursors. Blood, 1994, 84: 4164-73.
    [98] Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol, 1997, 59: 575-99.
    [99] Buckley MJ, Banes AJ, Jordan RD. The effects of mechanical strain on osteoblasts in vitro. J Oral Maxillofac Surg, 1990, 48(3):276-82.
    [100] Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner, 1987, 2(2):73-85.
    [101] Burr DB, Martin RB. Calculating the probability that microcracks initiate resorption spaces. J Biomech, 1993, 26(4-5):613-6.
    [102] Mitchison JM, Swann MM. The mechanical properties of the red cell surface: Ⅰ. The cell elastimeter. J Exp Biol, 1954, 31:443.
    [103] Parkkinen JJ, Lammi MJ, Inkinen R, et al. Influence of short-term hydrostatic pressure on organization of stress fibers in cultured chondrocytes. J Orthop Res, 1995, 13(4): 495-502.
    [104] Sah RL, Kim YJ, Doong JY, et al. Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res, 1989, 7(5):619-36.
    [105] Torzilli PA, Grigiene R, Huang C, et al. Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J Biomech, 1997, 30(1):1-9.
    [106] Bottlang M, Simnacher M, Schmitt H, et al. A cell strain system for small homogeneous strain applications. Biomed Tech, 1997, 42(11):305-9.
    [107] Winston FK, Macarak EJ, Gorfien SF, et al. A system to reproduce and quantify the biomechanical environment of the cell. J Appl Physiol, 1989, 67(1): 397-405.
    [108] Hasegawa S, Sato S, Saito S, et al. Mechanical stretching increases the number of cultured bone cells synthesizing DNA and alters their pattern of protein synthesis. Calcif Tissue Int, 1985, 37(4): 431-6.
    [109] Vandenburgh HH. A computerized mechanical cell stimulator for tissue culture: effects on skeletal muscle organogenesis. In Vitro Cell Dev Biol, 1988, 24(7): 609-19.
    [110] Banes AJ, Gilbert J, Taylor D, et al. A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J cell Sci, 1985, 75:35-42.
    [111] Yoon KG, Rutledge SJ, Buenaga RF, et al. Characterization of the rat osteocalcin gene: stimulation of promoter activity by 1,25-dihydroxyvitamin D3. Biochemistry, 1988, 27(23): 8521-6.
    [112] Genovese C, Rowe D, Kream B. Construction of DNA sequences complementary to rat alpha 1 and alpha 2 collagen mRNA and their use in studying the regulation of type Ⅰ collagen synthesis by 1,25-dihydroxyvitamin D. Biochemistry, 1984, 23(25):6210-6.
    [113] Ahmad M, McCarthy MB, Gronowicz G. An in vitro model for mineralization of human osteoblast-like cells on implant materials. Biomaterials, 1999, 20(3): 211-20.
    [114] Genge BR, Sauer GR, Wu LN, et al. Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization. J Biol Chem, 1988, 263(34): 18513-9.
    [115] 唐丽灵,王远亮,等.不同应变拉伸对成骨细胞生理功能的影响.重庆大学学报,2003,26(3):67-70.
    [116] 胡静,邹淑鹃,等.机械牵张对人成骨细胞ALP活性及Ⅰ型胶原表达的影响。口腔颌面外科杂志,2003,13(1):11-3.
    [117] Brighton CT, Strafford B, Gross SB, et al. The proliferative and synthetic response of isolated calvarial bone cells of rats to cyclic biaxial mechanical strain. J Bone Joint Surg Am, 1991, 73(3):320-31.
    [118] Fermor B, Gundle R, Evans M, et al. Primary human osteoblast proliferation and prostaglandin E2 release in response to mechanical strain in vitro. Bone, 1998, 22(6):637-43.
    [119] Matsuda N, Yokoyama K, Takeshita S, et al. Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of human periodontal ligment cells in vitro. Arch Oral Biol, 1998, 43(12):987-97.
    [120] Carano A, Siciliani G. Effict of continuous and intermittent forces on human fibroblasts in vitro. Eur J Orthod, 1996, 18(1):19-26.
    [121] 李小彤,张丁,傅民魁.比较间隙性牵张力和持续性牵张力对成骨羊细胞碱性磷酸酶分泌活性的影响.口腔正畸学,2000,7(2):55.
    [122] Andrianarivo AG, Robinson JA, Mann KG, et al. Growth on type Ⅰ collegen promotes expression of the osteoblastic phenotype in human osteosarcoma MG-63 cells. J Cell physiol, 1992, 153(2): 256-65.
    [123] Lynch MP, Stein JL, Stein GS, et al. The influence of type Ⅰ collegen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res, 1995, 216(1):35-45.
    [124] Tou L, Quibria N, Alexander JM. Regulation of human cbfal gene transcription in osteoblasts by selective estrogen receptor modulators (SERMs). Mol Cell Endocrinol, 2001, 183(1-2): 71-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700