华北克拉通北缘赤峰—朝阳地区中生代构造岩浆演化与金成矿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北克拉通北接兴蒙造山带,南邻扬子克拉通,演化历史大于3.8Ga。进入中生代以后,华北克拉通经历了广泛的构造-热活化及岩石圈破坏,导致大于100km的岩石圈丢失,并在岩石圈破坏的峰期早白垩世时发育强烈岩浆作用及大规模金成矿作用,同时伴随着大量拉分盆地和变质核杂岩的出现。但是,关于克拉通与北侧蒙古弧地体最终碰撞闭合的时限、克拉通岩石圈减薄机制、大规模金成矿与岩石圈减薄的内在成因联系等科学问题到目前仍未获得一致认识。本文以华北克拉通北缘赤峰-朝阳金矿集中区为研究对象,以详细的野外地质调查为基础,通过高精度年代学研究揭示了区内三叠纪及白垩纪两期成岩、成矿事件具有时间上的高度耦合性。对区内三叠纪金厂沟梁脉岩、白垩纪鸡冠子及对面沟石英二长岩和其内的暗色包体开展了矿物化学、全岩地球化学、Sr-Nd-Pb-Hf同位素地球化学研究,探讨了两期岩浆作用的源区性质、壳幔交换机制和成岩过程。对区内安家营子、金厂沟梁及排山楼等典型金矿床开展了成矿流体、成矿物质来源的多元联合示踪研究,分析了金矿成矿流体及成矿物质来源,结合各金矿区及变质核杂岩形成时的应力场匹配结果讨论了区内金成矿、岩浆作用及变质核杂岩形成等地质事件之间的内在成因联系。主要成果和结论如下:
     1.研究区主要分布太古代建平群变质基底及侏罗系-白垩系火山-沉积岩系;区域构造以晚古生代-早中生代形成的东西向深大断裂及晚中生代形成的北东走向变质核杂岩为主;受区域构造影响,区内主要岩浆岩及金矿床均就位于变质核杂岩内部,其中金矿与白垩纪岩体空间上密切伴生。区内金矿体主要以以脉状、透镜状赋存在岩体或变质基底内的北东、北西及近东西向断裂内,严格受断裂控制,含矿断裂主压应力为近南北-北西向。矿石构造以块状、浸染状、脉状、角砾状、条带状为主,矿石结构主要为包含结构、交代结构、碎裂结构及固溶体分解结构。各典型金矿区均发育黄铁矿、黄铜矿、方铅矿及闪锌矿等金属矿物,金以自然金或银金矿形式赋存于黄铁矿及黄铜矿中;另硅化、黄铁矿化、绿泥石化、绢云母化及碳酸盐化等围岩蚀变普遍发育。成矿过程可分为粗粒石英-黄铁矿、多金属硫化物、低温热液作用及表生作用四个阶段,其中多金属硫化物阶段为主要的金沉淀阶段。
     2.金厂沟梁地区发育大量规模不等的脉岩,岩性以闪长岩、闪长玢岩为主。脉岩锆石LA-ICP-MS U-Pb年龄值可分为三组:2458~2524Ma、253±6Ma (MSWD=3.1)及227±1Ma(MSWD=0.4)。2.5Ga锆石与华北克拉通主要的地壳增长时代一致,反映成岩过程中有古老地壳物质参与;253Ma锆石可能与古亚洲洋闭合时的岩浆事件有关,227Ma则为脉岩的形成年龄。脉岩SiO2(51.22%~68.48%)、MgO(1.35%~8.13%)含量变化较大,且具有高Na2O+K2O Al2O3及低的TiO2、P2O5含量等特征。岩石LREE及LILE富集,HFSE亏损,可定义为钾玄质系列岩石。脉岩(87Sr/86Sr)i比值较为一致(0.70394-0.70592),而εNd(t)(1.1~-9.8)及T2DM(913-1972Ma)值变化范围较大,Pb同位素组成则介于1型富集地幔(EM1)与下地壳之间。主微量元素及同位素研究结果表明:金厂沟梁三叠纪脉岩来源于造山后拉张背景下下地壳,克拉通下岩石圈地幔及上升的软流圈地幔熔体的多源混合。结合区域上同时代ENE向退变质榴辉岩、蛇绿岩、弧岩浆岩带、A型花岗岩、碱性侵入岩及变质核杂岩等的出现,本文认为古亚洲洋的最终封闭发生在晚二叠-早三叠时期,随后研究区进入造山后伸展背景。脉岩岩浆源区软流圈熔体的出现暗示着华北克拉通北缘岩石圈地幔破坏在中-晚三叠世已经开始。
     3. LA-ICP-MS分析结果显示金厂沟梁地区对面沟石英二长岩(128±Ma, MSWD=1.3)、安家营子地区鸡冠子石英二长岩(133±Ma, MSWD=0.6)及其内部包体(133±1Ma, MSWD=0.4)均形成于早白垩世。上述三类地质体中角闪石均属镁角闪石,以富镁为特征,分属地幔型,壳幔混合型及壳幔混合型-地幔型;三者之间的黑云母成分也极为类似,均为镁质黑云母。两个岩体内斜长石均以奥长石为主,An集中在15-26。鸡冠子岩体内包体中斜长石大多发育熔蚀结构及明显的反环带。角闪石-斜长石温压计算结果显示对面沟岩体、鸡冠子岩体及包体就位时岩浆房平均压力分别为0.77kbar、2.19kbar及1.59kbar,对应形成深度分别为2.7km、7.7km、5.6km,分别属于浅成及中深成相侵入岩,结晶温度分别为742℃、647℃及647℃。据黑云母成分计算的岩浆log fO2分别为-14.8--16.3、-17.8--18.7、-18.0--18.7,位于铁橄榄石-磁铁矿-石英及Ni-NiO缓冲曲线之间。
     4.全岩地球化学分析结果显示,对面沟及鸡冠子岩体SiO2、Al2O、Na2O、K2O等主量元素含量较高,而MgO及Mg#相对较低,均属亚碱性准铝质石英二长岩。与寄主岩石鸡冠子岩体相比包体全碱含量相对较低,而MgO、CaO、FeO等氧化物含量较高,属亚碱性-碱性准铝质二长闪长岩-闪长岩。对面沟岩体、鸡冠子岩体及其内包体均富集大离子亲石元素,亏损高场强元素,具无-弱负Eu异常(0.89~1.10,0.61~0.83,0.79~0.93),(La/Yb)N比值较高(20.5~31.0,12.6~40.2,14.1~37.8),(Dy/Yb)N比值较低且稳定(0.87~1.60,1.12~1.35,1.31~1.63)。对面沟及鸡冠子岩体具有adakitic岩石的地球化学特征,与变质核杂岩及拉分盆地共存这一现象表明这类岩石亦可形成于陆内伸展环境。上述岩体及包体具有一致的Sr((87Sr/86Sr)i分别为0.7059~0.7066,0.7055~0.7060,0.7059)、Nd(εNd(t)分别为--6.2~-7.2,--8.2,-11.0)同位素组成。对面沟岩体Pb ((206Pb/204Pb)i=17.289~17.375,(207Pb/204Pb)i=15.359~15.463,(208Pb/204Pb)i=37.130~37.472)同位素组成较为均一。鸡冠子岩体及包体SHf(t)分别介于-9.2--12.0及-4.5~-10.0。矿物化学、主微量元素、Sr-Nd-Pb-Hf同位素综合对比研究表明区内早白垩世adakitic侵入岩为软流圈地幔来源的岩浆遭受地壳混染的产物;鸡冠子岩体内的暗色包体则可能代表了岩浆房演化晚期不断补给的分异程度较低的深部岩浆;因此区内白垩纪岩浆作用可能记录了陆内伸展环境下与软流圈底侵作用相关的岩浆事件。另外,岩浆演化过程中同时存在钾长石、黑云母、磷灰石及少量角闪石和斜长石等矿物的分离结晶作用。结合区域上榴辉岩的发现,笔者认为软流圈岩浆底侵及岩石圈拆沉在华北克拉通岩石圈破坏过程中均起着重要的作用。
     5.安家营子金矿成矿流体均一温度为180~402℃(峰值301℃),冰点为-11.6~-0.8℃,盐度为1.3~15.6wt%NaCl,成矿压力为319×105Pa,δD为-80.3‰~-96.5‰,δ180H2O为3.7‰-5.5‰;金厂沟梁金矿均—温度为205~390℃(峰值323℃),冰点为-19.1--0.8℃,盐度为1.3~21.7wt%NaCl,成矿压力为422×105Pa,δD为-54.0‰~-110.9‰,δ18OH2O为1.9‰-8.9‰;排山楼金矿均一温度介于187~337℃,盐度为4.6~12.2wt%NaCl,δD为-87.3‰自~116.2‰,δ18OH2O为0.7‰~6.9‰。综合估计各金矿成矿深度约为2-2.5km,成矿流体主要来源于岩浆水,流体不混溶及温度降低是金沉淀的主要因素。
     安家营子、金厂沟梁-二道沟及排山楼金矿硫化物δ34S分别为-0.5-7.6‰、-2.8~2.3‰和0.3~6.5‰。赤峰-朝阳地区变质岩校正后(206Pb/204Pb)i=15.040~18.090,(207Pb/204Pb)i=15.065~15.655、(208Pb/204Pb)i=34.897~38.571,早白垩世岩体校正后(206Pb/204Pb)i=15.742~17.375、(207Pb/204Pb)i=15.237~15.665、(208Pb/204Pb)i=36.908~38.547。典型矿床54件硫化物(206Pb/204Pb)i=16.400~17.591、(207Pb/204Pb)j=15.210~15.578、(208Pb/204Pb)i=36.690~38.091。区内金矿硫源为深源的岩浆硫,校正后的岩体Pb同位素与硫化物Pb同位素组成一致,表明成矿物质亦来源于岩浆活动。
     6.研究区中部金厂沟梁西矿区石英脉中辉钼矿Re-Os同位素加权平均年龄为243.5±1.3Ma,确证研究区存在三叠纪含钼(金?)成矿作用,属蒙古弧地体和华北克拉通碰撞造山后拉张动力学背景下产物。研究区相关地质体锆石U-Pb年龄、黑云母及钾长石40Ar-39Ar年代学综合研究结果表明金成矿作用主要发生在早白垩世时期(133-117Ma),与区内白垩纪岩浆作用(133Ma~124Ma)及变质核杂岩的形成基本同时(130-100Ma),金矿成矿流体和成矿物质来源与岩浆活动关系密切。根据区内成岩成矿事件与构造演化之间的匹配关系,论文建立了赤峰-朝阳地区三叠纪及早白垩世两阶段成矿模型。
The North China Craton (NCC) is bounded to the north by the Hingan-Mongolian Orogenic Belt (HMOB) and to the southeast by the Yangtze Craton, and it is an Archean craton as indicated by the presence of≥3.8Ga crustal remnants. However, the lithospheric mantle beneath the Eastern Block of the NCC experienced widespread reactivation and thinning peaking in the Early Cretaceous, contemporaneous with extensional basin formation, the development of metamorphic core complexes (MCC), intense magmatism and large-scale gold metallogenesis. Until now, there are still many controversies concerning the timing of suturing between the NCC and HMOB, the thinning mechanism of NCC, and the genesis of the large-scale gold metallogenesis. Based on the detailed field investigation about the Chifeng-Chaoyang gold district, we present zircon U-Pb ages, mineralogy, major and trace element geochemistry, and Sr-Nd-Pb-Hf isotope compositions for the dykes from Jinchanggouliang (JCGL), the Duimiangou (DMG) and Jiguanzi (JGZ) intrusions, and the enclaves from JGZ to (1) document the Triassic and Cretaceous periodic magmatisms and mineralizing events,(2) investigate their magma sources and petrogenesis, and (3) provide potential information about crust-mantle interaction beneath the northern NCC. Moreover, we discussed the magmatic sources for the ore fluids and metal concerning the cretaceous gold ore systems according to the H-O-S-Pb isotopes, and analyzed the genetic links between gold metallogenesis, adakitic magmatism and formation of MCC. The main results are summarized herein:
     1. The Chifeng-Chaoyang region is underlain by the Archean Jianping Group gneiss with a metamorphic age of about2.5Ga, and the Jurassic-Cretaceous volcanic-sedimentary rocks. The regional structures are dominated by the Late Paleozoic-Early Mesozoic EW-striking faults and the Late Mesozoic NE-striking MCC. Nearly all intrusions and gold deposits are located in the lower-plate of the MCC, and these intrusions and gold deposits always cluster together. Gold veins are hosted by the NE-trending faults, which are developed in the metamorphic basement or intrusions, and the maximum principal compressive stress is SN-NW oriented. Pyrite, chalcopyrite, galena and sphalerite are common sulfides in different gold deposit, and the gold often occurs as native gold or electrum in pyrite and chalcopyrite. Moreover, the quartz, pyrite, chlorite, sericite and carbonate are prevalent ore-related hydrothermal alteration minerals. Three stages of hydrothermal alteration and hypogene mineralization are recognized, largely on the basis of megascopic and microscopic textural relationships, and mineral assemblages:coarse grained quartz-pyrite stage, Polymetallic sulfide stage and the low-temperature quartz-pyrite-carbonate stage.
     2. LA-ICP-MS zircon U-Pb dating reveals three major age groups of2500Ma (n=2),253±6Ma (n=5) and227±1Ma(n=9) of dykes. The inherited ages of2500Ma, contemporary with the Archean NCC continental growth, imply that crustal material was involved in the magma source. The igneous zircons with concordia age of227±1Ma may record the emplacement age of the JCGL dykes. Both diorite and diorite porphyry exhibit a wide range of SiO2and MgO contents and are characterized by high concentrations of Na2O+K2O and Al2O3and low abundances of P2O5and TiO2. They are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE) without significant Eu anomalies, depleted in high field strength elements (HFSE), and all are categorized as shoshonitic rocks. All samples show a narrow range of Sr isotope compositions with initial87Sr/86Sr ratios from0.70394to0.70592, variable εNd(t) values (1.1to-9.8) and TDM2ages (913~1972Ma). Their Pb isotope compositions form continuous variation trends and plot in the fields between EMI and LCC. The above results suggest that the JCGL dykes studied could have been derived from mixing of lower crust, lithospheric mantle of the NCC and ascending asthenospheric melt, in a post-orogenic extensional geodynamic setting. These shoshonitic dykes, together with the geochronologic data of regional ENE-trending retrograded eclogites, ophiolites, continental arc magmatic belt, A-type granite, alkaline intrusions and metamorphic core complex from the northern NCC and Central Asian Orogenic Belt (CAOB) suggest that closure of the Paleo-Asian Ocean (i.e. stage of pre-collision to collision) had completed during the latest Permian to earliest Triassic, and that the CAOB was subsequently tectonically dominated by post-orogenic extensional regimes. The involvement of asthenospheric melt in the magma source implies that the sub-continental lithospheric mantle (SCLM) of the NCC had been modified and the onset of lithospheric destruction and thinning beneath the northern NCC may have occurred in the Middle-Late Triassic as a result of post-orogenic subducting slab detachment and lithospheric delamination.
     3. LA-ICP-MS zircon U-Pb dating reveals that the DMG quartz monzonite from JCGL (128±1Ma), the JGZ quartz monzonite from the Anjiayingzi (133±1Ma), and enclaves from the host JGZ intrusion (133±1Ma) all formed in the Early Cretaceous. All amphiboles from these quartz monzonite and enclaves belong to magnesiohornblende, and all micas can be classified as magnesian biotite. The 'An' of plagioclase from DMG and JGZ intrusion ranges from15to26, thus they are defined as oligoclase. The reversely-zoned plagioclases are common in enclaves from JGZ intrusion. Calculated results from aluminum-in-hornblende geobarometry show that the DMG intrusion, the JGZ intrusion and enclaves from the JGZ host intrusion emplaced at0.77kbar,2.19kbar and1.59kbar respectively, and corresponding depth at2.7km,7.7km,5.6km. Temperatures of emplacement calculated with the hornblende-plagioclase thermometer are742C,647℃and647℃respectively. The log fo2estimated from biotite ranges from-14.8~-16.3,-17.8~-18.7and-18.0~-18.7, located between quartz-fayalite-magnetite and the Ni-NiO buffer assemblages.
     4. Bulk-rock analyses show that the DMG and JGZ intrusion are characterized by high contents of SiO2, Al2O3, Na2O, K2O and low abundance of MgO and Mg#, defining their subalkaline and metaluminous characteristics. The enclaves from JGZ intrusion has relatively low concentrations of SiO2and total alkaline, and higher MgO, CaO and FeO, and can be classified as subalkaline-alkaline metaluminous monzodiorite-diorite. The DMG intrusion, JGZ intrusion and the enclaves from it are all enriched in LILE and LREE, and depleted in heavy rare earth elements (HREE) and HFSE, without significant Eu anomalies (0.89~1.10,0.61~0.83,0.79~0.93). They have high (La/Yb)N ratios (20.5~31.0,12.6~40.2,14.1~37.8), and low and constant (Dy/Yb)N ratios (0.87~1.60,1.12~1.35,1.31~1.63). The DMG and JGZ adakitic intrusions formed in an intracontinental extensional setting contemporaneous with the formation of pull-apart basins, metamorphic core complexes and intense magmatism, rather than in a convergent margin. The DMG intrusion, JGZ intrusion and the enclaves from it have homogeneous (87Sr/86Sr)i ratios (0.7059~0.7066,0.7055~0.7060,0.7059) and εNd(t)(-6.2~-7.2,-8.2,-11.0). The Pb isotope compositions of DMG intrusion are also homogeneous ((206Pb/204Pb)i=17.289~17.375,(207Pb/204Pb)i=15.359~15.463,(208Pb/204Pb)i=37.130~37.472). Moreover, the εHf(t) of JGZ intrusion and enclaves from it ranges from-9.2~-12.0and-4.5~-10.0respectively. In combination with the mineralogy, geochemistry and Sr-Nd-Pb-Hf isotope compositions of these rocks, we contend that the DMG and JGZ intrusions could have originated from crustal contamination of newly formed basaltic melts derived from asthenospheric mantle, accompanied by fractional crystallization of K-feldspar, biotite, apatite, Fe-Ti oxides and minor hornblende and plagioclase, and the enclaves from the JGZ intrusion could denote the feeder system during the late stage of host magma evolution. Thus, the DMG and JGZ adakitic intrusions may record the magmatic event associated with underplating of asthenospheric amgma in an intracontinental extensional environment, and both asthenospheric magma underplating and lithospheric delamination may have played important roles in the lithospheric thinning of the northern NCC.
     5. The fluid inclusions from Anjiayingzi gold deposit have final homogenization temperatures (Th) of180~402℃, ice-melting temperatures (Tm, ice) of-11.6~-0.8℃, salinities of1.3~15.6wt%NaCl and fluid pressures of319×105Pa with δD of-80.3‰~-96.5‰and δi8OH2O of3.7‰-5.5‰. The fluid inclusions from JCGL gold deposit have Th of205~390℃, Tm, ice of-19.1~0.8℃, salinities of1.3~21.7wt%NaCl and fluid pressures of422×105Pa with δD of-54.0‰~-110.9‰and δ18OH2O of1.9‰~8.9‰. The fluid inclusions from Paishanlou gold deposit have Th of187~337℃and salinities of4.6~12.2wt%NaCl with5D of-87.3‰~-116.2‰and518OH2O of0.7‰~6.9‰. The mineralization depths of gold deposits from the Chifeng-Chaoyang region calculated fluid inclusions parameters range from2-2.5km. The ore fluids derived from the Early Cretaceous intrusions dominantly, and the fluid unmixing and temperature drop controlled the gold deposition jointly.
     The Anjiayingzi, JCGL-Erdaogou and Paishanlou gold deposits have δ34S of-0.5~7.6‰,-2.8~2.3‰and0.3~6.5‰respectively. The corrected Pb isotope composition of metamorphic basement from Chifeng-Chaoyang region is highly variable, with (206Pb/204Pb)i=15.040~18.090,(207Pb/204Pb)i=15.065~15.655and (208Pb/204Pb)i=34.897~38.571. The corrected Pb isotope composition of the Early Cretaceous adakitic intrusions is relatively homogeneous with (206Pb/204Pb);=15.742~17.375,(207Pb/204Pb)i=15.237~15.665and (208Pb/204Pb)i=36.908~38.547. The Pb isotope of ore sulfides from regional gold deposits is nearly the same as that of the Early Cretaceous intrusions with (206Pb/204Pb)i=16.400~17.591,(207Pb/204Pb)i=15.210~15.578and (208Pb/204Pb)i=36.690~38.091, indicating their magmatic origin.
     6. The Triassic Mo (gold?) mineralizing event is confirmed by the Re-Os age of243.5±1.3from the JCGL Mo-bearing quartz veins, and it was developed in the post-orogenic extensional regime as the result of Paleo-Asian Ocean closure. The zircon U-Pb, biotite and K-feldspar40Ar-39Ar ages reveal that gold deposits from Chifeng-Chaoyang region mainly formed during the Early Cretaceous (133~117Ma), contemporaneous with the development of MCC (130~100Ma) and intense magmatism (133Ma~124Ma). Most importantly, the ore fluids and metals also derived from the Early Cretaceous intrusions. In combination with these results described above, this paper presents a two-stage mineralizing model.
引文
①李建威.矿床学前沿讲义.中国地质大学(武汉),2008.
    ②李永刚等.内蒙古喀喇沁旗金蟾山金矿成矿规律和找矿预测研究.金蟾山金矿内部资料,2000.
    [1]Liu D, Nutman A P, Compston W, et al. Remnants of≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology,1992,20(4):339-342.
    [2]Zheng J P, Griffin W L, O'Reilly S Y, et al.3.6 Ga lower crust in central China:New evidence on the assembly of the North China craton. Geology,2004,32(3):229-232.
    [3]Wu F Y, Zhang Y B, Yang J H, et al. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 2008,167(3-4):339-362.
    [4]Zhai M, Santosh M. The early Precambrian odyssey of the North China Craton:A synoptic overview. Gondwana Research,2011,20(1):6-25.
    [5]Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research,2001,107(1-2):45-73.
    [6]Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited. Precambrian Research,2005,136(2):177-202.
    [7]Jahn B M, Wu F Y, Chen B. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes,2000,23(2): 82-92.
    [8]Wu F Y, Jahn B M, Wilde S A, et al. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics,2000,328(1-2):89-113.
    [9]Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China:Termination of the central Asian orogenic belt. Tectonics, 2003,22(6):1069-1089.
    [10]Xiao W J, Windley B F, Huang B C, et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids:implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences,2009,98(6):1189-1217.
    [11]Chen B, Jahn B, Wilde S, et al. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China:petrogenesis and tectonic implications. Tectonophysics,2000,328(1-2): 157-182.
    [12]Tang K. Tectonic development of Paleozoic foldbelts at the north margin of the Sino-Korean craton. Tectonics,1990,9(2):249-260.
    [13]Xu B, Chen B. Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China Plates in northern Inner Mongolia. Science in China Series D: Earth Sciences,1997,40(5):463-469.
    [14]Shao J A. Crust Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate. Beijing:Publishing House of Peking University,1991,1-138.
    [15]Hong D W, Huang H Z, Xiao Y J, et al. Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance. Acta Geologica Sinica,1995,8(1):27-39.
    [16]Menzies M A, Fan W, Zhang M. Palaeozoic and Cenozoic lithoprobes and the loss of> 120 km of Archaean lithosphere, Sino-Korean craton, China. In:Prichard H M, Alabaster T, Harris N B W., et al, eds. Magmatic Processes and Plate Tectonics. London, Geological Society Special Publications,1993,76:71-81.
    [17]张宏福,杨岳衡.华北克拉通东部含金刚石金伯利岩的侵位年龄和Sr-Nd-Hf同位素地球化学特征.岩石学报,2007,23(002):285-294.
    [18]Fan W M, Zhang H F, Baker J, et al. On and off the North China Craton:where is the Archaean keel? Journal of Petrology,2000,41(7):933-950.
    [19]Meng Q R. What drove late Mesozoic extension of the northern China-Mongolia tract? Tectonophysics,2003,369(3-4):155-174.
    [20]Yang J H, Wu F Y, Chung S L, et al. Rapid exhumation and cooling of the Liaonan metamorphic core complex:Inferences from 40Ar/39Ar thermochronology and implications for Late Mesozoic extension in the eastern North China Craton. Geological Society of America Bulletin,2007,119(11-12):1405-1414.
    [21]Zhang H F, Sun M, Zhou X H, et al. Secular evolution of the lithosphere beneath the eastern North China Craton:evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta,2003,67(22):4373-4387.
    [22]Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters,2005,233(1-2): 103-119.
    [23]Gao S, Rudnick R L, Xu W, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters,2008, 270(1-2):41-53.
    [24]Yang W, Li S. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning:Implications for lithospheric thinning of the North China Craton. Lithos,2008, 102(1-2):88-117.
    [25]Yang J H, Wu F Y, Wilde S A, et al. Petrogenesis of an alkali Syenite-Granite-Rhyolite suite in the Yanshan Fold and Thrust Belt, Eastern North China Craton:Geochronological, geochemical and Nd-Sr-Hf isotopic evidence for lithospheric thinning. Journal of Petrology, 2008,49(2):315-351.
    [26]Qiu Y M, Groves D I, Mcnaughton N J, et al. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China. Mineralium Deposita,2002,37(3):283-305.
    [27]Mao J W, Li X, White N C, et al. Types, characteristics, and geodynamic settings of mesozoic epithermal gold deposits in eastern China. Resource Geology,2007,57(4): 435-454.
    [28]Hart C J R, Goldfarb R J, Qiu Y M, et al. Gold deposits of the northern margin of the North China Craton:multiple late Paleozoic-Mesozoic mineralizing events. Mineralium Deposita, 2002,37(3-4):326-351.
    [29]Yang J H, Wu F Y, Wildec S A. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton:an association with lithospheric thinning. Ore Geology Reviews,2003,23(3-4):125-152.
    [30]吴福元,徐义刚,高山,等.华北岩石圈减薄与克拉通破坏研究的主要学术争论.岩石学报,2008,24(6):1145-1174.
    [31]Zheng J P. Comparison of mantle-derived matierals from different spatiotemporal settings: Implications for destructive and accretional processes of the North China Craton. Chinese Science Bulletin,2009,54(19):3397-3416.
    [32]Gao S, Zhang J F, Xu W L, et al. Delamination and destruction of the North China Craton. Chinese Science Bulletin,2009,54(19):3367-3378.
    [33]Zhu R X, Zheng T Y. Destruction geodynamics of the North China craton and its Paleoproterozoic plate tectonics. Chinese Science Bulletin,2009,54(19):3354-3366.
    [34]Xu Y G, Li H Y, Pang C J, et al. On the timing and duration of the destruction of the North China Craton. Chinese Science Bulletin,2009,54(19):3379-3396.
    [35]Zhang H F. Peridotite-melt interaction:a key point for the destruction of cratonic lithospheric mantle. Chinese Science Bulletin,2009,54(19):3417-3437.
    [36]Fu L B, Wei J H, Kusky T M, et al. The Cretaceous Duimiangou adakite-like intrusion from the Chifeng region, northern North China Craton:Crustal contamination of basaltic magma in an intracontinental extensional environment. Lithos,2012,134-135:273-288.
    [37]Kusky T, Li J, Santosh M. The Paleoproterozoic North Hebei Orogen:North China craton's collisional suture with the Columbia supercontinent. Gondwana Research,2007,12(1-2): 4-28.
    [38]王新社,郑亚东.楼子店变质核杂岩韧性变形作用的40Ar/39Ar年代学约束.地质论评,2005,51(5):96-104.
    [39]张晓晖,李铁胜,蒲志平,等.内蒙古赤峰娄子店-大城子韧性剪切带的40Ar-39Ar年龄及其构造意义.科学通报,2002,47(12):951-956.
    [40]张晓晖,李铁胜,蒲志平.辽西医巫闾山两条韧性剪切带的40Ar-39Ar年龄:中生代构造热事件的年代学约束.科学通报,2002,47(9):697-701.
    [41]张必龙,朱光,姜大志,等.辽西医巫闾山变质核杂岩的形成过程与晚侏罗世伸展事件.地质论评,2011,57(6):779-798.
    [42]Groves D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews,1998,13(1-5):7-27.
    [43]Groves D I, Goldfarb R J, Robert F, et al. Gold deposits in metamorphic belts:Overview of current understanding, outstanding problems, future research, and exploration significance. Economic Geology,2003,98(1):1-29.
    [44]Goldfarb R J, Baker T, Dube B, et al. Distribution, character and genesis of Glod deposits in metamorphic terranes. In:Hedenquist J W, Thompson J F H, Goldfarb R J., et al, eds. Economic Geology One Hundredth Anniversary Volume. Littleton:Society of Economic Geologists,2005,407-450.
    [45]Qiu Y M, Groves D I, Mcnaughton N J, et al. Nature, age, and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China. Mineralium Deposita,2002,37(3-4):283-305.
    [46]张晓晖,翟明国.华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应.岩石学报,2010,26(5):1329-1341.
    [47]Liegeois J. Preface-Some words on the post-collisional magmatism. Lithos,1998,45(1-4): XV-XVII.
    [48]Ni Z Y, Zhai M G, Wang R M, et al. Late Paleozoic retrograded eclogites from within the northern margin of the North China Craton:Evidence for subduction of the Paleo-Asian ocean. Gondwana Research,2006,9(1-2):209-224.
    [49]Zhang S H, Zhao Y, Song B, et al. Carboniferous granitic plutons from the northern margin of the North China block:implications for a late Palaeozoic active continental margin. Journal of the Geological Society,2007,164(2):451-163.
    [50]Zhang S H, Zhao Y, Song B, et al. Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton:Geochronology, petrogenesis, and tectonic implications. Geological Society of America Bulletin,2009,121(1-2):181-200.
    [51]Chen B, Jahn B M, Tian W. Evolution of the Solonker suture zone:Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction-and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences,2009, 34(3):245-257.
    [52]Jian P, Liu D, Krvner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos,2010, 34(3):245-257.
    [53]Shang Q H. Occurrences of Permian radiolarians in central and eastern Nei Mongol (Inner Mongolia) and their geological significance to the Northern China Orogen. Chinese Science Bulletin,2004,49(24):2613-2619.
    [54]张拴宏,赵越,刘建民,等.华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景.岩石矿物学杂志,2010,29(6):824-842.
    [55]韩庆军,邵济安,周瑞.内蒙古喀喇沁早中生代闪长岩的岩石学、地球化学及其成因.岩石学报,2000,16(3):385-391.
    [56]邵济安,杨进辉.记载了早中生代壳幔演化的赤峰-凌源地质走廊.岩石学报,2011,27(12):3525-3534.
    [57]邵济安,魏春景.内蒙古东部早中生代麻粒岩捕掳体的岩石学及其构造意义.中国科学:地球科学,2011(8):1080-1088.
    [58]付乐兵,魏俊浩,魏启荣,等.内蒙古金厂沟梁地区晚三叠世脉岩地球化学特征及成岩动力学背景.地球科学(中国地质大学学报),2010,35(6):933-946.
    [59]Fu L B, Wei J H, Kusky T M, et al. Triassic shoshonitic dykes from the northern North China craton:petrogenesis and geodynamic significance. Geological Magazine,2012, 149(1):39-55.
    [60]Scarrow J H, Leat P T, Wareham C D, et al. Geochemistry of mafic dykes in the Antarctic Peninsula continental-margin batholith:a record of arc evolution. Contributions to mineralogy and petrology,1998,131(2):289-305.
    [61]Xu X W, Zhang B L, Qin K Z, et al. Origin of lamprophyres by the mixing of basic and alkaline melts in magma chamber in Beiya area, western Yunnan, China. Lithos,2007, 99(3-4):339-362.
    [62]Fowler M B, Henney P J. Mixed Caledonian appinite magmas:implications for lamprophyre fractionation and high Ba-Sr granite genesis. Contributions to Mineralogy and Petrology,1996,126(1):199-215.
    [63]Mayborn K R, Lesher C E, Connelly J N. Geochemical constraints on the late-stage evolution of basaltic magma as revealed by composite dikes within the Kangamiut dike swarm, West Greenland. Lithos,2008,104(1-4):428-438.
    [64]Poland M P, Fink J H, Tauxe L. Patterns of magma flow in segmented silicic dikes at Summer Coon volcano, Colorado:AMS and thin section analysis. Earth and Planetary Science Letters,2004,219(1-2):155-169.
    [65]Yang J H, Chung S L, Zhai M G, et al. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China:evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos,2004,73(3-4):145-160.
    [66]Li J W, Vasconcelos P, Zhou M F, et al. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong Gold Province, northeastern China:Implications for regional mineralization and geodynamic setting. Economic Geology,2006,101(5): 1023-1038.
    [67]Mao J, Wang Y, Li H, et al. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula:Evidence from D-O-C-S isotope systematics. Ore Geology Reviews,2008,33(3-4):361-381.
    [68]谭俊.胶东郭城断裂带脉岩岩浆演化过程:对岩石圈演化及金成矿的制约.[博士学位论文].武汉:中国地质大学(武汉),2009,1-124.
    [69]Rock N M S, Groves D I. Can lamprophyres resolve the genetic controversy over mesothermal gold deposits? Geology,1988,16(6):538-541.
    [70]郑建平,路凤香.胶辽半岛金伯利岩中地幔捕虏体岩石学特征:古生代岩石圈地幔及其不均一性.岩石学报,1999,15(1):65-74.
    [71]陈凌,程骋,危自根.华北克拉通边界带区域深部结构的特征差异性及其构造意义. 地球科学进展,2010,25(6):571-581.
    [72]Chen L. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos,2010,120(1-2):96-115.
    [73]Xu Y G. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence, timing and mechanism. Physics and Chemistry of the Earth Part A-Solid Earth and Geodesy,2001,26(9-10):747-757.
    [74]Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth and Planetary Science Letters,2002, 198(3-4):307-322.
    [75]张宏福,英基丰,徐平,等.华北中生代玄武岩中地幔橄榄石捕虏晶:对岩石圈地幔置换过程的启示.科学通报,2004,49(008):784-789.
    [76]郑建平.不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程.科学通报,2009,54(014):1990-2007.
    [77]Zhang H F. Transformation of lithospheric mantle through peridotite-melt reaction:A case of Sino-Korean craton. Earth and Planetary Science Letters,2005,237(3-4):768-780.
    [78]Liu Y S, Gao S, Lee C A, et al. Melt-peridotite interactions:Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth and Planetary Science Letters, 2005,234(1-2):39-57.
    [79]Tang Y J, Zhang H F, Nakamura E, et al. Multistage melt/fluid-peridotite interactions in the refertilized lithospheric mantle beneath the North China Craton:constraints from the Li-Sr-Nd isotopic disequilibrium between minerals of peridotite xenoliths. Contributions to Mineralogy and Petrology,2011,161:845-861.
    [80]Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature,2004,432(7019):892-897.
    [81]Xu W L, Hergt J A, Gao S, et al. Interaction of adakitic melt-peridotite:Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth and Planetary Science Letters,2008,265(1-2):123-137.
    [82]张宏福.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式.地学前缘,2006,13(002):65-75.
    [83]Zheng J P, Griffin W L, O'Reilly S Y, et al. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica et Cosmochimica Acta, 2007,71(21):5203-5225.
    [84]高山,金振民.拆沉作用(delamination)及其壳—幔演化动力学意义.地质科技情报,1997,16(1):1-9.
    [85]Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts. Nature,2005,434(7033):590-597.
    [86]Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta,1998,62(11): 1959-1975.
    [87]Gao S, Zhang B R, Jin Z M, et al. How mafic is the lower continental crust? Earth and Planetary Science Letters,1998,161(1-4):101-117.
    [88]Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications. Geology,2006,34(9): 721-724.
    [89]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature,1990,347(6294):662-665.
    [90]Kay R W. Aleutian magnesian andesites:Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research,1978,4(1-2):117-132.
    [91]Yogodzinski G M, Kelemen P B. Slab melting in the Aleutians:Implications of an ion probe study of clinopyroxene in primitive adakite and basalt. Earth and Planetary Science Letters, 1998,158(1-2):53-65.
    [92]Stern C R, Rolf K. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone. Contributions to Mineralogy and Petrology,1996,123(3):263-281.
    [93]Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution. Lithos,2005,79(1-2):1-24.
    [94]Tsuchiya N, Suzuki S, Kimura J I, et al. Evidence for slab melt/mantle reaction: petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos,2005,79(1-2):179-206.
    [95]Yogodzinski G M, Lees J M, Churikova T G, et al. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature,2001,409(6819):500-504.
    [96]Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa. Chemical Geology, 1999,160(4):335-356.
    [97]Li J W, Zhao X F, Zhou M F, et al. Late Mesozoic magmatism from the Daye region, eastern China:U-Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology,2009,157(3):383-409.
    [98]Castillo P R, Janney P E, Solidum R U. Petrology and geochemistry of Camiguin Island, southern Philippines:insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology,1999,134(1):33-51.
    [99]Macpherson C G, Dreher S T, Thirlwall M F. Adakites without slab melting:High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters,2006,243(3-4):581-593.
    [100]Chiaradia M, Muentener O, Beate B, et al. Adakite-like volcanism of Ecuador:lower crust magmatic evolution and recycling. Contributions to Mineralogy and Petrology,2009, 158(5):563-588.
    [101]Guo F, Nakamuru E, Fan W, et al. Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China. Journal of Petrology,2007,48(4):661-692.
    [102]Qin J F, Lai S C, Diwu C R, et al. Magma mixing origin for the post-collisional adakitic monzogranite of the Triassic Yangba pluton, Northwestern margin of the South China block: geochemistry, Sr-Nd isotopic, zircon U-Pb dating and Hf isotopic evidences. Contributions to Mineralogy and Petrology,2010,159(3):389-409.
    [103]张旗,王焰,钱青,等.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报,2001,17(2):236-244.
    [104]Wang Q, Wyman D A, Xu J, et al. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:Implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta,2007,71(10):2609-2636.
    [105]Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust:the Cordillera Blanca Batholith, Peru. Journal of Petrology,1996,37(6):1491-1521.
    [106]Zhao Z H, Xiong X L, Wang Q, et al. Underplating-related adakites in Xinjiang Tianshan, China. Lithos,2008,102(1-2):374-391.
    [107]Karsli O, Dokuz A, Uysal I, et al. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey; Implications for crustal thickening to delamination. Lithos,2010,114(1-2):109-120.
    [108]Huang F, Li S, Dong F, et al. High-Mg adakitic rocks in the Dabie orogen, central China: Implications for foundering mechanism of lower continental crust. Chemical Geology,2008, 255(1-2):1-13.
    [109]Wang Q, Xu J F, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China:Implications for the genesis of porphyry copper mineralization. Journal of Petrology,2006,47(1):119-144.
    [110]Richards J P, Kerrich R. Adakite-like rocks:their diverse origins and questionable role in metallogenesis. Economic geology,2007,102(4):537-546.
    [111]Chung S L, Liu D, Ji J, et al. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet. Geology,2003,31(11):1021-1024.
    [112]Jiang N, Liu Y, Zhou W, et al. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochimica et Cosmochimica Acta,2007,71(10): 2591-2608.
    [113]Yan D P, Zhou M F, Zhao D G, et al. Origin, ascent and oblique emplacement of magmas in a thickened crust:An example from the Cretaceous Fangshan adakitic pluton, Beijing. Lithos,2011,123(1-4):102-120.
    [114]Sun J F, Yang J H, Wu F Y, et al. Magma mixing controlling the origin of the Early Cretaceous Fangshan granitic pluton, North China Craton:In situ U-Pb age and Sr-, Nd-, Hf-and O-isotope evidence. Lithos,2010,20(3-4):421-438.
    [115]Kerrich R, Goldfarb R, Groves D, et al. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China Series D:Earth Sciences,2000,43:1-68.
    [116]陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征.岩石学报,2007,23(9):2085-2108.
    [117]Sillitoe R H, Hedenquist J W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Special Publication-Society of Economic Geologists,2003,10:315-343.
    [118]Sillitoe R H. Some metallogenic features of gold and copper deposits related to alkaline rocks and consequences for exploration. Mineralium Deposita,2002,37(1):4-13.
    [119]Cooke D R, Hollings P, Walshe J L. Giant porphyry deposits:Characteristics, distribution, and tectonic controls. Economic Geology,2005,100(5):801-818.
    [120]Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 1997,44(3):373-388.
    [121]Richards J P. Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modified lithosphere. Geology,2009,37(3):247-250.
    [122]Sillitoe R H. Major gold deposits and belts of the North and South American Cordillera: Distribution, tectonomagmatic settings, and metallogenic considerations. Economic Geology,2008,103(4):663-687.
    [123]Richards J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology,2003,98(8):1515-1533.
    [124]侯增谦.大陆碰撞成矿论.地质学报,2010,84(1):30-58.
    [125]Williams-Jones A E, Heinrich C A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology,2005,100(7):1287-1312.
    [126]Heinrich C A, Driesner T, Stefansson A, et al. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. Geology,2004, 32(9):761-764.
    [127]Simon A C, Frank M R, Pettke T, et al. Gold partitioning in melt-vapor-brine systems. Geochimica et Cosmochimica Acta,2005,69(13):3321-3335.
    [128]Simon A C, Pettke T, Candela P A, et al. Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage. Geochimica et Cosmochimica Acta, 2006,70(22):5583-5600.
    [129]Simon A C, Pettke T, Candela P A, et al. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages. Geochimica et Cosmochimica Acta,2007,71(7): 1764-1782.
    [130]Seo J H, Guillong M, Heinrich C A. The role of sulfur in the formation of magmatic-hydrothermal copper-gold deposits. Earth and Planetary Science Letters,2009, 282(1-4):323-328.
    [131]冷成彪,张兴春,王守旭,等.岩浆—热液体系成矿流体演化及其金属元素气相迁移研究进展.地质论评,2009,55(1):100-112.
    [132]Hu R Z, Su W C, Bi X W, et al. Geology and geochemistry of Carlin-type gold deposits in China. Mineralium Deposita,2002,37(3-4):378-392.
    [133]Mao J, Qiu Y, Goldfarb R J, et al. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China. Mineralium Deposita,2002,37(3):352-377.
    [134]Muntean J L, Cline J S, Simon A C, et al. Magmatic-hydrothermal origin of Nevada's Carlin-type gold deposits. Nature Geoscience,2011,4:122-127.
    [135]Su W C, Xia B, Zhang H T, et al. Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China:Implications for the environment and processes of ore formation. Ore Geology Reviews,2008,33(3-4):667-679.
    [136]Su W C, Heinrich C A, Pettke T, et al. Sediment-hosted gold deposits in Guizhou, China: products of wall-rock sulfidation by deep crustal fluids. Economic Geology,2009,104(1): 73-93.
    [137]Lindgren W. Mineral deposits.4th ed. New York:McGraw-Hill,1993,1-930.
    [138]Goldfarb R J, Groves D I, Gardoll S. Orogenic gold and geologic time:a global synthesis. Ore geology reviews,2001,18(1-2):1-75.
    [139]Sillitoe R H, Thompson J. Intrusion--related vein gold deposits:types, tectono-magmatic settings and difficulties of distinction from orogenic gold deposits. Resource Geology,1998, 48(4):237-250.
    [140]Thompson J, Sillitoe R H, Baker T, et al. Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita,1999,34(4):323-334.
    [141]Lang J R, Baker T. Intrusion-related gold systems:the present level of understanding. Mineralium Deposita,2001,36(6):477-489.
    [142]Baker T, Lang J R. Fluid inclusion characteristics of intrusion-related gold mineralization, Tombstone-Tungsten magmatic belt, Yukon Territory, Canada. Mineralium Deposita,2001, 36(6):563-582.
    [143]Groves D I, Condie K C, Goldfarb R J, et al. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Economic Geology,2005,100(2):203-224.
    [144]Groves D I, Bierlein F P. Geodynamic settings of mineral deposit systems. Journal of the Geological Society,2007,164:19-30.
    [145]Groves D I. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita,1993,28(6):366-374.
    [146]Phillips G N, Powell R. Formation of gold deposits:Review and evaluation of the continuum model. Earth-Science Reviews,2009,94(1-4):1-21.
    [147]陈衍景.造山型矿床、成矿模式及找矿潜力.中国地质,2006,33(6):1181-1196.
    [148]陈衍景,翟明国,蒋少涌.华北大陆边缘造山过程与成矿研究的重要进展和问题.岩石学报,2009,25(11):2695-2726.
    [149]Li J W, Vasconcelos P M, Zhang J, et al.40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, eastern China. The Journal of geology,2003,111(6):741-751.
    [150]Yang J H, Zhou X H. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite:Implications for the age and genesis of lode gold deposits. Geology,2001,29(8):711-714.
    [151]李建威,毕诗健,Vasconcelos P胶东苏鲁地体范家埠金矿成矿作用与矿床成因浅析:兼与胶北地体金矿对比.高校地质学报,2010,16(002):125-142.
    [152]张连昌,沈远超,刘铁兵,等.山东胶莱盆地北缘金矿Ar-Ar法和Rb-Sr等时线年龄与成矿时代.中国科学(D辑:地球科学),2002,32(9):727-734.
    [153]李诺,孙亚莉,李晶,等.小秦岭大湖金钼矿床辉钼矿铼锇同位素年龄及印支期成矿事件.岩石学报,2008,24(4):810-816.
    [154]陈衍景.秦岭印支期构造背景、岩浆活动及成矿作用.中国地质,2010,37(4):854-865.
    [155]蒋少涌,戴宝章,姜耀辉,等.胶东和小秦岭:两类不同构造环境中的造山型金矿省.岩石学报,2009,25(11):2727-2738.
    [156]范宏瑞,谢奕汉,翟明国,等.豫陕小秦岭脉状金矿床三期流体运移成矿作用.岩石学报,2003,19(002):260-266.
    [157]范宏瑞,郭敬辉,胡芳芳,等.苏鲁造山带超高压变质岩的差异性折返:流体包裹体证据.科学通报,2005,50(10):1007-1015.
    [158]李永峰,毛景文,胡华斌,等.豫西公峪金矿床流体包裹体及其He、Ar、S、H、O同位素组成对成矿流体来源的示踪.岩石学报,2005,21(5):1347-1358.
    [159]张连昌,沈远超,李厚民,等.胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪.岩石学报,2002,18(4):559-565.
    [160]陈衍景,Pirajno Franco,赖勇,等.胶东矿集区大规模成矿时间和构造环境.岩石学报,2004,20(4):907-922.
    [161]Goldfarb R J, Phillips G N, Nokleberg W J. Tectonic setting of synorogenic gold deposits of the Pacific Rim. Ore Geology Reviews,1998,13(1-5):185-218.
    [162]Mao J, Goldfarb R J, Zhang Z, et al. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling Mountains, central China. Mineralium Deposita,2002,37(3):306-325.
    [163]翟明国,范宏瑞,杨进辉,等.非造山带型金矿—胶东型金矿的陆内成矿作用.地学前缘,2004,11(1):85-98.
    [164]Zhang L C, Wu H Y, Wan B, et al. Ages and geodynamic settings of Xilamulun Mo-Cu metallogenic belt in the northern part of the North China Craton. Gondwana Research,2009, 16(2):243-254.
    [165]张连昌,吴华英,相鹏,等.中生代复杂构造体系的成矿过程与成矿作用—以华北大陆北缘西拉木伦钼铜多金属成矿带为例.岩石学报,2010,26(5):1351-1362.
    [166]Liu J M, Zhao Y, Sun Y L, et al. Recognition of the latest Permian to Early Triassic Cu-Mo mineralization on the northern margin of the North China block and its geological significance. Gondwana Research,2010,17(1):125-134.
    [167]邱玉民.内蒙古红花沟金矿的成矿时代及其意义.沈阳黄金学院学报,1994,13(3):202-208.
    [168]魏俊浩,刘丛强,刘国春.金矿测年方法讨论及定年中存在的问题.地学前缘,2003,10(2):319-326.
    [169]李永刚,翟明国,杨进辉,等.内蒙古赤峰安家营子金矿成矿时代以及对华北中生代爆发成矿的意义.中国科学(D辑:地球科学),2003,33(10):960-966.
    [170]苗来成,范蔚茗,翟明国,等.金厂沟梁-二道沟金矿田内花岗岩类侵入体锆石的离子探针U-Pb年代学及意义.岩石学报,2003,19(1):71-80.
    [171]王建平.内蒙古金厂沟梁金矿构造控矿分析.北京:地质出版社,1992,1-124.
    [172]庞奖励.二道沟矿床绢云母的39Ar/40Ar年龄及其地质意义.陕西师范大学学报(自然科学版),1999,27(1):103-107.
    [173]侯万荣.内蒙古哈达门沟金矿床与金厂沟梁金矿床对比研究.[博士学位论文].北京:中国地质科学院,2011,1-213.
    [174]Li N, Chen Y J, Fletcher I R, et al. Triassic mineralization with Cretaceous overprint in the Dahu Au-Mo deposit, Xiaoqinling gold province:Constraints from SHRIMP monazite U-Th-Pb geochronology. Gondwana Research,2011:in press.
    [175]李厚民,叶会寿,毛景文,等.小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义.矿床地质,2007,26(4):417-424.
    [176]李俊建,沈保丰,骆辉,等.辽宁阜新排山楼金矿的40Ar/39Ar成矿年龄.地质科学,2001,36(1):107-111.
    [177]骆辉,赵运起.辽宁阜新排山楼金矿地质成矿作用.前寒武纪研究进展,1997,20(4):13-24.
    [178]Zhang X H, Liu Q, Ma Y J, et al. Geology, fluid inclusions, isotope geochemistry, and geochronology of the Paishanlou shear zone-hosted gold deposit, North China Craton. Ore Geology Reviews,2005,26(3-4):325-348.
    [179]罗镇宽,苗来成,关康,等.辽宁阜新排山楼金矿区岩浆岩锆石SHRIMP定年及其意义.地球化学,2001,30(5):483-490.
    [180]王荣湖,金成洙,李景春.排山楼金矿床40Ar-39Ar年龄及其地质意义.东北大学学报:自然科学版,2008,29(10):1482-1485.
    [181]周新华,杨进辉,张连昌.胶东超大型金矿的形成与中生代华北大陆岩石圈深部过程.中国科学(D辑:地球科学),2002,32(S1):11-20.
    [182]李荫清,艾永德.内蒙古红花沟金矿床的流体包裹体研究.矿物学报,1991(4):346-354.
    [183]姜能,张文淮.内蒙古赤峰莲花山金矿床成矿物理化学条件及成矿机理.地球化学,1996,25(1):73-83.
    [184]李延河,丁悌平.内蒙赤峰红花沟金矿稳定同位素研究.矿床地质,1990,9(3):257-269.
    [185]邱玉民,谢锡才.内蒙红花沟金矿床同位素地质特征及矿床成因探讨.矿产与地质,1992(4):318-325.
    [186]邱玉民,侯根群,王建国.内蒙红花沟金矿有关岩石中金等微量元素的丰度及其意义.黄金,1992(9):1-6.
    [187]谢锡才.赤峰红花沟金矿田铅同位素组成特征及其成因意义.岩石矿物学杂志,1998,17(2):84-90.
    [188]王时麒,汤葵联.内蒙赤峰安家营子金矿床成矿流体的物理化学条件研究.北京大学学报(自然科学版),1994,30(4):446-452.
    [189]李永刚,翟明国,苗来成,等.内蒙古赤峰地区安家营子金矿成矿流体研究.岩石学报,2004,20(4):961-968.
    [190]郑学正,张魁武,关鸿,等.东喀喇沁金矿的同位素地球化学.黄金科学技术,1995,3(3):26-32.
    [191]谢锡才,王义文,董万成,等.安家营子金矿田矿床及同源岩体同位素地球化学.贵金属地质,1997,6(3):11-22.
    [192]彭丽娜.内蒙古赤峰市金蟾山金矿床成矿机制与成矿构造背景研究.[硕士学位论文].武汉:中国地质大学(武汉),2010,1-53.
    [193]Trumbull R B, Liu H, Lehrberger G, et al. Granitoid-hosted gold deposits in the Anjiayingzi District of Inner Mongolia, People's Republic of China. Economic Geology, 1996,91(5):875-895.
    [194]张长春,王时麒,张韬.内蒙古金厂沟梁金矿床稳定同位素组成和矿床成因讨论.地质力学学报,2002,8(2):156-164.
    [195]陈军强.内蒙赤峰金厂沟梁金矿床地质、地球化学特征及成因研究.[硕士学位论文].长春:吉林大学,2006,1-60.
    [196]庞奖励.辽宁二道沟金矿床稳定同位素地球化学研究.陕西师范大学学报(自然科学版),1998,26(2):81-85.
    [197]庞奖励.辽宁二道沟金矿床矿物地球化学特征.陕西师范大学学报(自然科学版),1999,27(4):97-101.
    [198]孟宪刚.辽西医巫间山北段中生代构造格架及其对金矿形成富集与分布的控制作用.[博士学位论文].北京:中国地质大学(北京),2003,1-190.
    [199]汪在聪,刘建明,刘红涛,等.稳定同位素热液来源示踪的复杂性和多解性评述—以造山型金矿为例.岩石矿物学杂志,2010,29(005):577-590.
    [200]Kusky T M, Li J. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences,2003,22(4):383-397.
    [201]Santosh M, Tsunogae T, Li J H, et al. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton:Implications for paleoproterozoic ultrahigh temperature metamorphism. Gondwana Research,2007,11(3):263-285.
    [202]Kusky T M. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research,2011,20(1):26-35.
    [203]翟明国.克拉通化与华北陆块的形成.中国科学:地球科学,2011,41(8):1037-1046.
    [204]Kroner A, Cui W Y, Wang S Q, et al. Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning Province, NE China. Journal of Asian Earth Sciences,1998, 16(5-6):519-532.
    [205]刘树文,王伟,白翔,等.朝阳北部早前寒武纪变质杂岩地质事件序列.岩石学报, 2010(7):1993-2004.
    [206]Liu S W, Santosh M, Wang W, et al. Zircon U-Pb chronology of the Jianping Complex: Implications for the Precambrian crustal evolution history of the northern margin of North China Craton. Gondwana Research,2011,20(1):48-63.
    [207]Wang W, Liu S, Bai X, et al. Geochemistry and zircon U-Pb-Hf isotopic systematics of the Neoarchean Yixian-Fuxin greenstone belt, northern margin of the North China Craton: Implications for petrogenesis and tectonic setting. Gondwana Research,2011,20(1):64-81.
    [208]Davis G A, Wang C, Zheng Y D, et al. The enigmatic Yinshan fold-and-thrust belt of northern China:New views on its intraplate contractional styles. Geology,1998,26(1): 43-46.
    [209]Kusky T M, Windley B F, Zhai M G. Lithospheric thinning in eastern Asia; constraints, evolution, and tests of models.In:Zhai M G, Windley B F, Kusky T M., et al, eds. Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia. London:Geological Society Special Publication,2007,280:331-343.
    [210]赵越,陈斌,张拴宏,等.华北克拉通北缘及邻区前燕山期主要地质事件.中国地质,2010,37(4):900-915.
    [211]Zhang Y Q, Dong S W, Zhao Y, et al. Jurassic tectonics of North China:A synthetic view. Acta Geologica Sinica,2008,82(2):310-326.
    [212]赵越,张拴宏,徐刚,等.燕山板内变形带侏罗纪主要构造事件.地质通报,2004,23(9-10):854-863.
    [213]张岳桥,董树文.郯庐断裂带中生代构造演化史:进展与新认识.地质通报,2008(9):1371-1390.
    [214]Ren J, Tamaki K, Li S, et al. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics,2002,344(3-4):175-205.
    [215]Davis G A, Darby B J, Zheng Y D, et al. Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China. Geology,2002,30(11):1003-1006.
    [216]Liu J L, Davis G A, Lin Z Y, et al. The Liaonan metamorphic core complex, Southeastern Liaoning Province, North China:A likely contributor to Cretaceous rotation of Eastern Liaoning, Korea and contiguous areas. Tectonophysics,2005,407(1-2):65-80.
    [217]内蒙古自治区地质矿产局.内蒙古自治区岩石地层.武汉:中国地质大学出版社,1996,1-344.
    [218]辽宁省地质矿产勘查开发局.辽宁省岩石地层.武汉:中国地质大学出版社,1997,1-247.
    [219]马强,郑建平.辽西北票蓝旗组火山岩锆石U-Pb年龄和Hf同位素组成.岩石学报,2009,25(12):3287-3297.
    [220]邵济安,杨蔚.关于辽西北票地区兴隆沟组火山岩时代的再认识.地质通报,2008(6):912-916.
    [221]张宏福,邵济安.辽西义县组火山岩:拆沉作用还是岩浆混合作用的产物?岩石学报, 2008,24(001):37-48.
    [222]张忠生,周乃武,王建国,等.赤峰红花沟金矿田成矿规律与成矿预测.沈阳:东北大学出版社,1993,1-309.
    [223]刘伟,杨进辉,李潮峰.内蒙赤峰地区若干主干断裂带的构造热年代学.岩石学报,2003,19(4):717-728.
    [224]朱志澄.变质核杂岩和伸展构造研究述评.地质科技情报,1994(3):1-9.
    [225]Davis Gregory A.,郑亚东.变质核杂岩的定义、类型及构造背景.地质通报,2002(5):185-192.
    [226]王彦斌,韩娟,李建波,等.内蒙赤峰楼子店拆离断层带下盘变形花岗质岩石的时代,成因及其地质意义—锆石U-Pb年龄和Hf同位素证据.岩石矿物学杂志,2010,29(6):763-778.
    [227]欧阳志侠.华北克拉通主要变质核杂岩晚中生代花岗岩时代、成因类型对比及意义.[硕士学位论文].北京:中国地质科学院,2010,1-84.
    [228]Malavieille J. Late Orogenic extension in mountain belts:Insights from the basin and range and the Late Paleozoic Variscan Belt. Tectonics,1993,12(5):1115-1130.
    [229]李建波,王涛,欧阳志侠.内蒙古赤峰楼子店低角韧性剪切拆离带的应变与运动学涡度分析.中国科学:地球科学,2010(007):840-854.
    [230]朱光,张力,谢成龙,等.郯庐断裂带构造演化的同位素年代学制约.地质科学,2009,44(4):1327-1342.
    [231]吴福元,杨进辉,张艳斌,等.辽西东南部中生代花岗岩时代.岩石学报,2006,22(2):315-325.
    [232]杜建军,马寅生,赵越,等.辽西医巫闾山花岗岩锆石SHRIMP U-Pb测年及其地质意义.中国地质,2007,34(1):26-33.
    [233]Zhang X H, Mao Q, Zhang H F, et al. A Jurassic peraluminous leucogranite from YiwulUshan, western Liaoning, North China craton:age, origin and tectonic significance. Geological Magazine,2008,145(03):305-320.
    [234]Darby Brian J., Davis Gregory A., Zhang Xiao Hui,等.辽西医巫闾山地区瓦子峪变质核杂岩的厘定.地学前缘,2004,11(3):145-155.
    [235]李刚,刘正宏,徐仲元,等.医巫闾山岩体同伸展侵位的证据及其地质意义.吉林大学学报:地球科学版,2010,40(004):971-978.
    [236]邵济安,张任祜,韩庆军,等.内蒙古喀喇沁堆晶岩捕虏体和寄主闪长岩的同位素年龄.地球化学,2000,29(4):331-336.
    [237]邵济安,韩庆军,李惠民.华北克拉通早中生代麻粒岩捕虏体的发现.中国科学(D辑:地球科学),2000,30(S1):148-153.
    [238]万天丰.中国大地构造学纲要.北京:地质出版社,2003,1-387.
    [239]Hou G T, Wang Y X, Hari K R. The Late Triassic and Late Jurassic stress fields and tectonic transmission of North China craton. Journal of Geodynamics,2010,50(3-4): 318-324.
    [240]佘宏全,徐贵忠,周瑞,等.内蒙东部红花沟金矿田早中生代构造-岩浆活动及对金成 矿的控制作用.现代地质,2000,14(4):408-416.
    [241]韩宝福,加加美宽雄,李惠民.河北平泉光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义.岩石学报,2004,20(6):1375-1388.
    [242]田伟,陈斌,刘超群,等.冀北小张家口超基性岩体的锆石U-Pb年龄和Hf同位素组成.岩石学报,2007,23(3):583-590.
    [243]Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology,2010,51(1-2): 537-571.
    [244]Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology,2008, 257(1-2):34-43.
    [245]Ludwig K R. User's manual for Isoplot 3.0—a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication 4,2003,1-70.
    [246]Liu Y S, Zong K Q, Kelemen P B, et al. Geochemistry and magmatic history of eclogues and ultramafic rocks from the Chinese continental scientific drill hole:Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology,2008, 247(1-2):133-153.
    [247]Steiger R H, Jager E. Subcommission on geochronology:convention on the use of decay constants in geo-and cosmochronology. Earth and planetary science letters,1977,36(3): 359-362.
    [248]Lugmair G W, Marti K. Lunar initial 134Nd/144Nd:differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters,1978,39(3):349-357.
    [249]Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 2004,131(3-4):231-282.
    [250]Meng F X, Gao S, Yuan H L, et al. Permian-Triassic (260-220 Ma) crustal growth of eastern Central Asian Orogenic Belt as revealed by detrital zircon studies. American Journal of Science,2010,310(5):364-404.
    [251]Morrison G W. Characteristics and tectonic setting of the shoshonite rock association. Lithos,1980,13(1):97-108.
    [252]Winchester J A, Floyd P A. Geochemical magma type discrimination:application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters,1976, 28(3):459-469.
    [253]Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications,1989,42(1):313-345.
    [254]佘宏全,王义文,李庆环,等.内蒙古赤峰柴胡栏子金矿基性麻粒岩包体特征及其成矿动力学意义.地质学报,2006,80(6):863-875.
    [255]邵济安,韩庆军,张履桥,等.内蒙古东部早中生代堆积杂岩捕虏体的发现.科学通报,1999,44(5):478-485.
    [256]陈冬,孙景贵,梁树能,等.金厂沟梁金矿区中酸性脉岩Sr, Nd同位素地球化学特征与岩石成因.见:陈毓川,薛春纪,张长春.主攻深部挺进西部放眼世界—第九届全国矿床会议论文集.北京:地质出版社,2008,446-448.
    [257]周新华,张国辉,杨进辉,等.华北克拉通北缘晚中生代火山岩Sr-Nd-Pb同位素填图及其构造意义.地球化学,2001,30(1):10-23.
    [258]Wu F Y, Walker R J, Yang Y H, et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochimica et Cosmochimica Acta,2006, 70(19):5013-5034.
    [259]Zhang X, Zhang H, Tang Y, et al. Geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, North China:Implication for tectonic setting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chemical Geology,2008,249(3-4): 262-281.
    [260]周新华,英基丰,张连昌,等.大兴安岭晚中生代火山岩成因与古老地块物质贡献:锆石U-Pb年龄及多元同位素制约.地球科学(中国地质大学学报),2009,34(1):1-10.
    [261]Yan G H, Mu B L, Xu B L, et al. Triassic alkaline intrusives in the Yanliao-Yinshan area: their chronology, Sr, Nd and Pb isotopic characteristics and their implication. Science in China Series D:Earth Sciences,1999,42(6):582-587.
    [262]牟保磊,邵济安,储著银,等.河北矾山钾质碱性超镁铁岩-正长岩杂岩体Sm-Nd年龄和Sr, Nd同位素特征.岩石学报,2001,17(3):358-365.
    [263]邵济安,张永北,张履桥,等.大同地区早中生代煌斑岩-碳酸岩岩墙群.岩石学报,2003,19(1):93-104.
    [264]Zhang H F, Sun M, Zhou M F, et al. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton:evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geological Magazine,2004,141(01):55-62.
    [265]Chen B, Jahn B M, Zhai M G. Sr-Nd isotopic characteristics of the Mesozoic magmatism in the Taihang-Yanshan orogen, North China craton, and implications for Archaean lithosphere thinning. Journal of the Geological Society,2003,160:963-970.
    [266]Chen B, Zhai M G. Geochemistry of late Mesozoic lamprophyre dykes from the Taihang Mountains, north China, and implications for the sub-continental lithospheric mantle. Geological Magazine,2003,140(1):87-93.
    [267]Wu F Y, Jahn B M, Wilde S A, et al. Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos,2003, 67(3-4):191-204.
    [268]Jahn B M, Wu F Y, Lo C H, et al. Crust-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology,1999,157(1-2):119-146.
    [269]Muller D, Rock N M S, Groves D I. Geochemical discrimination between shoshonitic and potassic volcanic rocks in different tectonic settings:a pilot study. Mineralogy and Petrology,1992,46(4):259-289.
    [270]Guo F, Fan W, Wang Y, et al. Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China:implications for enrichment processes beneath continental collisional belt. Lithos,2004,78(3):291-305.
    [271]Tan J, Wei J, Li Y, et al. Geochemical characteristics of Late Mesozoic dikes, Jiaodong Peninsula, North China craton:petrogenesis and geodynamic setting. International Geology Review,2007,49(10):931-946.
    [272]Liu S, Hu R Z, Gao S, et al. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong Province, east China: Constrains on their petrogenesis and geodynamic significance. Chemical Geology,2008, 255(3-4):329-345.
    [273]Canning J C, Henney P J, Morrison M A, et al. Geochemistry of late Caledonian minettes from northern Britain:implications for the Caledonian sub-continental lithospheric mantle. Mineralogical Magazine,1996,60(1):221-236.
    [274]Currie K L, Williams P R. An Archean calc-alkaline lamprophyre suite, northeastern Yilgarn Block, western Australia. Lithos,1993,31(1-2):33-50.
    [275]Tan J, Wei J H, Guo L L, et al. LA-ICP-MS zircon U-Pb dating and phenocryst EPMA of dikes, Guocheng, Jiaodong Peninsula:Implications for North China Craton lithosphere evolution. Science in China Series D:Earth Sciences,2008,51(10):1483-1500.
    [276]Rudnick R L, Gao S. The composition of the continental crust. In:Rudnick R L, eds. The Crust. Oxford:Elsevier-Pergamon,2003,1-64.
    [277]Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32-kbar:implications for continental growth and crust-mantle recycling. Journal of Petrology,1995,36(4):891-931.
    [278]翟明国,樊祺诚.华北克拉通中生代下地壳置换:非造山过程的壳幔交换.岩石学报,2002,18(1):1-8.
    [279]Zhang H F, Goldstein S L, Zhou X H, et al. Evolution of subcontinental lithospheric mantle beneath eastern China:Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contributions to Mineralogy and Petrology,2008,155(3): 271-293.
    [280]陈斌,田伟,刘安坤.冀北小张家口基性-超基性杂岩的成因:岩石学、地球化学和Nd-Sr同位素证据.高校地质学报,2008,14(3):295-303.
    [281]Liu Y S, Gao S, Yuan H L, et al. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton:insights on evolution of lower continental crust. Chemical Geology,2004,211(1-2):87-109.
    [282]樊祺诚,张宏福,隋建立,等.岩浆底侵作用与汉诺坝现今壳-幔边界组成——捕虏体岩石学与地球化学证据.中国科学(D辑:地球科学),2005,35(1):1-14.
    [283]Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society,2007,164(1):31-47.
    [284]Miao L C, Zhang F, Fan W M, et al. Phanerozoic evolution of the Inner Mongolia-Daxinganling orogenic belt in North China:constraints from geochronology of ophiolites and associated formations. In:Zhai M G, Windley B F, Kusky T M., et al, eds. Mesozoic sub-continental lithospheric thinning under Eastern Asia. London:Geological Society Special Publication,2007,280:223-237.
    [285]Miao L, Fan W, Liu D, et al. Geochronology and geochemistry of the Hegenshan ophiolitic complex:Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences,2008, 32(5-6):348-370.
    [286]Cope T, Ritts B D, Darby B J, et al. Late Paleozoic sedimentation on the northern margin of the North China block:implications for regional tectonics and climate change. International Geology Review,2005,47(3):270-296.
    [287]Vaughan A P M. A tectonomagmatic model for the genesis and emplacement of Caledonian calc-alkaline lamprophyres. Journal of the Geological Society,1996,153(4): 613-623.
    [288]Davis Gregory A., Xu Bei, Zheng Ya Dong,等.索伦缝合带中的印支期伸展作用:中国内蒙古苏尼特左旗变质核杂岩.地学前缘,2004,11(3):135-144.
    [289]Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China Craton:evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology,2002,144(2):241-254.
    [290]Zhang H F, Zhou M F, Sun M, et al. The origin of Mengyin and Fuxian diamondiferous kimberlites from the North China Craton:Implication for Palaeozoic subducted oceanic slab-mantle interaction. Journal of Asian Earth Sciences,2010,37(5-6):425-437.
    [291]Zhang S H, Zhao Y, Liu X C, et al. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block:Constraints on the composition and evolution of the lithospheric mantle. Lithos,2009,110(1-4):229-246.
    [292]Yuan H, Gao S, Dai M, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chemical Geology,2008,247(1-2):100-118.
    [293]Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology,2006,151(4):413-433.
    [294]Soderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters,2004,219(3-4):311-324.
    [295]Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters,1997,148(1-2): 243-258.
    [296]Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta,2000,64(1):133-147.
    [297]Schmidt M W. Amphibole composition in tonalite as a function of pressure:an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology,1992,110(2):304-310.
    [298]Holland T, Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology,1994, 116(4):433-447.
    [299]Hoskin P, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of metamorphic Geology,2000,18(4):423-440.
    [300]Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin,2004,49(15):1554-1569.
    [301]Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry,2003,53(1):469-500.
    [302]Yang J, Gao S, Chen C, et al. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica et Cosmochimica Acta,2009,73(9):2660-2673.
    [303]Wilde S A, Zhou X, Nemchin A A, et al. Mesozoic crust-mantle interaction beneath the North China craton:A consequence of the dispersal of Gondwanaland and accretion of Asia. Geology,2003,31(9):817-820.
    [304]Rubatto D, Hermann J. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps):implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta,2003,67(12):2173-2187.
    [305]Hawthorne F C, Kato A, Kisch H J, et al. Nomenclature of amphiboles:report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist,1997,35:219-246.
    [306]薛怀民,董树文,简平.大别山造山带前陆阳新二长质侵入体的矿物化学、地球化学与锆石SHRIMP定年.中国科学(D辑:地球科学),2006,36(2):133-142.
    [307]Middlemost E A K. Naming materials in the magma/igneous rock system. Earth-Science Reviews,1994,37(3-4):215-224.
    [308]邵济安,张履桥,贾文,等.内蒙古喀喇沁变质核杂岩及其隆升机制探讨.岩石学报,2001,.17(2):190-283.
    [309]Zhang H F, Ying J F, Tang Y J, et al. Phanerozoic reactivation of the Archean North China Craton through episodic magmatism:Evidence from zircon U-Pb geochronology and Hf isotopes from the Liaodong Peninsula. Gondwana Research,2011,19(2):446-459.
    [310]毛德宝,钟长汀,陈志宏,等.承德北部高压基性麻粒岩的同位素年龄及其地质意义.岩石学报,1999,15(4):524-531.
    [311]Jiang N, Zhang S, Zhou W, et al. Origin of a Mesozoic granite with A-type characteristics from the North China craton:highly fractionated from I-type magmas? Contributions to Mineralogy and Petrology,2009,158(1):113-130.
    [312]Zindler A, Hart S. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 1986,14:493-571.
    [313]Zhou X, Sun M, Zhang G, et al. Continental crust and lithospheric mantle interaction beneath North China:isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos,2002,62(3-4):111-124.
    [314]Choi S H, Mukasa S B, Zhou X, et al. Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chemical Geology,2008,248(1-2):40-61.
    [315]Jiang N, Carlson R W, Guo J. Source of Mesozoic intermediate-felsic igneous rocks in the North China craton:Granulite xenolith evidence. Lithos,2011,125(1-2):335-346.
    [316]Jiang N, Guo J. Hannuoba intermediate-mafic granulite xenoliths revisited:Assessment of a Mesozoic underplating model. Earth and Planetary Science Letters,2010,293(3-4): 277-288.
    [317]Zhang H F, Yang Y H, Santosh M, et al. Evolution of the Archean and Paleoproterozoic lower crust beneath the Trans-North China Orogen and the Western Block of the North China Craton. Gondwana Research,2011:in press.
    [318]Wones D R. Significance of the assemblage titanite+magnetite+quartz in granitic rocks. American Mineralogist,1989,74(7-8):744-749.
    [319]Audetat A, Pettke T. Evolution of a porphyry-Cu mineralized magma system at Santa Rita, New Mexico (USA). Journal of Petrology,2006,47(10):2021-2046.
    [320]Wang Q, Wyman D A, Xu J, et al. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China):Implications for geodynamics and Cu-Au mineralization. Lithos,2006,89(3-4):424-446.
    [321]Castillo P R. Adakite petrogenesis. Lithos,2012,134-135:304-316.
    [322]Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research,1991,51(1-4):1-25.
    [323]Sen C, Dunn T. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa:implications for the origin of adakites. Contributions to Mineralogy and Petrology, 1994,117(4):394-409.
    [324]Moyen J. High Sr/Y and La/Yb ratios:The meaning of the "adakitic signature". Lithos, 2009,112(3-4):556-574.
    [325]Zheng T, Chen L, Zhao L, et al. Crustal structure across the Yanshan belt at the northern margin of the North China Craton. Physics of the Earth and Planetary Interiors,2007, 161(1-2):36-49.
    [326]张拴宏,赵越,刘健,等.华北地块北缘晚古生代-中生代花岗岩体侵位深度及其构造意义.岩石学报,2007,23(3):625-638.
    [327]Xiong X L. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology,2006,34(11):945-948.
    [328]邵济安,贾文,储著银,等.内蒙古喀喇沁早白垩世橄辉云煌岩岩筒.岩石学报,2003,19(3):429-434.
    [329]Yang J H, Wu F Y, Chung S L, et al. A hybrid origin for the Qianshan A-type granite, northeast China:Geochemical and Sr-Nd-Hf isotopic evidence. Lithos,2006,89(1-2): 89-106.
    [330]Depaolo D J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation. Earth and Planetary Science Letters,1981,53(2):189-202.
    [331]Rollinson H R. Using Geochemical Data:Evaluation, Presentation, Interpretation. Singapore:Longma Singapore Publishers (Pte) Ltd,1993,1-352.
    [332]Miller C F, Mcdowell S M, Mapes R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology,2003,31(6):529-532.
    [333]Petford N, Cruden A R, Mccaffrey K J W, et al. Granite magma formation, transport and emplacement in the Earth's crust. Nature,2000,408(6813):669-673.
    [334]路凤香.地幔岩石学.武汉:中国地质大学出版社,1989,1-120.
    [335]Hu S B, He L J, Wang J Y. Heat flow in the continental area of China:a new data set. Earth and Planetary Science Letters,2000,179(2):407-419.
    [336]邵济安,路凤香,李伍平.辽西中生代陆内底侵作用背景下形成的安山岩.岩石学报,2007,23(4):701-708.
    [337]Zhai M, Fan Q, Zhang H, et al. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China:Underplating, replacement and delamination. Lithos, 2007,96(1-2):36-54.
    [338]Zhu G, Jiang D, Zhang B, et al. Destruction of the eastern North China Craton in a backarc setting:Evidence from crustal deformation kinematics. Gondwana Research,2011:in press.
    [339]Charles N, Gumiaux C, Augier R, et al. Metamorphic Core Complexes vs. synkinematic plutons in continental extension setting:Insights from key structures (Shandong Province, eastern China). Journal of Asian Earth Sciences,2011,40(1):261-278.
    [340]Brown P E. FLINCOR:a microcomputer program for the reduction and investigation of fluid-inclusion data. American Mineralogist,1989,74:1390-1393.
    [341]Zhang Y G, Frantz J D. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaClKClCaCl2H2O using synthetic fluid inclusions. Chemical Geology,1987,64(3-4):335-350.
    [342]邵洁涟.金矿找矿矿物学.武汉:中国地质大学出版社,1988,1-158.
    [343]Wilkinson J J. Fluid inclusions in hydrothermal ore deposits. Lithos,2001,55(1-4): 229-272.
    [344]Shepherd T J, Rankin A H, Alderton D H M. A practical guide to fluid inclusion studies. Glasgow:Blackie and Son,1985,1-239.
    [345]Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research,1972,77(17):3057-3067.
    [346]Taylor Jr H P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology,1974,69(6):843-883.
    [347]孙景贵,赵俊康,刘建明,等.内蒙金厂沟梁金矿床流体包裹体的He-Ar同位素地球化学研究.见:陈毓川,毛景文,薛春纪.矿床学研究面向国家重大需求新机遇与新挑战-第八届全国矿床会议论文集.北京:地质出版社,2006,193-196.
    [348]王安建,李树勋,曲亚军,等.脉状金矿地质与成因.长春:吉林科学技术出版社,1996,1-149.
    [349]Nie F J, Jiang S H, Liu Y. Intrusion-related gold deposits of North China craton, People's Republic of China. Resource Geology,2004,54(3):299-324.
    [350]聂凤军,江思宏,赵月明.小秦岭地区文峪和东闯石英脉型金矿床铅及硫同位素研究.矿床地质,2001,20(2):163-173.
    [351]Li J W, Li Z K, Zhou M F, et al. The Early Cretaceous Yangzhaiyu lode gold deposit, North China Craton:a link between Craton reactivation and gold veining. Economic Geology,2012,107(1):43-79.
    [352]刘纲.赤峰-朝阳金矿集中区异源同生区域成矿模式的研究.见:华北地台北缘金矿地质科研讨论会论文集.沈阳:东北工学院出版社,1992.
    [353]王时麒,孙承志,崔文元,等.内蒙古赤峰地区金矿地质.呼和浩特:内蒙古人民出版社,1994.
    [354]王义文.辽西地区金矿床稳定同位素地球化学研究.地质找矿论丛,1993,8(2):73-86.
    [355]李怡欣,孙景贵,陈军强,等.内蒙古金厂沟梁金(铜)矿床的PGE、铁族和亲硫元素的地球化学特征与物质来源、形成环境.地学前缘,2010,17(2):336-347.
    [356]Sun W D, Zhang H, Ling M X, et al. The genetic association of adakites and Cu-Au ore deposits. International Geology Review,2011,53(5-6):691-703.
    [357]孙卫东,凌明星,杨晓勇,等.洋脊俯冲与斑岩铜金矿成矿.中国科学:地球科学,2010,40(2):127-137.
    [358]Goldfarb R J, Hart C, Davis G, et al. East Asian gold:Deciphering the anomaly of Phanerozoic gold in Precambrian cratons. Economic Geology,2007,102(3):325-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700