中国人群2型糖尿病易感基因CDC2L2的筛选及其参与胰岛β细胞凋亡途径的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:2型糖尿病(Type 2 Diabetes,T2D)是一种具有明显遗传倾向的复杂多基因疾病。本实验室全基因组扫描结果显示,1号染色体上有3个区域(1p36.23-36.33、1q24.3-25.1及1q42.12-42.13)与2型糖尿病相连锁。本项研究主要目的是利用单核苷酸多态性(SNP)标记在各定位区域内寻找2型糖尿病的易感基因。并对它们可能的作用途径进行初步探讨。
     方法:用测序法对上述区域中4个候选基因(sAC、PANK4、CASPASE9和CDC2L2)SNP位点在467例北方汉族2型糖尿病患者和569例对照个体进行基因分型及病例-对照关联分析,并对同一基因内具有显著性关联的SNP位点进行单倍型分析。在76个2型糖尿病家系中进行基因分型,并进行TDT/sibTDT研究来对病例一对照分析结果进行验证。为了检验人群分层对关联分析的影响,各个SNP位点分别对年龄、性别和身体质量指数(BMI)等参数进行分层分析。
     将筛选到的2型糖尿病易感基因CDC2L2克隆到pcDNA3.1表达载体,转染胰岛β细胞(INS-1),用Western Blotting方法检测与细胞生长和凋亡相关的信号通路中关键蛋白表达水平和磷酸化水平的改变情况,确定其以何种途径参与对细胞生存能力和增殖的调节。
     结果:sAC基因中rs203849和rs203826、PANK4基因中rs7535528和CASPASE9基因中rs884363位点的基因频率在病例与对照组中分布没有显著性差异。CDC2L2基因中6个SNP位点基因频率在病例组与对照组中分布存在显著差异(SNP11:P=0.018,OR(95%CI)=0.78(0.64-0.96):rs1059831:P=0.043,OR(95%CI)=0.81(0.66-0.99);SNP33:P=0.028,OR(95%CI)=0.79(0.65-0.98);SNP36:P=0.040,OR(95%CI)=0.81(0.66-0.99);rs11488590:P=0.035,OR(95%CI)=0.80(0.66-0.98)和SNP30:P=0.029,OR(95%CI)=0.80(0.66-0.98))。CDC2L2基因中这6个SNP位点之间存在着显著的连锁不平衡(r~2>0.5,D'>0.85,p<0.001)。在这6个SNP位点组成的单倍型中,有两种在病例和对照组中的分布频率有显著差异:T-A-G-G-C-A(P=0.041,OR(95%CI) =1.22(1.01-1.47)),C--A-A-T-G(P=0.015,OR(95%CI)=0.77(0.63-0.95))。在显型模式分析中,CDC2L2基因中5个位点的基因型在病例和对照组分布差异呈显著性(rs1059831:P=0.026;SNP33:P=0.0097;rs9793240:P=0.025;SNP36:P=0.042;rs11488590:P=0.026)。虽然SNP11位点在于DT分析中没有达到显著性,但仍然验证了病例对照研究的正确性。另外,分层分析显示:在老年(Age>44)、女性和非肥胖(BMI<23)人群中,CDC2L2基因中SNP11与2型糖尿病有显著关联关系(P值分别为:0.011、0.018和0.009);而在成年(Age≤44)、男性和肥胖(BMI>23)人群中则无关联性(P值分别为:0.644、0.498和0.322)。PANK4基因中rs7535528位点在女性和非肥胖人群中也与2型糖尿病呈显著关联关系(P值分别为:0.033和0.020)。Logistic回归显示PANK4和CDC2L2基因之间存在交互作用。
     CDC2L2基因产物p58PITSLRE和其被Caspase3切割产物(p110C)参与细胞凋亡过程。p58和p110C基因转染胰岛β细胞(INS-1)后都能显著抑制FAK活性,但两者作用途径不同:p58是通过降低FAK397位Tyr的磷酸化,而p110C则是降低细胞中总FAK水平。
     结论:以上结果表明在1号染色体1p36.33区域中CDC2L2基因是一个2型糖尿病易感基因。其表达产物p58 P17SLRE和C端多肽(p110C)参与对FAK活性的调节,促进胰岛β细胞(mNS-1)凋亡。
Background and Objective Type 2 diabetes is a complex disorder with a strong genetic background.Our previous genome-wide scanning suggested that 3 regions in chromosomes 1 showed evidence of linkage with type 2 diabetes.Aim of this paper is to search for the susceptibility variant(s) of type 2 diabetes in these three susceptible regions by genotyping SNP markers in case-control DNA samples.Another purpose of this study is to gain insight into the function of these genes.
     Methods SNPs from 4 candidate genes(sAC,PANK4,CASPASE9 and CDC2L2) in the mapped regions were chosen from public SNP data or identified by sequencing the samples.These loci are further evaluated in Han Chinese individuals comprising of 467 patients and 569 normal subjects and 76 parent-offspring trios by TDT analysis.The haplotypes within a gene are further analyzed.
     We construct of expression vector of p58 PITSLRE and p110C and transfect beta-cell(INS-1).Using of western blotting to measure the expression and phosphorylation levels of the key molecules in the pathway relating to cell survival and apoptosis.
     Results SNPs of PANK4,CASPASE9 and sAC genes didn't show significant association with diabetes status.Six SNPs of CDC2L2 gene were shown to be significantly associated with T2D:rs1059831:P = 0.043,OR = 0.81(CI 95% 0.66-0.99);SNP33:P= 0.028,OR = 0.79(CI 95%0.65-0.98);SNP11:P= 0.018, OR = 0.78(CI 95%0.64-0.96);SNP36:P= 0.040,OR = 0.81(CI 95%0.66-0.99); rs11488590:P= 0.035,OR = 0.80(CI 95%0.66-0.98) and SNP30:P= 0.029,OR = 0.80(CI 95%0.66-0.98).The pairs of these six SNPs in CDC2L2 gene showed strong LD(r~2>0.5,P<0.001).Two haplotypes in CDC2L2 were observed to be associated with T2D(T-A-G-G-C-A:P=0.041,OR=1.22(CI 95%1.01-1.47) and C- -A-A-T-G:P=0.015,OR=0.77(CI 95%0.63 - 0.95)).The data informatively showed that offspring carrying the protective alleles in these six variations had a lower risk for T2D under dominant model(rs1059831:P=0.026;SNP33: P=0.0097;SNP11:P=0.025;SNP36:P=0.042;rs11488590:P=0.026).When individuals were stratified by age,sex and Body Mass Index,the SNP11 of CDC2L2 gene was strongly associated with T2D female patients,those who were over 44 years old,whose BMI was less than 23(P = 0.018,0.011 and 0.0089, respectively).However,it was not replicated in family-based TDT analysis(P = 0.085,OR = 0.63(CI 95%0.34 - 1.06)).In spite of this,the TDT results also clearly indicated that minor-allele for SNP11 was a protective allele for T2D, supporting the result performed in case-control study.In addition,rs7535528 of PANK4 is strongly associated with T2D female patients and those who BMI was less than 23(P = 0.033 and 0.020,respectively).The data showed that the synergetic effect of PANK4 and CDC2L2 is responsible for the development of type 2 diabetes.
     Overexpression of p58 and p110C in INS-1 cell both can decrease the activity of FAK,but the means of them were different:p58 was by decreasing phosphorylation level of FAK(Tyr 397) and p110C was by decreasing the level of FAK expression.
     Conclusion Our data confer that the CDC2L2 gene may contribute to the susceptibility of type 2 diabetes in Northern Han Chinese population.P58 PITSLRE and p110C might be involved in apoptosis by regulating the intergrin-FAK pathway.
引文
1. Rimoin DL, Schimke RN. Endocrine pancreas. In: Genetic Disorders of the Endocrine Glands. St Louis: Mosby; 1971. 7:150-216.
    
    2. Ghosh S, Watanabe RM, Hauser ER, et al. Type 2 diabetes: evidence for linkage on chromosome 20 in 716 Finnish affected sib pairs. Proc Natl Acad Sci USA. 1999. 96: 2198-2203.
    
    3. Xiang K, Wang Y, Zheng T, et al. Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: significant linkage to chromosome 6q21-q23 and chromosome 1q21-q24. Diabetes. 2004. 53: 228-234.
    
    4. Das SK, Hasstedt SJ, Zhang Z, et al. Linkage and Association Mapping of a Chromosome 1q21-q24 Type 2 Diabetes Susceptibility Locus in Northern European Caucasians.Diabetes. 2004. 53: 492-499.
    
    5. Vionnet N, Hani EI-H, Dupont S, et al. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet. 2000. 67: 1470-1480.
    
    6. Elbein SC, Hoffman MD, Teng K, et al. A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes. 1999. 48:1175-1182
    
    7. Watanabe RM, Ghosh S, Langefeld CD, et al. The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. II. An autosomal genome scan for diabetes-related quantitative-trait loci. Am J Hum Genet. 2000. 67:1186-1200.
    
    8. Wiltshire S, Hattersley AT, Hitman GA, et al. A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. Am J Hum Genet 2001. 69:553-569
    
    9. Permutt MA, Wasson JC, Suarez BK, et al. A genome scan for type 2 diabetes susceptibility loci in a genetically isolated population. Diabetes. 2001. 50:681-685.
    
    10. Lindgren CM, Mahtani MM, Widen E, et al. Genomewide search for type 2 diabetes mellitus susceptibility loci in Finnish families: the Botnia study. Am J Hum Genet. 2002. 70:509-516
    
    11. Busfield F, Duffy DL, Kesting JB, et al. A genomewide search for type 2 diabetes-susceptibility genes in indigenous Australians. Am J Hum Genet. 2002. 70:349-357
    
    12. Demenais F, Kanninen T, Lindgren CM, et al. A meta-analysis of four European genome screens (GIFT Consortium) shows evidence for a novel region on chromosome 17p11.2-q22 linked to type 2 diabetes. Hum Mol Genet. 2003. 12:1865-1873
    
    13. Duggirala R, Almasy L, Blangero J, et al. Further evidence for a type 2 diabetes susceptibility locus on chromosome 11q. Genet Epidemiol. 2003. 24:240-242
    
    14. Hsueh WC, St Jean PL, Mitchell BD, et al. Genome-wide and fine-mapping linkage studies of type 2 diabetes and glucose traits in the Old Order Amish: evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-q24. Diabetes. 2003. 52:550-557
    
    15. Laivuori H, Lahermo P, Ollikainen V, et al. Susceptibility loci for preeclampsia on chromosomes 2p25 and 9p13 in Finnish families. Am J Hum Genet. 2003. 72:168-177
    
    16. Kim SH, Ma X, Klupa T, et al. Genetic modifiers of the age at diagnosis of diabetes (MODY3) in carriers of hepatocyte nuclear factor-1 alpha mutations map to chromosomes 5p15, 9q22, and 14q24. Diabetes. 2003. 52:2182-2186
    
    17. Sellick GS, Garrett C, Houlston RS. A novel gene for neonatal diabetes maps to chromosome 10p12.1-p13. Diabetes. 2003. 52:2636-2638
    18.Pezzolesi MG,Nam M,Nagase T,et al.Examination of Candidate Chromosomal Regions for Type 2 Diabetes Reveals a Susceptibility Locus on Human Chromosome 8p23.1.Diabetes.2004.53:486-491.
    19.Aulchenko YS,Vaessen N,Heutink P,et al.A genome-wide search for genes involved in type 2 diabetes in a recently genetically isolated population from the Netherlands.Diabetes.2003.52:3001-4.
    20.Zhao JY,Xiong MM,Huang W,et al.Type 2 diabetes susceptibility loci maps on chromosomes 1 and 20 in Chinese Han families.Am.J.Hum.Genet.1999.65:A455
    21.Du W,Sun H,Wang H,et al.Confirmation of susceptibility gene loci on chromosome 1 in northern China Han families with type 2 diabetes.Chin Med J (Engl),2001,114(8):876-878
    22.骆天红,赵萸,袁文涛,等。部分基因组扫描研究2型糖尿病易感基因座位的初步报告.中华内分泌代谢杂志2000年6月第16卷第3期
    23.luo TH,Zhao Y,Li G,et al.A genome-wide search for type Ⅱ diabetes susceptibility genes in Chinese Hans.Diabetologia.2001.44:501-6.
    24.Horikawa Y,Oda N,Cox N J,et al.Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus.Nat Genet.2000 Oct;26(2):163-75.Erratum in:Nat Genet.2000.26:502.
    25.Baier LJ,Permana PA,Yang X,et al.A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance.J Clin Invest.2000.106:R69-73.
    26.Cassell PG,Jackson AE,North BY,et al.Haplotype combinations of calpain 10gene polymorphisms associate with increased risk of impaired glucose tolerance and type 2 diabetes in South Indians.Diabetes.2002.51:1622-1628.
    27.Lynn S,Evans JC,White C,et al.Variation in the calpain-10 gene affects blood glucose levels in the British population.Diabetes.2002.51:247-250.
    28.孙红霞,张奎星,杜玮南,等。中国人CAPN10基因单核苷酸多态性的分布及其 在北方汉族2型糖尿病人群中的关联分析。中国医学科学院学报,2002.24: 228-233。
    
    29. Andersen G, Rose CS, Hamid YH, et al. Genetic variation of the GLUT10 glucose transporter (SLC2A10) and relationships to type 2 diabetes and intermediary traits. Diabetes. 2003. 52: 2445-2448.
    
    30. Xiang KS, Cox NJ, Sanz N, et al. Insulin-receptor and apolipoprotein genes contribute to development of NIDDM in Chinese Americans. Diabetes. 1989. 38: 17-23.
    
    31. Hart LM, Stolk RP, Dekker JM, et al. Prevalence of variants in candidate genes for type 2 diabetes mellitus in The Netherlands: the Rotterdam study and the Hoorn study.J Clin Endocrinol Metab. 1999. 84: 1002-1006.
    
    32. Porzio O, Federici M, Hribal ML, et al. The Gly972->Arg amino acid polymorphism in IRS-1 impairs insulin secretion in pancreatic beta cells.J Clin Invest. 1999. 104:357-364.
    
    33. Mammarella S, Romano F, Di Valerio A, et al. Interaction between the G1057D variant of IRS-2 and overweight in the pathogenesis of type 2 diabetes. Hum Mol Genet. 2000. 9: 2517-2521.
    
    34. Hansen L, Zethelius B, Berglund L, et al. In vitro and in vivo studies of a naturally occurring variant of the human p85alpha regulatory subunit of the phosphoinositide 3-kinase: inhibition of protein kinase B and relationships with type 2 diabetes, insulin secretion, glucose disappearance constant, and insulin sensitivity. Diabetes. 2001. 50: 690-693.
    
    35. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature. 2001. 409: 307-312.
    
    36. Osawa H, Onuma H, Murakami A and et al. Systematic search for single nucleotide polymorphisms in the resistin gene: the absence of evidence for the association of three identified single nucleotide polymorphisms with Japanese type 2 diabetes. Diabetes. 2002. 51: 863-866.
    37.Sentinelli F,Romeo S,Arca M,et al.Human resistin gene,obesity,and type 2diabetes:mutation analysis and population study.Diabetes.2002 Mar;51(3):860-2.Erratum in:Diabetes.2002.51:1992.
    38.Gu HF,Abulaiti A,Ostenson CG,et al.Single Nucleotide Polymorphisms in the Proximal Promoter Region of the Adiponectin(APM1) Gene Are Associated With Type 2 Diabetes in Swedish Caucasians.Diabetes.2004.53:S31-S35.
    39.Weyer C,Funahashi T,Tanaka S,et al.Hypoadiponectinemia in obesity and type 2 diabetes:close association with insulin resistance and hyperinsulinemia.J Clin Endocrinol Metab.2001.86:1930-1935.
    40.Deeb SS,Fajas L,Nemoto M,et al.A Pro12Ala substitution in PPARgamma2associated with decreased receptor activity,lower body mass index and improved insulin sensitivity.Nat Genet.1998.20:284-287.
    41.Altshuler D,Hirschhorn JN,Klannemark M,et al.The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2diabetes.Nat Genet.2000.26:76-80.
    42.Kamizono S,Yamada K,Seki N,et al.Susceptible locus for obese type 2diabetes mellitus in the 5'-flanking region of the tumor necrosis factor-alpha gene.Tissue Antigens.2000.55:449-452.
    43.Li YF,Sun HX,Wu GD,et al.Protein kinase C/zeta(PRKCZ) gene is associated with type 2 diabetes in Han population of North China and analysis of its haplotypes.World J Gastroenterol.2003.9:2078-2082
    44.孙红霞,杜玮南,李云峰,等。蛋白激酶C ξ亚型基因内SNP功能分析。中国医学科学院学报,2002.24:471-473。
    45.孙红霞,杜玮南,左瑾,等。蛋白激酶C ξ亚型基因及Urotensin Ⅱ基因中各有一个单核苷酸位点与中国北方汉族人2型糖尿病相关。中国医学科学院学报,2002.24:223-227
    46.Zhu GZ,Zuo J,Fang FD.Isolation of genes related to blood glucose- control in rat skeletal muscle.Chin Med J,2000.10:894-898.
    47.常永生,李云峰,左瑾,等。Fang-1,一个参与血糖调节的新基因。中国医学科学院学报,2002.24:466-470
    48.常永生,左瑾,张雪峰,等。Fudenine,一个新的与血糖调节相关的膜蛋白。中国医学科学院学报,2001.23:63-4
    49.常永生 杨畅 左瑾,等。一个参与血糖调节的新基因。中国医学科学院学报,2002 24.242-245。
    50.Karamohamed S,Demissie S,Volcjak J,et al.Polymorphisms in the insulin-degrading enzyme gene are associated with type 2 diabetes in men from the NHLBI Framingham Heart Study.Diabetes.2003.52:1562-1567.
    51.Fakhrai-Rad H,Nikoshkov A,Kamel A,et al.Insulin-degrading enzyme identified as a candidate diabetes susceptibility gene in GK rats.Hum Mol Genet.2000.9:2149-2158.
    52.WHO(World Health Organization) Study Group on Diabetes Mellitus.Diabetes Mellitus:World Health Organization Technical Report Series.Geneva:World Health Organization,1985.727:9-17.
    53.Li Y,Wu G,Zuo J,et al.Screening Susceptibility Genes of Type 2 Diabetes in Chinese Population by Single Nucleotide Polymorphism Analysis.Acta Academiae Medicinae Sinicae.2005,27(3):274-279
    54.Stephens M,Smith NJ and Donnelly P.A new statistical method for haplotype reconstruction from population data.Am J Hum Genet 2001;68:978-989
    55.Spielman RS,Ewens W J:A sibship test for linkage in the presence of association:the sib transmission disequilibrium test.Am J Hum Genet 1998;62:450-458
    56.Monteil,C,Marouillat S,Fillastre JP,et al.Effects of the medium HCO3-/CO2buffer system on differentiation and intermediary metabolism properties of rabbit proximal tubule cells in primary culture.Epithelial Cell Biol.1995:4,131-139
    57.Jaiswal BS,Conti M.Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase. J Biol Chem, 2001, 276: 31698 - 31708.
    
    58. Hadano S, Nasir J, Nichol K, et al. Genomic organization of the human caspase-9 gene on chromosome 1p36.1-p36.3. Mammalian Genome 1999, 10: 757-760.
    
    59. Hakem R, Hakem A, Duncan G. S, et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell, 1998, 94: 339-352,.
    
    60. Kuida K, Haydar TF, Kuan CY, et al. Reduced apoptosis and cytochromec-mediated caspase activation in mice lacking caspase 9. Cell 94: 325-327, 1998.
    
    61. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479-489, 1997.
    
    62. Marsden VS, O'Connor L, O'Reilly LA, et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419: 634-637, 2002.
    
    63. Afshar K, Gonczy P, DiNardo S, et al. fumble encodes a pantothenate kinase homolog required for proper mitosis and meiosis in Drosophila melanogaster. Genetics. 2001, 157, 1267-1276.
    64. DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988 37 667-687.
    
    65. Burke JP, Williams K, Gaskill SP, et al. Rapid rise in the incidence of type 2 diabetes from 1987 to 1996: results from the San Antonio Heart Study. Archives of Internal Medicine 1999 159 1450-1456.
    
    66. Prevention CfDCa. Trends in the prevalence and incidence of self reported diabetes mellitus: United States, 1980-1994. Morbidity and Mortality Weekly Report 1997 46: 1014-1018.
    
    67. Ludvik B, Nolan JJ, Baloga J, et al. Effect of obesity on insulin resistance in normal subjects and patients with NIDDM. Diabetes 1995 44: 1121-1125.
    68. Polonsky KS. Dynamics of insulin secretion in obesity and diabetes. International Journal of Obesity and Related Metabolic Disorders 2000 24 (Suppl2)S29-S31.
    
    69. Flier SN, Kulkarni RN & Kahn CR. Evidence for a circulating islet cell growth factor in insulin-resistant states. PNAS 2001 98: 7475-7480.
    
    70. Butler AE, Janson J, Bonner-Weir S, et al. β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102-110, 2003
    
    71. Bonner-Weir S. Islet growth and development in the adult. Journal f Molecular Endocrinology 2000 24 297-302.
    
    72. Butler AE, Janson J, Bonner-Weir S, et al. β-Cell Deficit and Increased β-Cell Apoptosis in Humans With Type 2 Diabetes. Diabetes 52: 102 -110, 2003
    
    73. Westermark P, Wilander E: The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia15 :417 -421,1978
    
    74. Lorenzo A, Razzaboni B, Weir GC, et al. Pancreatic islet cell toxicity of amylin associated with type 2 diabetes mellitus. Nature368: 756 -760,1994
    
    75. Zhang S, Liu J, Dragunow M, et al. Fibrillogenic amylin evokes islet beta-cell apoptosis through linked activation of a caspase cascade and JNK1. J Biol Chem. 2003 Dec 26; 278 (52):52810-9. Epub 2003 Oct 7.
    
    76. Kahn SE, D'Allessio D, Schwartz M, et al. Evidence of cosecretion of islet amyloid polypeptide and insulin by beta-cells, Diabetes 39 (1990) 634- 638.
    
    77. Biarnes M, Montolio M, Nacher V, et al. β-Cell death and mass in syngeneically transplanted islets exposed to short- and long-term hyperglycemia. Diabetes 51:66-72,2002
    
    78. Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes51:1437 -1442,2002
    
    79. Du W, Sun H, Wang H, et al. Confirmation of susceptibility gene loci on chromosome 1 in northern China Han families with type 2 diabetes. Chin Med J (Engl), 2001, 114(8): 876-878
    
    80. Gururajan, R, Lahti JM, Grenet J, et al. Duplication of a genomic region containing the Cdc2L1-2 and MMP21-22 genes on human chromosome 1p36.3 and their linkage to D1Z2. Genome Res 8: 929-939, 1998
    
    81. Comelis S, Bruynooghe Y, Denecker G, et al. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5: 597-605, 2000
    
    82. Xiang J, Lahti JM, Grenet J, et al. Molecular cloning and expression of alternatively spliced PITSLRE protein kinase isoforms. J. Biol Chem 269: 15786-15794, 1994
    
    83. Loyer P, Trembley JH, Lahti JM, et al. The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo. J. Cell Sci 111: 1495 - 1506, 1998
    
    84. Trembley JH, Hu D, Hsu LC, et al. PITSLRE p110 Protein Kinases Associate with Transcription Complexes and Affect Their Activity. J Biol Chem 277: 2589 - 2596, 2002
    
    85. Hu D, Mayeda A., Trembley JH, et al. CDK11 Complexes Promote Pre-mRNA Splicing. J Biol Chem 278: 8623 - 8629, 2003
    
    86. Zhang SW, Xu SL, Cai MM, et al. Effect of p58GTA on beta-1,4-galactosyl- transferase 1 activity and cell-cycle in human hepatocarcinoma cells. Mol Cell Biochem 221: 161-168, 2001
    
    87. Zhang SW, Cai M, Zhang S, et al. Interaction of p58~(PITSLRE), a G_2/M-specific Protein Kinase, with Cyclin D3. J Bio Chem 277: 35314 - 35322, 2002
    
    88. Cai MM, Zhang SW, Zhang S, et al. Different effects of p58PITSLRE on the apoptosis induced by etoposide, cycloheximide and serum-withdrawal in human hepatocarcinoma cells. Mol Cell Biochem 238: 49-55, 2002
    
    89. Beyaert R, Kidd VJ, Cornelis S, et al. Cleavage of PITSLRE Kinases by ICE/CASP-1 and CPP32/CASP-3 during Apoptosis Induced by Tumor Necrosis Factor. J. Biol. Chem. 272: 11694 -11697, 1997
    
    90. Chen S, Yin X, Zhu X, et al. The C-terminal Kinase Domain of the p34cdc2 -related PITSLRE Protein Kinase (p110C) Associates with p21-activated Kinase 1 and Inhibits Its Activity during Anoikis. J Biol Chem 278: 20029-20036, 2003
    
    91. Ariza ME, Broome-Powell M, Lahti JM, et al. Fas-induced Apoptosis in Human Malignant Melanoma Cell Lines Is Associated with the Activation of the p34~(cdc2)-related PITSLRE Protein Kinases: J Biol Chem 1999, 274: 28505 - 28513
    
    92. Lahti JM, Xiang J, Heath LS et al: PITSLRE protein kinase activity is associated with apoptosis. Mol Cell Biol 1995; 15: 1-11
    
    93. Bunnell, BA, Heath LS, Adams DE, et al. Increased expression of a 58-kDa protein kinase leads to changes in the CHO cell cycle. Proc Natl Acad Sci USA 1990,87:7467-7471
    
    94. Spiegelman M, Marks HH: Age and sex variations in the prevalence and onset of diabetes mellitus. Am J Public Health 1946; 36: 26-33.
    
    95. Westlund K. Incidence of diabetes mellitus in Oslo, Norway, 1925 to 1954. Brit J Pre Soc Med 1966; 20: 105-116
    
    96. Ferrannini E, Vichi S, Beck-Nielsen H et al: Insulin action and age. European Group for the Study of Insulin Resistance (EGIR). Diabetes 1996; 45: 947-953
    
    97. Weedon MN, Owen KR, Shields B et al: Common Variants of the Hepatocyte Nuclear Factor-4(?) P2 Promoter Are Associated With Type 2 Diabetes in the U.K. Population Diabetes 2004; 53: 3002-3006.
    1. Gururajan, R, Lahti J M, Grenet J, et al. Duplication of a genomic region containing the Cdc2L1-2 and MMP21-22 genes on human chromosome 1p36.3 and their linkage to D1Z2. Genome Res 8: 929-939, 1998
    
    2. Cornelis S, Bruynooghe Y, Denecker G, et al. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol Cell 5: 597-605, 2000
    
    3. Xiang J, Lahti JM, Grenet J, et al. Molecular cloning and expression of alternatively spliced PITSLRE protein kinase isoforms. J. Biol Chem 269: 15786-15794, 1994
    
    4. Loyer P, Trembley JH, Lahti JM, et al. The RNP protein, RNPS1, associates with specific isoforms of the p34cdc2-related PITSLRE protein kinase in vivo. J. Cell Sci 111: 1495 - 1506, 1998
    
    5. Trembley JH, Hu D, Hsu LC, et al. PITSLRE p110 Protein Kinases Associate with Transcription Complexes and Affect Their Activity. J Biol Chem 277: 2589 - 2596, 2002
    
    6. Hu D, Mayeda A, Trembley JH, et al. CDK11 Complexes Promote Pre-mRNA Splicing. J Biol Chem 278: 8623 - 8629, 2003
    
    7. Zhang, SW, Xu SL, Cai, MM, et al. Effect of p58GTA on beta-1,4- galactosyltransferase 1 activity and cell-cycle in human hepatocarcinoma cells. Mol Cell Biochem 221: 161-168, 2001
    
    8. Zhang SW, Cai M, Zhang S, et al. Interaction of p58~(PITSLRE), a G_2/M-specific Protein Kinase, with Cyclin D3. J Bio Chem 277: 35314 - 35322, 2002
    
    9. Cai MM, Zhang SW, Zhang S, et al. Different effects of p58PITSLRE on the apoptosis induced by etoposide, cycloheximide and serum-withdrawal in human hepatocarcinoma cells. Mol Cell Biochem 238: 49-55, 2002
    
    10. Beyaert R, Kidd VJ, Cornelis S, et al. Cleavage of PITSLRE Kinases by ICE/CASP-1 and CPP32/CASP-3 during Apoptosis Induced by Tumor Necrosis Factor. J. Biol. Chem. 272: 11694 -11697, 1997
    
    11. Chen S, Yin X, Zhu X, et al: The C-terminal Kinase Domain of the p34cdc2 -related PITSLRE Protein Kinase (p110C) Associates with p21-activated Kinase 1 and Inhibits Its Activity during Anoikis. J Biol Chem 278: 20029-20036, 2003
    
    12. Ariza ME, Broome-Powell M, Lahti JM, et al. Fas-induced Apoptosis in Human Malignant Melanoma Cell Lines Is Associated with the Activation of the p34~(cdc2)-related PITSLRE Protein Kinases: J Biol Chem 1999, 274: 28505 - 28513
    
    13. Lahti JM, Xiang J, Heath LS et al: PITSLRE protein kinase activity is associated with apoptosis. Mol Cell Biol 1995; 15: 1-11
    
    14. Bunnell, BA, Heath LS, Adams DE, et al. Increased expression of a 58-kDa protein kinase leads to changes in the CHO cell cycle. Proc Natl Acad Sci USA 1990, 87:7467-7471
    
    15. Rhodes, C. J., and White, M. F. Molecular insights into insulin action and secretion. Eur J. Clin. Invest. 2002, 32, Suppl. 3, 3-13
    
    16. Deng W, Wang DA, Gosmanova E, et al. LPA protects intestinal epithelial cells from apoptosis by inhibiting the mitochondrial pathway. Am J Physiol Gastrointest Liver Physiol. 2003 May; 284 (5): G821-9
    
    17. Lee BH, Ruoslahti E. Alpha5-beta1 integrin stimulates Bcl-2 expression and cell survival through Akt, focal adhesion kinase, and Ca2+/calmodulin- dependent protein kinase IV. J Cell Biochem. 2005 Aug 15; 95(6): 1214-23.
    
    18. Frisch SM, Vuori K, Ruoslahti E, et al. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 134 :793 -799,1996.
    
    19. Ilic D, Almeida EA, Schlaepfer DD, et al. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol 143:547-560,1998
    
    20. Khwaja A, Rodriguez-Viciana P, Wennstrom S, et al. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. Embo J16: 2783 -2793,1997
    
    21. Lee JW, Juliano RL: Alpha5beta1 integrin protects intestinal epithelial cells from apoptosis through a phosphatidylinositol 3-kinase and protein kinase B-dependent pathway. Mol Biol Cell 11: 1973 -1987,2000
    
    22. Contreras JL, Smyth CA, Bilbao G, et al. Simvastatin induces activation of the serine-threonine protein kinase AKT and increases survival of isolated human pancreatic islets. Transplantation 74: 1063 -1069,2002
    
    23. Liu W, Chin-Chance C, Lee EJ, et al. Activation of phosphatidylinositol 3-kinase contributes to insulin-like growth factor l-mediated inhibition of pancreatic beta-cell death. Endocrinology 143: 3802 -3812,2002
    
    24. Srinivasan S, Bernal-Mizrachi E, Ohsugi M, et al. Glucose promotes pancreatic islet beta-cell survival through a PI 3-kinase/Akt-signaling pathway. Am J Physiol Endocrinol Metab 283 :E784 -E793.2002
    
    25. Tuttle RL, Gill NS, Pugh W, et al. Regulation of pancreatic beta-cell growth and survival by the serine/threonine protein kinase Akt1/PKBalpha. Nat Med 7: 1133-1137,2001
    
    26. Wrede CE, Dickson LM, Lingohr MK, et al. Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1). J Biol Chem 277 :49676 -49684,2002
    
    27. Polte T R and Hanks S K Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130~(Cas). Proc. Natl. Acad. Sci. USA. 1995,92, 10678-10682
    
    28. Harte M T, Hildebrand J D, Burnham, M R, et al. p130cas, a substrate associated with v-Src and v-Crk, localizes to focal adhesions and binds to focal adhesion kinase. J. Biol. Chem. 1996, 271, 13649-13655
    
    29. Lingohr M K, Buettner R, and Rhodes CJ. Pancreatic beta-cell growth and survival--a role in obesity-linked type 2 diabetes? Trends Mol. Med. 2002, 8, 375-384.
    30. Yu CG, Yezierski RP. Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res Mol Brain Res. 2005 Aug 18; 138(2): 244-55.
    31.Tada A, Pereira E, Beitner-Johnson D, et al. Mitogen- and ultraviolet- B-induced signaling pathways in normal human melanocytes. J Invest Dermatol. 2002, Feb;118(2): 316-22.
    
    32. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124: 619 -626,1994
    
    33. Wang RN, Rosenberg L. Maintenance of beta-cell function and survival following islet isolation requires reestablishment of the islet-matrix relationship. J Endocrinol 163 :181 -190,1999
    
    34. Bosco D, Meda P, Halban PA, et al. Importance of cell-matrix interactions in rat islet β-cell secretion in vitro: role of (?)6β1 integrin. Diabetes 49 :233 -243,2000.
    
    35. Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Bio 14: E83 -E90,2002
    
    36. Howe AK, Aplin AE, Juliano RL: Anchorage-dependent ERK signaling- mechanisms and consequences. Curr Opin Genet Dev 12 :30 -35,2002
    
    37. Beviglia L, Golubovskaya V, Xu L, et al. Focal adhesion kinase N-terminus in breast carcinoma cells induces rounding, detachment and apoptosis. Biochem. J. (2003) 373, 201-210.
    1 Nake J,ParkBC,Acdili D.Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway. J. Biol. Chem, 1999, 274: 15982-85.
    
    2 Rena G, Guo S, Cichy SC, et al. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem, 1999, 274: 17179-17183.
    
    3 Foretz M, Guichard C, Ferre P, et al. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. PNAS, 1999, 96: 12737 -12742.
    
    4 Stoeckman AK, Towle HC. The role of SREBP-1c in nutritional regulation of lipogenic enzyme gene expression. J Biol Chem, 2002, 277: 27029-35.
    
    5 Horton, J.D., Goldstein, J.L., and Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest, 2002, 109:1125-1131.
    
    6 Braiman L, Alt A, Kuroki T, et al. Activation of Protein Kinase C(?)lnduces Serine Phosphorylation of VAMP2 in the GLUT4 Compartment and Increases Glucose Transport in Skeletal Muscle. Mol. Cell. Biol, 2001, 21: 7852 - 61.
    
    7 Takayama S, White MF, and Kahn CR. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity. J. Biol. Chem, 1988,263: 3440-3447.
    
    8 Yu C, Chen Y, Cline G. W, et al. Mechanism by Which Fatty Acids Inhibit Insulin Activation of Insulin Receptor Substrate-1 (IRS-1)-associated Phosphatidylinositol 3-Kinase Activity in Muscle. J. Biol. Chem, 2002, 277: 50230 - 50236.
    
    9 Moller D. Potential role of TNF-αin the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab. 2000, 11:212-217.
    
    10 Greene MW, Garofalo RS. Positive and negative regulatory role of insulin receptor substrate 1 and 2 (IRS-1 and IRS-2) serine/threonine phosphorylation. Biochemistry, 2002, 41(22):7082-91.
    
    11 Jakobsen SN, Hardie DG, Morrice N et al. 5'-AMP-activated Protein Kinase Phosphorylates IRS-1 on Ser-789 in Mouse C2C12 Myotubes in Response to 5-Aminoimidazole-4-carboxamide Riboside. J. Biol. Chem, 2001, 276: 46912-46916.
    
    12 Paz K. Liu YF, Shorer H, et al. Phosphorylation of Insulin Receptor Substrate-1 (IRS-1) by Protein Kinase B Positively Regulates IRS-1 Function. J Biol Chem, 1999,274:28816-22.
    
    13 Moller D E, Greene DA. Peroxisome proliferator-activated receptor (PPAR) g agonists for diabetes. Adv. Prot. Chem, 2001, 56: 181-212.
    
    14 Manchem V P, Goldfine I D, Kohanski R A, et al. A Novel Small Molecule That Directly Sensitizes the Insulin Receptor In Vitro and In Vivo. Diabetes, 2001, 50: 824-830.
    
    15 Elchebly M, Payette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 1999, 283: 1544-1548.
    
    16 Gum RJ, Gaede LL, Koterski S L, et al. Reduction of Protein Tyrosine Phosphatase 1B Increases Insulin- Dependent Signaling in ob/ob Mice. Diabetes, 2003,52:21-28.
    
    17 Clement S, Krause U, Desmedt F, et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature, 2001, 409: 92-7.
    
    18 Bertelli DF, Ueno M, Amaral MEC, et al. Reversal of denervation-induced insulin resistance by SHIP2 protein synthesis blockade. Am J Physiol Endocrinol Metab, 2003, 284: E679-E687.
    
    19 Nakashima N, Sharma P M, Imamura T, et al. The Tumor Suppressor PTEN Negatively Regulates Insulin Signaling in 3T3-L1 Adipocytes. J. Biol. Chem. 2000,275: 12889-12895.
    
    20 Hundal R S, Petersen K F, Mayerson A B, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest, 2002, 109: 1321 -1326.
    21 Yu C, Chen Y, Cline G. W. et al. Mechanism by Which Fatty Acids Inhibit Insulin Activation of Insulin Receptor Substrate-1 (IRS-1)-associated Phosphatidylinositol 3-Kinase Activity in Muscle. J. Biol. Chem., 2002, 277: 50230 - 50236.
    
    22 Shulman GI. Cellular mechanisms of insulin resistance. J. Clin. Invest, 2000, 106: 171-176.
    
    23 Idris I, Gray S, Donnelly R. Insulin action in skeletal muscle: isozyme-specific effects of protein kinase C. Ann N Y Acad Sci, 2002, 967:176-82.
    
    24 MacAulay K, Hajduch E, Blair A S. et al. Use of lithium and SB-415286 to explore the role of glycogen synthase kinase-3 in the regulation of glucose transport and glycogen synthase. Eur. J. Biochem, 2003, 270: 3829-38.
    
    25 Cline GW, Johnson K, Regittnig W, et al. Effects of a Novel Glycogen Synthase Kinase-3 Inhibitor on Insulin-Stimulated Glucose Metabolism in Zucker Diabetic Fatty (fa/fa) Rats. Diabetes, 2002, 51: 2903-10.
    
    26 Xu H, Dembski M, Yang Q, et al. Dual specificity MAP kinase phosphatase-4 plays a potential role in insulin resistance. J Biol Chem. 2003, 278: 30187 - 30192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700