斯格猪群体遗传结构与经济性状的微卫星标记的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验研究利用微卫星DNA标记技术,对斯格五系杂交专门化配套品系的5个曾祖代A系、B系、C系、X系、Y系群体,祖代群体,父母代群体和商品代群体的遗传结构进行了分析,探讨了群体之间的遗传关系和群体内的遗传变异,分析了斯格猪各个群体内的遗传标记基因型与经济性状的关系。研究结果表明:斯格猪在标记位点S0214、S0003、SW790、SWR485上共检测到37个等位基因,平均每个位点等位基因数9.3个。同一位点不同曾祖代群体间出现的等位基因数不完全相同,基因型频率差异也较大。认为曾祖代各个群体具有不同的遗传基础。经过研究分析找到了斯格猪曾祖代群体的特征性条带作为各个群体的特定的遗传标记。A系特有的特征性条带为SW790位点的154bp条带和SWR485位点的126bp条带,B系特有的特征性条带为SW790位点的116bp条带和S0003位点的143bp、146bp、161bp条带,X系特有的特征性条带为SWR485位点的138 bp条带。5个曾祖代群体和祖代、父母代、商品代群体的平均位点杂合度在0.6795~0.7689之间,平均多态信息含量在0.6786~0.7686之间,表明斯格猪在群体内具有较高的遗传多样性,这与斯格猪专门化品系培育的遗传基础比较广泛有关。祖代、父母代、商品代群体的平均杂合度随着群体在杂交繁育体系中位置的由高到低而逐渐升高。根据Nei氏标准遗传距离用类平均法进行了聚类,结果将杂交繁育体系中作为母本使用的A系和X系聚为一类,作为父本使用的C系、Y系聚为一类。这与曾祖代5个品系群体在杂交繁育体系中所起的作用相吻合。试验对斯格猪在背膘厚、全程日增重,公猪的采精量、精液密度、精子活力和母猪的产仔数、活仔数、出生窝重、21日龄窝重、28日龄窝重性状与微卫星标记基因型的关系进行了分析,找到了各个性状在不同标记位点上性能较好的标记基因型。其中在在背膘厚上发现有SWR485位点的AA基因型可以作为标记辅助选择的标记基因型;在全程日增重性状上发现SW790位点上的AA基因型可作为标记辅助选择的标记基因型;在采精量上发现的可作为标记辅助选择的标记基因型的为SW790的AA基因型、S0003的AA基因型;在精液密度上发现的可作为标记辅助选择的标记基因型的为SWR485的AA基因型;在精子活力上发现的可作为标记辅助选择的标记基因型的为S0003的AA基因型,SW790的CC基因型;在产仔数上发现的可作为标记辅助选择的标记基因型的为S0003的BB基因型;在初生窝重上上发现的可作为标记辅助选择的标记基因型的为S0003的AA基因型;在21日龄窝重上发现的可作为标记辅助选择的标记基因型的为S0003的BB基因型。
This experiment studied the Seghers 5-line-crossbreed commercial hybrid line by using microsatellite DNA genetic markers. 5 grand-grandparent lines (line A, line B, lien C, line X, line Y), grandparent herd, parent herd and the final result commercial hybrid herd were studied. The herd genetic structures, genetic diversity and the distance among herds were analyzed. The relationship between genetic marker genotype of Seghers herds and economic traits were analyzed. The results of the experiment were shown as follows. 37 alleles were detected at loci S0214, S0003, SW790 and SWR485 with average 9.3 alleles per locus. The numbers of alleles in each grand-grandparent line herds were different from each other. There were great genotype differences among grand-grandparent herds. This indicated that the genetic background of 5 grand-grandparent lines were different from each other. The characteristic bands of Seghers grand-grandparent pigs were found. The characteristic bands of line A were 154bp band at locus SW79
    0 and 126bp band at locus SWR485. The characteristic bands of line B were 116bp band at locus SW790 and 143bp, 146bp, 161bp bands at locus S0003. The characteristic band of line X was 138bp band at locus SWR485.The range average locus heterozygosity of grand-grandparent herds, grandparent herd, parent herd, and commercial hybrid herd was between 0.6795 and 0.7689. The locus average polymorphism information content was between 0.6786 and 0.7686. The result above showed that the genetic diversity of Seghers herds at these loci was high, which because the genetic breeding backgrounds of Seghers pigs were enough wide. The average locus heterozygosity of grandparent herd, parent herd and commercial hybrid herd rose gradually with the decline of herd position in the hybrid system. The clustering of 5 grand-grandparent lines was done using group average method based on the Nei's standard distance. Line A and line X herds which only female pigs were used, met into one group. Line C and line Y which only male pigs we
    re used met into one group. The result accorded with the effect of the lines in the hybrid system. It was analyzed the relationship between the microsatellite marker genotypes and traits, which included back fat thickness, whole period daily gain, ejaculation volume, sperm density, sperm livingness, the litter size, alive Utter size, litter weight, 21 day litter weight, 28 day litter weight. The genetic marker genotypes
    
    
    of the traits at each locus were found. The results were shown as follows. The genetic marker genotype of back fat thickness was genotype AA at locus SWR485. The genetic marker genotype of the whole period daily gain was genotype AA at locus SW790. The genetic marker genotypes of the ejaculation volume were genotype AA at locus S0003, genotype AA at locus SW790. The genetic marker genotype of the sperm density was genotype AA at locus SWR485. The genetic marker genotypes of the sperm livingness were genotype AA at locus S0003 and genotype CC at locus SW790. The genetic marker genotype of the litter size was genotype BB at locus S0003. The genetic marker genotypes of the litter weight was genotype AA at locus S0003. The genetic marker genotype of the 21st day litter weight was genotype BB at locus S0003.
引文
[1] 路兴中,郭传甲,吕志强等.现代猪肉生产理论与实践[M].北京:中国农业科技出版社.1994.21~38.
    [2] 常洪,耿社民,刘小林等.我国家畜遗传资源的优势与危机[A].常洪.中国家畜遗传资源研究[C].陕西:陕西人民教育出版社,1998.3~15.
    [3] 赵智杰,杨再,洪子燕.保护我国畜禽资源的多样性[J].家畜生态,2002,23(2):72.
    [4] 马月辉,陈幼春,冯维祺.中国家养动物多样性概况[J].畜牧兽医学报,2000,31(5):394~399.
    [5] 施启顺,柳小春.养猪业中的杂种优势利用[M].长沙:湖南科学技术出版社.1997.146~151.
    [6] 陈四清,范首君,韩秋实,等.浅谈猪的配套系[J].畜禽业,2000,127:20~21.
    [7] 陈四清,王金勇,范首君,等.谈谈猪配套系选择与培育的几个问题[J].上海畜牧兽医通讯,2000,14:12~14.
    [8] 林广,邬玉祥.光明猪配套系的选育[J].广东畜牧兽医科技,2002,22(2):27~30.
    [9] 刘孟洲.瘦肉型华特猪配套系选育研究[J].甘肃农业大学学报,1999,34(3):247~254.
    [10] 孟安明.DNA指纹技术及其在农业上的应用[J].生物工程进展,1993,14:46~48
    [11] 许振英.中国地方猪种种质特性[M].浙江科学技术出版社,1989.
    [12] 张仲葛,允煌.中国畜牧史料集[M].北京:科学出版社,1980.
    [13] 张仲葛.我国猪种的形成及其发展[J].中国农业大学学报,1980,3:45~55.
    [14] 聂龙,施立明.西南地方品种猪血液蛋白遗传多样性研究[J].生物多样性,1995,3(1):1~7.
    [15] 马建岗,路兴中.乌鸡的血清蛋白多样性与其遗传关系的研究[J].畜牧兽医学报,1993,24(1):12~16.
    [16] 彭中镇,猪的遗传改良[M] ,农业出版社,北京,1994.
    [17] Smithies O. Zone eletrophoresis in stach gels: group variations in the serum proteins of normal human adults[J]. J. Biochem. 1955, 61: 629~641.
    [18] Lush I. Z. Genetic polymorphism in the egg albumin protein of the domestic fowl [J]. Nature, 1961, 194: 982~984.
    [19] 唐海东.家畜蛋白多态性研究的电泳方法进展[J].黄牛杂志,1990,2:55~57.
    [20] 李炳坦,陈效华.中国猪种(二)[M].上海科学技术出版社,上海,1982.
    [21] 邹峄,陈世荃,黄路生.家畜血型及其应用[M].山东科学技术出版社,济南,1990.
    [22] 邹峄.家畜血型在畜牧业上的应用[J].畜牧与兽医,1981,1:18~24.
    [23] 王子淑,王喜忠,陈文元.藏猪显带染色体的研究[J].畜牧兽医学报,1998,19(3):164~170.
    [24] 邓务国.物种遗传多型研究方法的发展[J].生物学通报,1994,29(1):7~9.
    
    
    [25] Botstein. D, White RL, Skolnick M, et al. Construction of m genetic linkage map in man using restriction fragment length polymorphism[J]. Am. J. Hum. Genet., 1980, 32 (3): 314~331.
    [26] 根井正利著,王家玉译.分子群体遗传学与进化论[M] ,农业出版社,北京,1983.
    [27] 齐广海.遗传标记应用于家畜育种的研究现状及展望[J].草食家畜,1990,5:1~5.
    [28] 徐吉臣,朱立煌.遗传图谱中的分子标记[J].生物工程进展,1992,15(5)1~3.
    [29] Bell. G. I., The highly polymorphic region near the human insulin gene composed of simple randomly repeating sequence[J]. Nature. 1982, 295: 31~35.
    [30] Jeffreys. A. J., Hyper variable minisatellite region in human DNA[J]. Nature, 1985, 316: 76~79.
    [31] Doris Bachtrog, Martin Agis, Marianne Irnhof, et al. Microsatellite variability differs between dinucleotide repeat motifs~evidenee from Drosophila melanogaster [J]. Mol. Biol. Evol., 2000, 17(9): 1277~1285.
    [32] Welsh. J., Mccleu. M. Fingerprinting genome using PCR with arbitrary primers[J]. Nucl. Aci. Res. 1990, 18: 1213~1218.
    [33] 刘训理,刘庆信.RAPD技术及其在家蚕研究上的应用[J].山东农业大学学报,1996,27 (2)233~236.
    [34] 惠东威,陈受宜.RAPD技术及其应用[J].生物工程进展,1992,12(6):1~5.
    [35] 李千军,穆淑琴.分子遗传标记及其在猪育种中的应用[J].天津农业科学,1999,5(1):21~25.
    [36] 张细权,吕雪梅,杨玉华等.用微卫星多态性和RAPD分析广东地方鸡种的群体遗传变异[J].遗传学报,1998,25(2):112~119.
    [37] Van Zeveren A., Peelman L., Van de Weghe A., et al. A genetic study of 4 Belgian pig populations by means of 7 microsatellite loci[J]. J. Anim Breed. Genet., 1995, 112(3): 191~204.
    [38] Kacirek. A. L., Roghers. A. R., Banshad. M., et al. Variation at microsatellite loci in Large White, Yorkshire, Hampshire breedsofswine[J]. Proc 6th WCGALP, 1998, 23: 640~643.
    [39] 孟安明.京北鸡及其杂交后代的DNA指纹分析[J].中国动物遗传育种研究.1995,110~116.
    [40] Visscher. P. M., Haley. C. S. Utilizing genetic markers in pig breeding programs [J]. Animal Breeding Abstracts, 1995, 63(1): 1~7.
    [41] 刘剑锋,王立贤.分子遗传标记在猪育种中的应用[J].国外畜牧科技,1995,22(6);24~27.
    [42] 陈艳荣,王继文,张仁双.遗传标记在水禽育种中的应用[J].四川畜牧兽医,2003,30(2):31~32.
    [43] 江铁山、柳小春.猪血浆蛋白质多态性及其与日增重关系的研究[J].湖南农业大学学报,1997,23(1):64~71.
    [44] 杜立新,曹顶国,刘永祥.小尾寒羊多胎性能分子标记的研究[C].全国动植物数量遗传与
    
    育种学术研讨论会文集,2000:292.
    [45] 侯建国,李加琪,陈瑶生等.微卫星DNA标记与猪肉质性状的相关分析.华南农业大学学报(自然科学版),2003,24(2):63~66.
    [46] Anderson, L., et al. Genetic mapping of QTL for growth and fatness in pig [J]. Science, 1994, 263: 1771~1774.
    [47] Hillel W. G. Variation in genetic composition in backcrossing program. Journal of heredity. 1993, 84(3): 212~213.
    [48] 吴桢方,分子标记在猪育种中的应用,Animal biotechnology bulletin,1996, 5, suppl: 6~9.
    [49] 吴晓林,李枸,Merete Fredholm.连续近交下家猪微卫星基因组杂合度与经济性状的相关性研究.遗传学报,2001,28(1):20~28.
    [50] 施启顺,柳小春,吴晓林.商品杂种猪生长和肉用性状的杂交效果参数与RAPD带纹相似系数间关系浅析.遗传学报,2001,28(8):722~729.
    [51] 黄生强,施启顺,柳小春等.微卫星标记预测猪部分经济性状杂种优势的研究.Animal Biotechnology Bulletin, 2002, 8(10): 224~226.
    [52] 贾青.墨锋涛,孔令聪等.斯格配套系杂交商品猪性能测定.养猪,2003,6:15~17.
    [53] Rohror Gray M, Alexander Leeson J, John W Keele et al. A Microsatellite linkage map of the porcine genome. Genetics, 1994, 136: 231~245.
    [54] 赵书红.猪12号染色体部分微卫星位点遗传图的构建.东北农业大学博士学位论文.1998,40.
    [55] 中国科学院数学研究所统计祖.常用数理统计方法[M].北京:科学出版社,1973.233.
    [56] Nei M. Estimation of average heteroaygosity and genetic distance from a small number of individuals. Genetics, 1978, 89: 583~590.
    [57] 张增利,中国主要地方绵羊品种遗传多态性研究[D].河北农业大学硕士学位论文,2003,14.
    [58] 王昕,中国部分地方猪种微卫星DNA指纹的群体遗传学研究[D].西北农林科技大学硕士学位论文,2002,27.
    [59] 连林生、鲁绍雄,版纳微型猪血清蛋白的多态性研究,上海实验动物科学,2000,20(1):17~19.
    [60] Buchanan F C, Adams L J, Littlejohn R P et al. Determination of evolutionary relationship among sheep breeds using microsatellites. Genomics, 1994, 22: 397~403.
    [61] Baker C M, Manwell C. Heterozygosity of the sheep: polymorphism of malic enzyme, isocitrate dehydrogenase(NADP+), catalase and esterase. Australian Journal of Biological Science, 1977, 30: 127~140
    [62] Nei M, Tajima F, Tateno Y. Accuracy of estimation phylogenetic trees from molecular data. [J] J. Mol. Evol. 1983, 19: 153~170.
    [63] Tanaka K., Oishi T., Kurosawa K., et al. Genetic relationship among several pig population polymorphism [J]. Anim Blood Grps Biochet, 1983, 14: 191~200.
    
    
    [64] Lingaas F. Biochemical parameters in pigs [J]. Anim Breed Genet, 1992, 109(4): 281~290.
    [65] Cepica S., Wolf, Hojny, et al. Relationship between genetic distances of parental pig breeds and heterozgosity of their F1 crosses measured by genetic markers [J]. Anim Genet, 1995, 26: 135~140.
    [66] 唐海东,路兴中.猪血清碱性磷酸酶(Akp)多态性的研究初报[J].上海农学院学报,1990,8(3):183~185.
    [67] 林树茂,罗明,黄路生,等.江西地方猪种血液蛋白及酶的多态性的研究[J].中国畜牧杂志,1998,34(6):17~19.
    [68] 施启顺.中国畜禽遗传育种进展[C].长沙:湖南科学技术出版社,1993.143~151.
    [69] 顾亚玲.家鸡血清蛋白质及酶多态性与杂种优势利用的研究[D] ,西北农业大学硕士学位论文.陕西杨陵.1994,3.
    [70] 殷勤、陈家栋、张江,等.运用DNA指纹技术辅助筛选罗曼蛋鸡配套组合[J].中国家禽,2001,23(12):13~14.
    [71] Nei M., Takezaki N. Estimation of genetic distance and phylogenetie trees from DNA analysis. [J]. Proc 5th World Congr Genet Appl Livest Prod. Canada, 1994, 21: 405~411
    [72] F. Gerbens, D. J. de. Koning, F. L. Harders, et al. The effeet of adipoeyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs[J]. J. Anim. Sci. 2000. 78: 552~559.
    [73] M. pérez-Enciso, A. Clop, J. L. Noguera, et al. A QTL on pig chromosome 4 affects fatty acid metabolism: Evidence from an Iberian by Landrace intercross [J]. J. Anim. Sci. 2000.78: 2525~2531.
    [74] Marklund. L., P. E. Nystrm, S. Stern, et al. Conformed quantitative trait loci for fatness and growth on pig chromosome 4[J]. Heredity, 82: 134~141.
    [75] L. Wang, T-P. Yu, C. K. Truggle et al. A direct search for quantitative trait loci on chromosome 4 and 7 in pigs[J]. J. Anim. Sci. 1998. 76: 2560~2567
    [76] Rathje. T. A., Rohrer. G. A., Johnson. R. K. Evidence for quantative trait loci affecting ovulation rate in pigs[J]. J. Anim. Sci., 1997, 75: 486~1489.
    [77] Rothschild, M., C. Jacobson, D. Vaske, et al. The estrogen recepter locus is associated with a major gene influencing litter size in pigs[J]. Proc. Natl. Acad. Sci. 1996, 93: 201~205
    [78] Lamberson, W. R., Genetic parameters for reproductive traits. In Genetic of Swine, NC-103 Publication. 1990
    [79] 张淑君,熊远著,曾凡同,等.猪八号染色体产仔数微卫星标记的探讨[J].养猪,2001,2:31~33.
    [80] 刘月环,蒋涛,彭淑红,等.影响瘦肉率的主基因及其分子标记的研究进展[J].黄牛杂志2001,27(2):30~35
    [81] Ernst C. W., Kapke P. A., Yerle M., et al. The Leptin receptor gene (LEPR) maps to porcine chromosome 6. [J] Mammalian Genome, 1996, 8(3): 226.
    [82] A. L. Vincent, L. Wang, M. F. Rothschild. A restriction fragment length polymorphism in
    
    the porcine Leptin receptor gene[J]. J. Anim. Sci. 1997. 75: 2287.
    [83] Hu Xiaoxiang, Dai Rujuan, Li Ning, et al. Expression detection and partial cloning of porcine leptin recepter (OBR) gene[y]. Chinese Science Bulletin, 2001, 46(5): 396~400.
    [84] Andersson-klund. L, Haley C. S., Ellegren H., et al. Genetic mapping of quantitative trait loci for growth and famess in pigs[J] Science, 1994, 263(5154): 1771~1774.
    [85] Rathje. T. A., Rohrer. G. A., Johnson. R. K. Evidence for quantative trait loci affecting ovulation rate in pigs[J]. J. Anim. Sci., 1997, 75: 486~1489.
    [86] 陈克飞,黄路生,李宁,等.猪雌激素受体(ESR)基因对产仔数性状的影响[J].遗传学报,2000,27(10):853~857.
    [87] 李凤娥,熊远著,邓昌彦,等.猪品种间ESR基因PCR-RFLP的初步研究[J].华中农业大学学报,2000,19(1):37~39.
    [88] 张淑君,曾凡同,邱祥聘,等.母猪的二个基因位点的多态性及其与产仔数连锁关系研究[J] ,四川农业大学学报:2001,19(1):73~76.
    [89] Willams. J. G. K. DNA polymorphysiums amplified by arbitrary primer are useful genetic marker[J]. Genomics. 1990, 21: 63~70.
    [90] 焦骅.家畜育种学[M].北京:中国农业出版社,1995.
    [91] J.萨姆布鲁克,D.W.拉赛尔分子克隆试验指南(第三版)[M].北京:科学出版社,2003.
    [92] 耿社民.绒山羊经济性状标记选择的遗传学研究[D].西北农林科技大学硕士学位论文,1998,44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700