赣南黄沙脉状钨矿床容矿断裂构造系统成因探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赣南脉状钨矿床广泛发育“五层楼”(自脉带顶部向下依次是线脉带、细脉带、薄脉带、大脉带和尖灭带)式容矿断裂构造系统。以往对赣南脉状钨矿床容矿断裂构造系统的成因研究大多侧重于区域构造演化对其形成的控制作用,很少考虑花岗岩浆及其演化产物的作用。本文以黄沙脉状钨矿床芭蕉坑组矿脉带为例,通过室内-野外、理论-实验、宏观-微观相结合来研究探讨其形成机理,以期丰富和发展构造、成矿理论。取得如下成果:
     花岗岩是矿床的成矿母岩,两者之间存在密切的时间、空间和物质组成上的联系。矿床是花岗岩浆结晶分异作用后形成的岩浆热液产物。从花岗岩浆的形成条件、蚀变岩体的水平分带及线脉带形成于高温来看,成矿早期的流体可能由超临界流体演化而成。
     容矿断裂构造系统局限分布于花岗岩体的正上方,总体呈树枝状放射分布;矿带存在明显的水平、垂直分带,与区域构造极不协调。无论从整个矿区石英脉的空间分布特征,还是从单个容矿断裂的内部结构来看,以及从成矿流体的异常高压来分析,容矿断裂构造系统具有明显的水力断裂的特征。
     岩石声发射的凯塞效应可以记录岩石所经历的古构造活动。分别采集细脉带、大脉带中的围岩和花岗岩样品进行声发射测试,所获的最大主应力值按大小明显分为两群。细脉带围岩和花岗岩均记录了4次古构造运动,大脉带围岩记录了8次古构造运动。考虑了热应力、重力应力及该测试方法的误差,细脉带中的2个围岩样品和花岗岩这3个样品的4个最大主应力值和大脉带围岩中4个较小的最大主应力值与当今地应力测定结果接近,可能表明由这4个最大主应力值所对应的4次古构造活动记录主要反映了矿床形成以后的区域性构造活动。而大脉带围岩所记录的其余4个最大主应力值较大的古构造活动,由于这4个最大主应力值的大小与成矿流体的异常高压相当,可能反映了4次水力断裂活动的记录(次数)。
     总之,黄沙脉状钨矿床的容矿断裂构造系统为水力断裂成因,成矿期有4次水力断裂活动,与4个成矿阶段相对应。
The vein-type tungsten ore deposit in southern Jiangxi Province exhibit unique“five-storeyed type”morphological vertical as well as horizontal zonality (from top to bottom: thread-vein zone, veinlet zone, thin-vein zone, big vein zone and thinning-out zone).So far the research on the host structures in the vein-type tungsten ore deposits in southern Jiangxi Province has been focused largely on the control of the evolution of the regional structures, and rarely touched upon the important role played by granitic magma and the associated postmagmatic processes. This paper takes the belt of the Bajaoken Group ore vein as major object for studying the mechanisms of formation of the“five-storeyed type”morphological zonality by synthetic approach of combining laboratory experiments and field observations with theoretical analysis,the following results are obtained.
     Granite is the ore-forming parent rock; it is intimately related with the ore deposit in time, space and composition. The ore deposit is the product of deuteric solutions derived from magmatic crystallization. Judging from the emplacement of granitic magma, the lateral zonality of altered wall-rocks and the thread veins forming under high temperatures, it is highly probable that the mineralizing fluid in the early stage might evolve from supercritical fluids.
     The system of host structures is situated locally above the granitic rock body and distributed radially like branches of a tree. The ore belt shows conspicuous vertical and horizontal zoning which is not in harmony with regional structures. The distribution of ore-bearing quartz veins in the ore region, the internal structures of single quartz veins and the extremely high pressures of the mineralizing solutions all demonstrate that the host structures belong to hydraulic fracturing.
     It is well-known that the Kaiser effect of acoustic emission of rocks records the times of paleostructural activities. Detection by acoustic emission for samples taken from country rock of veinlet zone and big vein zone as well as granitic rock body shows that 4, 8 and 4 times of paleostructural activities occurred respectively, corresponding to the three zones. The 4 times of paleostructural activities presented by the country rock of veinlet zone and the granitic rock body having maximum values of principal stress equivalent to the modern geostress indicate that they represent regional paleostructural activities. The sample from country rock of big veins shows 8 times of paleostructural activities, among which 4 times (with smaller maximum values of principal stress) are consistent with that of country rock of veinlet zone and the granite, therefore they reflect the post-metallogenic regional paleostructural activities. The other 4 times of paleostructural activities occurred in country rock of big-vein zone corresponding to maximum values of principal stress equal to the extremely high pressures of mineralizing fluids most probably reflect the times of activities of hydraulic fracturing favorably for ore formation.
     In short, the genetic nature of host structures in the Huangsha vein-type tungsten ore deposit belongs to hydraulic fracturing, and the times of hydraulic fracturing is four which is consistent with the number of mineralizing stages of ore formation.
引文
[1] 古菊云. 华南脉钨矿床的形态分带.余鸿彰编.钨矿地质讨论会论文集.北京:地质出版社,1981,35~45.
    [2] Presnall D.C. Baternan P.C. Fusion relationships in the system NaAlSi3O8-CaAl2Si2O8-SiO2-H2O generation of granitic magmas in the Sierra Nevada Batholith. Bull Geol Soc Amer, 1973, 84:3181~3202
    [3] Johannes W, Holtz F. Formation and ascent of granitic magmas. Geo1 Rund, 1991. 80: 225~231
    [4] Winkler H G F. Breitbart R. New aspects of granite magmas.M Jb Miner Mh, 1978. 10: 463~480
    [5] Johannes W. Metastable melting in granite and related systems. Migmatites, melting and metamorphism. Cheshire: Shiva Publish Ltd. 1983. 27~36
    [6] Whitney J.A. The origin of granite: The role and source of water in the evolution of granitic magmas. Bull Geol Soc Amer. 1988. 100: 1886~1897
    [7] Ashworth J R. Migmatites. Introduction. Glasgow. Blackie.1985.1~3
    [8] Burnham C W. Magmas and hydrothermal fluids. In: Barnes H L(ED). Geochemistry of Hydrothermal Ore Deposits. 2nd.Ed. John Wiley & Sons, Inc.,1979,71~136.
    [9] Pitcher W S, Berger A R. The geology of Donegal: A study of granite emplacement and unroofing. Wiley Interscience, London. 1972
    [10] Cobbing E J, Pitcher W S. The coastal batholith of central Peru. JOURNAL OF . Geol.Soc. Lond., 1972, 128(5): 421~460
    [11] Bateman P C, Dodge F C W. Variations of major chemical constituents across the Central Sierra Nevada Batholith. Geol. Soc. Amer. Bull., 1970, 81(2): 409~420
    [12] Bateman P C. A summary of critical relations in the central past of the Sierra Nevada Batholith California, U.S.A.. Geol. Sac. Amer. Mem., 1983,159:241~254
    [13] Paterson S R, Fowler T K. Re-examing pluton emplacement proceses. JOURNAL OF . Struct. Geol., 1993a, 15: 191~206
    [14] 洪大卫.花岗岩研究的最新进展及发展趋势.地学前缘,1994 , 1 (1 -2):79~85
    [15] 张志强.花岗岩定位机制研究进展综述.地球科学进展,1993, (2):15~20
    [16] 吕贻峰.国外花岗岩构造的某些新进展.地质科技情报,1994, 13 (4):21~24
    [17] 许顺山,吴淦国,邓军.岩浆侵位机制研究综述.地质科技情报,1998, 17(4):8~14
    [18] Brown M. The generation, segregation, ascent and emplacement of granite magma: the migmatite to crustally derived granite connection in thickened orogens. Earth Science Reviews, 1994,36: 83~100
    [19] Tobisch O T, Cruden A R. Fracture-controlled magma conduits in an obliguely convergent continental magmatic arc. Geology, 1995, 23: 941~944
    [20] McNulty B A, Tong W, Tobisch O T. Assembly of a dike fed magma chamber: The Jackass Lakes pluton, central Sierra Nevada, California. Geol. Soc.Amer. Bull., 1996, 108: 926~940
    [21] Hutton D H W. Igneous emplacement in shear-zone termination: The biotite granite at Strontian, Scotland. Geol. Soc. Amer. Bull., 1988b, 100: 1392~1399
    [22] Pitcher W S. The nature, ascent and emplacement of granitic magmas. J. Geol. Soc. Lond., 1979, 136: 627~662
    [23] Pitcher W S. Granite type and tectonic environment. Mountain Building Processes. London: Academic Press. 1983, 19~40
    [24] Hutton D H W, Dempster T J, Brown P E. A new mechanism of granite emplacement: Intrusion in active extensional shear zones. Nature, 1990, 343: 452~445
    [25] Hutton D H W. Granite sheeted complexes: Evidence for the dyking ascent mechanism: Tran. R. Soc. Edinb Earth Sci., 1992a, 377~382
    [26] Hutton D H W, Reavy R J. Strike-slip tectonics and granite petrogenesis. Tectonics, 1992b, 11:960~967
    [27] Hutton D H W. A tectonic model for the emplacement of the Main Donegal granite. NW Ireland. J. Ceol. Soc. Lond., 1982, 139: 615~631
    [28] Hutton D H W. Granite emplacement mechainisms and tectonic controls: Inferences from deformation studies. Tran. R. Soc. Edinb. Earth Sci., 1988a, 79:245~255
    [29] Guineberteau B, Bouchez J L, Vigneresse J L. The Mortagne granite Pluton (France) emplaced by pull-apart along a shear zone: Structural and gravimetric arguments and regional implications. Geol. Soc. Amer. Bull., 1987, 99: 763~770
    [30] Glazner A F. Plutonism, oblique subduction and continental growth: An example from the Mesozoic of California. Geology, 1991,19: 784~786
    [31] Saleeby J B. The Cretaceous Sierra Nevada A trans-sitiching batholithic belt. Geological Society of America Abstracts with Programs, 1991,23: 94
    [32] Clemens J D, Mawer C K. Granitic magma transport by fracture propagation. Tectonophysics, 1992, 204: 339~360
    [33] Sylvester A Q Oertel GS Nelson C A, et al. Papoose Flat pluton: A granite blister in the Inyo Mountain, Californian. Geol. Soc. Amer. Bull., 1978, 89:1205~1219
    [34] Ramsay J G Emplacement kinematics of a granite diapir: the Chindamora batholith, Zimbabwe. J. Struct. Geol., 1989, 11:191~209
    [35] Fowler T K Jr, Paterson SR ..Timing and magmatic fabric form structural relations around stoped blocks. J. Struct, Geol., 1997, 19: 209~224.
    [36] Fowler T K Jr, Paterson S R, Crossland A, et al. Pluton emplacement mechanisms: a view from the roof. In: Brown M, Piccoli P M, eds.: The Origin of Granites and Related Rocks Third Hutton Symposium Abstracts, U. S. Geological Survey Circular, 1995, 1129, 57
    [37] Paterson S R, Vernon R H. Bursting the bubble of ballooning plutons: A return to nested diapers emplaced by multiple proceses. Geol. Soc. Amer. Bull., 1995, 107:1356~1380
    [38] 王涛,王晓霞,李伍平.试论花岗质深成岩体的复合定位机制及定位空间问题.地质论评,1999a, 45 (2): 142~150
    [39] 肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法.北京:地质出版社,2002. 128~145
    [40] 杨坤光,王强.花岗岩构造与侵位机制研究进展。地球科学进展,2002,17 (4):546~550
    [41] Dlemos R S, Brown M, Strachan R A. The relationship between granite and shear zone: magma generation, ascent and emplacement within a transpressional orogen. J. Ceol. Soc. Lond., 1992,149: 487~490
    [42] Paterson S R, Fowler T K. Extensional pluton emplacement models: do they work for large plutonic complexes? Geology, 1993b, 21:781~784
    [43] Petford N, Kerr R C, Lister J R. Dyke transport of granitoid magma.Geology, 1993, 21:845~848
    [44] 万天丰,Teyssier C,曾华霖,等.山东玲珑花岗质岩体侵位机制.中国科学(D 辑),2000, 30 (4): 337~340
    [45] Kay R W Kay S M. Delamination and delamination magmatism.Tectonophysics,1993, 219(1-3): 177~189
    [46] Weinberg R F. Re-examining pluton emplacement process: Discussion. J. Struct. Geol., 1994,16(5): 743~746
    [47] 杨坤光,杨巍然.碰撞后造山过程及造山带巨量花岗岩的成因.地质科技情报,1997, 16 (4) :16~22
    [48] Roman B T, Puero M E L, Casas S A M. Granite emplacenent during contemporary shortening and normal faulting: Structural and magnetic study of the Veiga Massif (NW Spain). J. Struct. Geol., 1995, 12: 1689~1706
    [49] Ferr‘e, Gleize G, Bouchez J L. Internal fabric and strike-slip emplacement of the Pan-African granite of Solli Hills. northen Nigeria. Tectonics,1995,14:1205~1219
    [50] Pons J, Brun J P Sur le caracter syntectonique de quelques plutons de la Sierra Morena Occidentale (Sud Ouest Espagne). Bol. Geol. Min. 1984, 95:26~32
    [51] Castro A. On granitoid emplacement and related structures: A review. Geol. Rundsch., 1987, 76: 101~124
    [52] McBirney A R, Murase T. Rheological properties of magmas. Ann. Rev. Earth Planet. Sci., 1984, 12: 337~357
    [53] Sparks R S,Prinkerten H, Mackdonald R. The transport of xenoliths in magmas. Earth planet Sci .Left.,1977,35:234~238
    [54] Huppert H E, Sparks R S J. Cooling and contamination of mafic and ultramafic magma during ascent through contiental crust. Earth planet. Sci. Lett., 1985,72: 371~386
    [55] 马昌前,杨坤光,唐仲华,等.花岗岩类岩浆动力学.武汉:中国地质大学出版社,1994
    [56] 马昌前.北京周口店岩株侵位和成分分带的岩浆动力学机理.地质学报,1988, 62 (4) : 329~341
    [57] 马昌前.硅酸盐熔体的粘度、密度及其计算方法.地质科技情报,1987,6 (2):142~150
    [58] 马昌前.结晶分异作用的岩浆力学条件.地球科学──中国地质大学学报,1989, 14 (1): 245~251
    [59] 马昌前.岩浆动力学与花岗岩研究.地球科学进展,1990, 8 (6 ): 37~41
    [60] 马昌前.岩浆活动中某些动力学参数的估算方法──流体动力学原理的应用.地质科技情报,1986, 5 (3): 47~54
    [61] 宋子新,钱祥麟.花岗岩成因机制研究综述.地质科技情报,1996,15(3):19~47
    [62] Taylor R P.Strong D F eds. Recent Advances in the Geology of Granite of Granite-Related Mineral Deposits. 1988
    [63] Plant J A. O'Brian C. Tarney J. Hurdley J. Geochemical criteria for the recognition of high heat production granites. High heat production (HHP) granites, hydrothermal circulations and ore genesis. London:Instit Ming Metall. 1985. 263~286
    [64] Stone M. Exley C S. High heat production granites of southwest England and their associatedmineralization: a review.Trans Instit Ming Metall. 1985. B. 95:25~35
    [65] 易顺华,李 珍.侵入接触构造的地质力学研究. 地质力学学报,1997,3(2):61~65
    [66] 於崇文,岑况,鲍征宇,等.热液成矿作用动力学.武汉:中国地质大学出版社,1993
    [67] 於崇文.多重水力断裂的分形扩张.地学前缘,2004,11(1):12
    [68] 汪劲草,彭恩生,孙振家.流体动力角砾岩分类及其地质意义.长春科技大学学报,2000, 30(1):18~23
    [69] Burnham C W. Energy release in subvolcanic environments: implications for breccia formation. Economic Geology,1985,80:1515~1522
    [70] 章增凤.隐爆角砾岩的特征及其形成机制.地质科技情报,1991,10(4):1~5
    [71] Hubbert M K, Rubey W W. Role of fluid pressure in mechanics of overthrust faulting. Geol Soc Am. Bull, 1959,70:115~166
    [72] Hubbert M K, Willis D G. Mechanics of hydraulic fracturing. Trans. Am. Inst. Mech. Engrs.,1957,Vol.210,153~168.
    [73] Fyfe W.S, Price N.J, Thompson A.B. Fluids in the Earth’s Crust. Amsterdam: Elsevier Scientific Publising Company,1978
    [74] 邵世才,何绍勋.剪切带型金矿床中含金石英脉的一种可能成生机制.大地构造与成矿学,1994,18(2):155~162
    [75] Dipple G M. Fluid flow,mineral reactions and metasomatism. Geology, 1991,19:211~214
    [76] Sibson R H. Brecciation process in fault zones Pure and Appl. Geophys,1986, 124:159~175
    [77] Barker C. Aquathemal pressuring-role of temperature in development of abnomal pressure zones. A A PG, 1972, 56: 2068~2777
    [78] Burnham C W. Magmas and hydrothermal fluids in: Bames H L ed Geochemistry of Hydrothemal Ore Deposis New York: John Wiley&sons,lnc,1979,17~36
    [79] 刘亮明.断层带中超压流体及其在地震和成矿中的作用,地球科学进展,2001, 16 (2):238243
    [80] Phillips W J. Hydraulic fracturing and mineralization. J Geol Sec London. 1972,123:337~359
    [81] Nishiyama T. Kinetics of hydrofracturing and metamorphic veining.Geology.1989, 17:1068~1071
    [82] Beach,A. Numerical models of hydraulic fracturing and the interpretation of syntectonic veins. Journal of Structural Geology,1980 ,
    [83] Parry W T, Bruhn R I. Fluid pressure transient on seismogenic normal fault. Tectonophysics 1990,179:335~344
    [84] Bieniawski Z.T. Mechanism of brittle fracture of rock, Ⅲ. Experimental studies. Int. J. Rock Mech.& Mining Sci.,1967,4:407~423
    [85] Sibson R H, Scott J. Stress/fault controls on containment and release of overpressured fluid: Examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Utago, New Zealand. Ore Geology Reviews,1998(13),293~306
    [86] Dahm, T. On the shape and velocity of fluid-filled fractures in the earth. Geophysical Journal International, 2000, 142, 181-192
    [87] Bons, P.D., The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics 2001, 336, 1-17.
    [88] Bak, P., Tang, C., Wiesenfeld, K. Self-organized criticality. Physical Review A 38, 1988, 364-374
    [89] Bons, P.D., Van Milligen, B.P., A new experiment to model self-organized critical transport and accumulation of melt and hydrocarbons from their source rocks. 2001, 29, 919-929
    [90] Norris, R.J., Henley,R.W. Dewatering of a metamorphic pile. Geol, 1976,4,333~336.
    [91] Norton, D., Knapp, R. Transport phenomena in hydrothermal systems: The nature of porosity, Am. Jour. Sc.,1977,277:913~936
    [92] 袁奎荣.隐伏花岗岩预测及深部找矿.北京:科学出版社出版,1990.
    [93] 陈儒庆,袁奎荣.栗木-圆石山地区花岗岩浆地质流变学和侵位定位.桂林冶金地质学院学报,1988,8(4):367~377.
    [94] 尹国栋.栗木隐伏岩体上覆地层中的小型构造特征.桂林冶金地质学院学报,1987,7(1,2).
    [95] Engelder, T., Fischer, M.R., Mechanism for joint saturation in mechanically layered rocks; an example from southern Israel. Tectonophysics ,1996,257:223~237
    [96] Fineberg, J., Marder, M., Instability in dynamic fracture. Physics Reports. 1999,131:1~108
    [97] Sharon. E., Fineberg, J., Microbranching instability and the dynamic fracture of brittle materials. Physical Review, 54, 7128~7139
    [98] Sharon. E., Fineberg, J., Confirming the continuum theory of brittle fracture for fast cracks. Nature, 397, 334~336
    [99] Amir Sagy, Ze’ev Reches, Itzhak Roman, Dynamic fracturing: field and experimental observations, Journal of Structural Geology, 2001,23:1223~1239
    [100] 谢和平著,分形-岩石力学导论,北京:科学出版社,1996
    [101] Agust Gundmundsson, Silje S. Berg, Kellfrid B. Lyslo, Elin Skurtveit. Fracture networks andfluid transport in active fault zones. Journal of Structural Geology 23(2001), 343~353
    [102] Berry M V, Lewis Z V. On the weierstreass-Mandelbrot fractal function [J]. Proc R Soc, London, 1980, 20, 459~484
    [103] Scholz C H, Aviles C A. Fractal dimension of the 1906 San Andreas fault and 1915 Pleasant Valley faults (abstract). Earthquakes Notes, 1985,55, 20
    [104] Cowie P A, Sornette D Vanneste L. Multifractal Scaling properties of a growing fault population. Geophysics Journal international, 1995, 122:457~469
    [105] Perfect E. Fractal models for the fragmentation of rocks and soils; a review. Engineering Geology. 1997, 48(3-4): 185~198
    [106] Magde Laura S.,Dick Henry J.B., Tectonics, alteration and the fractal distribution of hydrothermal veins in the lower ocean crust. Earth and Planetary Science Letters. 1995,129( 1-4), 103~119,
    [107] M. Brooks Clark, Susan L. Brantley, Donald M. Fisher. Power-law vein-thickness distributions and positive feedback in vein growth. Geology, 1995, 23(11), 975~978
    [108] Chris Mansfield, Joe Cartwright. Fault growth by linkage: observations and implications from analogue models. Journal of Structural Geology 23(2001), 745~763
    [109] 虢顺民,向宏发,计凤桔,等.红河断裂带第四纪右旋走滑与尾端拉张转换关系研究.地震地质,1996,18(4):301~309
    [110] 李建国,王绳祖,许秀琴等.结构岩体变形、破坏与地震前兆关系的实验研究. 地震地质,1980,2(1):11~18
    [111] Gumbsch.P, Zhou.S.J, Holian 等.左兆荣译. 动态裂纹稳定性的分子动力学研究,世界地震译丛,1999,(6 总 188)67~79
    [112] 张宗贤,俞洁. 岩石动静态断裂面的微观特征. 中国有色金属学报, 1995,5(4):21~24
    [113] 张宗贤,俞洁.岩石宏观裂纹分叉的加载率效应.北京科技大学学报, 1995,17(2):112~114
    [114] 干国良.江西黄沙钨矿区多次成岩成矿及其相互关系.矿物学岩石学论丛,1988,5 :127~141
    [115] 干国梁.江西黄沙花岗岩的基本特征及其稀土演化.中国地质科学院宜昌地质矿产研究所所刊,1988,13 :129~142
    [116] 冯志文,夏卫华,章锦统,等.江西黄沙脉钨矿床特征及成矿流体性质讨论.地球科学(中国地质大学学报).1989,14(4):423~432
    [117] 柳志青.脉状钨矿床成矿预测理论.北京:科学出版社,1980
    [118] 夏宏远,梁书艺.江西黄沙钨矿床的原生分带.矿物岩石,1986,6(1): 3~66
    [119] 李惠,何厚强,张西平,等.赣南脉状钨矿床的地球化学异常模式及地球化学预测标志.中国有色金属工业总公司北京矿产地质研究所,江西地质勘探公司二队,1984
    [120] Emmons W H. On the mechanism of the deposition of certain metalliferous lode systems associated with granitic batholiths, In: Ore Deposits of the Western States. New York: Amer. Inst. Mining Engineers, 327~349.
    [121] Emmons W H. Ore Deposits of the World. Mc Graw Hill Book Company, 1937,562.
    [122] Emmons W H. The Principles of Economic Geology.2nd Ed. Mc Graw Hill Book Company, 1940, 562.
    [123] Anderson E M. The dynamics of the formation of cone sheets, ring-dykes and cauldron subsidences. Royal Soc. Edinburgh Proc.,1936,vol.56,128~157.
    [124] Anderson E M. The dynamics of sheet intrusion. Royal Soc. Edinburgh Proc, 1938, vol.58,242~251.
    [125] Anderson E M. The dynamics of faulting. 2nd Ed. Edinburgh:Oliver and Boyd, 1951, 206.
    [126] Terzaghi K V. Theoretical Soil Mechanics.Wiley,1943.
    [127] Secor D T, Jr. Role of fluid pressure in jointing. Amer. Jour. Sci., 1965,Vol.263,633~646.
    [128] Koide H, Bhattacharji S .Formation of fractures around magmatic intrusions and their role in ore localization. Economic Geology ,1975,Vol.70,781~799.
    [129] Knapp R B, Knight J E. Differential thermal expansion of pore fluids: fracture propagation and microearthquake production in hot pluton environments. Journal of Geophysical Research,1977,Vol.82,No.17,2515~2522.
    [130] Knapp R B, Norton D. Preliminary numerical analysis of processes related to magma crystallization and stress evolution in cooling pluton environments. Amer.J.Sci.,1981,Vol.281,35~68.
    [131] Campbell I H,Taylor S R. No water, no granites , no oceans,no continents.Geophys.Res.Lett.,1983,10:1061~1064
    [132] Johannes W, Holtz F. Formation and ascent of granitic magmas. Geol.Rundsch.,1991,80:225~231
    [133] Burnham C W. Ohmoto H. Late-stage processes of felsic magmatism . In: Ishihara S,Takenouchi S (Eds.). Granitic Magmatism and Related Mineralization. The Society of Mining Geologists of Japan.1980.
    [134] Ma Chang qian,Li zhichang,Cerl Ehlers,et al. A post-collisional magmatic plumbing systems: mesozoic granitoid plutons from the Dabeishan high-pressure and ultrahigh-pressure metamorphic zone, east-central China.Lithos,1998, 45: 431~456.
    [135] Zheng Y, Wang Y,Liu R,et.al. Sliding-thrusting tectonics caused by thermal uplift in theYunmeng Mountains,Beiking,China. Journal of Structural Geology,1988,10(2):135~144.
    [136] 黄海平,马刊创,王国庆 . 异常流体高压研究现状与展望 . 江汉石油学院学报,2000,22(3):45~50
    [137] 解习农 刘晓峰 胡祥云. 超压盆地中泥岩的流体压裂与幕式排烃作用. 地质科技情报, 1998(17):59~64
    [138] 解习农,李思田.断裂带流体作用及动力学模型. 地学前缘(中国地质大学,北京), 1996,2(3~4):145~150
    [139] Hickman S,Sibson R,Brunhn R. Introduction to special section; mechanical involvement of fluids in faulting. Journal of Geophysical Research B,1995,100(7):12831~12840
    [140] Wintsch R. P, Christoffersen R, Kronenberg A. K. Fluid-rock reaction weakening of fault zones. Journal of Geophysical Research B,1995,100(7):13021~13032
    [141] Cox S. F. Faulting processes at high fluid pressures; an example of fault valve behavior from the Wattle Gully Fault,Victoria,Australia. Journal of Geophysical Research B,1995,100(7):12841~12859
    [142] Boullier A. M,Robert F. Palaeoseismic events recorded in Archaean gold-quartz vein network, Vald′Or,Abitibi,Quebec,Canada. Journal of Structuralgeology,1992,14(2):161~179
    [143] Dipple G.M,Ferry J.M. Fluid flow and stable isotopic alteration in rocks at elevated temperatures with applications to metamorphism. Geochimica et Cosmochimica Acta,1992,56(9):3539~3550
    [144] Hutton D H W. Syntechnic granites and the principle of effective stress: A general solution to the space problem. BouchezJ L, Hutton D H W, Stephens W E,eds. Granite: From Segregation of Melt to Emplacement Fabrics. London: KLUWER ACD EMIC PUBLISHERS,1997.189~197.
    [145] 张维根译,程辛校.花岗岩体的三维形成动力学及其在成矿作用中的意义.地质地球化学,1985,13(4):9~15
    [146] 陈颙,黄庭芳编著. 岩石物理学. 北京:北京大学出版社,2001,47~78
    [147] 陈颙.地壳岩石的力学性能. 北京:地震出版社,1988,28~36
    [148] 吕贻峰.剪切变形环境中花岗岩类岩体膨胀应变特征及其控矿作用.矿床地质,1994,Vol13卷(增刊), 40~41
    [149] Lister J R. Buoyancy-driven fluid fracture: the effects of material toughness and of low-viscosity precursors. J. Fluid Mech.,1990,Vol.210,263~280.
    [150] Perfect E. Fractal models for the fragmentation of rocks and soils; a review. Engineering Geology. 48, 3-4, 185~198, 1997
    [151] Beach. Numerical models of hydraulic fracturing and the interpretation of syntectonic veins. Structural Geology,1980,2(4):425~438
    [152] Moritz R P ,Moralev G.V,,Shatagin K.N et al. Mechanics of formation of the gold-bearing fushsite vein at the Dome mine, Timmins area, Antario,Canada. Earth Science. 1990,1609~1620
    [153] V. Acocella, G. Mulugeta. Experiments simulating surface deformation induced by pluton emplacement.Tectonophysics,2002.275~293
    [154] Robert O Fournier. Hydrothermal Processes Related to Movement of Fluid From Plastic into Brittle Rock in the Magmatic-Epithermal Environment. Economic Geology Vol.94, 1999, 1193-1212;
    [155] S. Roberts, D.J. Sanderson. Fractal analysis of Sn-W mineralization from central Iberia: insights into the role of fracture connectivity in the formation of an ore deposit. Economic Geology, 1998, Vol.93, 3, 360-364
    [156] Giacomo Corti, Marco Bonini, Francesco Mazzarini, et.al. Magma-induced strain localization in centrifuge models of transfer zones. Tectonophysics, 2002. 205~218
    [157] Ruppel, C.Extensional processes in continental lithosphere. Journal of Geophysical Research.1995, 24187~24215
    [158] Faulds, J.E., Varga, R.J. The role of accommodation zones and transfer zones in the regional segmentation of extended terranes. In: faulds, J.E., Stewart, J.H.(Eds.),Accommodation Zones and Transfer Zones: the Regional Segmentation of the Basin and Range Provinces. Geological Society of America Special Paper.Geol. Soc. Am., Boulder, CO, 1998. 1~45
    [159] Dell-AngeloLN, Tullis. Experimental deformation of partially melted granitic aggregates.Journal of Metamophic Geology,1988.495~515
    [160] 何文渊,李江海,钱祥麟. 部分熔融状态下岩石的流变行为及变形机制. 地质科技情报,1998,17(3):39~44
    [161] 谢鸿森.地球物质科学导论.北京:科学出版社,1997
    [162] Johnson J W. Norton D. Critical phenomena in hydrothermal system: State, thermodynamic, electrostatic, and transport properties of H2O in the critical region. Am J Sci,1991.541~648;
    [163] Politzer P, Murray J S, Jane P, et al. Relationship between solute molecular properties and solubility in supercritical CO2, J Phys Chem,1993. 729~732
    [164] Alfrons B. Supercritical fluids in heterogenous catalysis. Chem Rev, 1999.453~473
    [165] Thompson A B, Connolly J A C. metamorphic fluids and anomalous porosities in the lower crust. Tectonophysics, 1990. 47~55
    [166] Eggler D H. The effect of CO2 upon partial melting in the system Na2O- CaO -Al2O3-Mg- SiO2- CO2 to 35 kbar, with an analysis of melting in a peridotite-H2O- CO2 system. Am J Sci,1978.305~343
    [167] 邱瑞照,杜昭华,彭松柏.超临界流体在花岗岩成矿过程中的应用.矿物岩石地球化学通报, 1997,16(4):239~242
    [168] 夏宏远,梁书艺,谢为鑫,等. 江西黄沙钨矿床的成矿特征和银的富集条件.南岭地质矿产文集:第一辑, 1985, 137~144
    [169] Postorino P, Trom P R H, Riccl M A ,et al. The interatomic structure of water at supercritical temperature. Nature, 1993,668~670
    [170] Ayers J C, Watson E B. Rutile solubility and mobility in supercritical aqueous fluids. Contrib. Mineral Petrol, 1993.321~330
    [171] 冯钟燕.关于亲花岗岩类矿床研究的进展和趋势. 地学前缘(中国地质大学,北京), 1994, 1(3~4):100~104
    [172] 过增元.热流体学.北京:清华大学出版社,1992
    [173] Bagdassarov N Sh, Fradkov A S. Evolution of double diffusive convection in a felsic magma chamber. J. Volcanol. Geotherm. Res. 1993,54:291~308.
    [174] Sibson R H, Moore M J, Rankin A H. Seismic pumping a hydrothermal fluid transport mechanics. Geological Society of London Journal.1975,131:363~393
    [175] Kerrich K et al. The formation of gold deposits with particular reference to Archcangreenstone belts and Yellowknife. In: Geological boundary conditions and metal inventory, Contrib. to Geol. N. W. Territories,1988,3:37~62.
    [176] 刘 斌.利用不混溶流体包裹体作为地质温度计和压力计.科学通报, 1986,18:1432~1436
    [177] Swolfs H.S., Chemical effects of pore fluids on rock properties, in underground waste management and environment implications, T.D. Cook (ed.) 1972.224~234
    [178] Goodman, R.E. Subaudible Noise During Compression of Rocks. The Geological Society of America Bulletin, 1963,74(4):487~490
    [179] 孙广忠.岩体力学.北京:科学出版社,1988
    [180] J.C. Jaeger, N.G.W. Cook. Fundamentals of rock mechanics. London: Chapman and Hall, 1979.
    [181] 王连捷,潘立宙,廖椿庭,等.地应力测量及其在工程中的应用.北京:地质出版社,1991
    [182] 许桂林,朱秀岗,孙世宗.我国大陆应力场特征及与强震活动的关系.见:国家地震局地壳应力研究所编.地壳构造与地壳应力文集.北京:地震出版社,1994
    [183] 傅征祥.中国大陆地震活动性力学研究.北京:地震出版社.1997
    [184] 徐小荷. 岩石破碎学. 北京: 煤炭工业出版社, 1984, 11: 257-258.
    [185] 席道瑛,程经毅,黄建华.发射在研究岩石古温度中的应用. 中国科学技术大学学报,1996,26(1):97~100
    [186] 丁原辰,王红才,汪西海.声发射估计岩石古应力的实验研究.地质力学与地壳运动——地质力学开放研究实验室 1991~1992 年年报.北京:地震出版社,1994.43~55.
    [187] Hardy H R Jr. Evaluation of In-Situ Stresses in Salt Using Acoustic Emission Techniques, Seventh Symposium on Salt. Amsterdam:Elsevier Sciences Publishing B V,1993.49~58
    [188] 樊运晓.岩石单轴压缩试验 Kaiser 效应机理的研究.硕士论文.中国地质大学(北京),1994.
    [189] 秦四清.岩石声发射技术概论[M].成都:西南交通大学出版社,1993.
    [190] Hardy H R Jr. Application of the Kaiser Effect for the Evaluation of In situ Stress in Salt.3rd Conference on the Mechanical Behaviour of salt.France.1993.
    [191] 樊 运 晓 . 岩 石 单 轴 压 缩 试 验 Kaiser 效 应 机 理 的 讨 论 . 岩 石 力 学 与 工 程 学报.2000,19(2):254~258.
    [192] 樊运晓.岩石单轴压缩试验 Kaiser 效应记忆的实质.现代地质.2000,14(1):95~99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700