超高压变质过程中的元素地球化学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国大陆科学钻探主孔位于江苏东海县,苏鲁超高压变质带的南部。该钻孔0~2050m井段的岩石主要是超高压变质的榴辉岩、正片麻岩、副片麻岩、超基性岩,以及少量的石英岩和片岩。这些岩石是大陆板块深俯冲到地幔极端条件下,经历超高压变质,而后快速折返至地表的产物,为研究大陆深俯冲过程的元素地球化学行为提供了非常好的样品。本文在CCSD主孔0~2050m岩心段榴辉岩、石榴辉石岩和高压脉体的岩石学和岩石化学研究基础上,通过系统的原位微区化学分析,对这些岩石中的全部矿物,包括主要矿物、次要矿物、副矿物,继承矿物和退变质矿物,进行了深入的微量元素化学研究,揭示出超高压变质岩的微量元素赋存特征、分配规律、受控因素,探讨了大陆深俯冲过程中的微量元素地球化学行为。所获得的主要认识如下:
     (1)CCSD主孔超高压榴辉岩具有不同的矿物组成和岩石化学成分特征,可分成高Al型、高Si型、高Mg型、高Ti型、Fe-Ti型和正常榴辉岩6种类型,它们的原岩为基性-超基性层状侵入体和变质表壳岩。超高压岩石中的的石榴石成分变化大,包括镁铝、铁铝、钙铝、锰铝组分,榴辉岩中的单斜辉石成分绝大多数绿辉石,石榴辉石岩中的为普通辉石,超高压变质岩中的石榴石和单斜辉石主元素成分受全岩成分的明显控制。榴辉岩中的多硅白云母高Si。高压脉体中石榴石和单斜辉石的成分与其围岩榴辉岩中的一致,这表明脉体石榴石来源于其围岩榴辉岩。
     (2)矿物微量元素研究表明,在超高压岩石中,除了HREE和Y富集在石榴石中,过渡族元素V、Sc、Co和Ni等多赋存于石榴石和单斜辉石中外,其它微量元素大都赋存于次要矿物和副矿物中。超高压岩石中次要矿物和副矿物的存在与否、含量多少及其稳定性对全岩微量元素的影响和贡献程度不容忽视。
     (3)超高压变质岩石中,矿物的微量元素含量及其在矿物间的分配,不仅受全岩成分和矿物组合的影响,也明显受矿物主元素分配的控制。石榴石-单斜辉石间微量元素的分配表明超高压变质矿物间微量元素分配达到了化学平衡,而且,石榴石-单斜辉石间微量元素与Ca的分配系数相关性拟合线与地幔榴辉岩矿物间的相应元素分配系数一致,表明超高压榴辉岩的峰期变质温度很可能与地幔榴辉岩一样的温度900~1000℃。
     (4)在增温的超高压变质过程中,部分榴辉岩中的石榴石和绿辉石中发育微量元素生长环带,仅有个别颗粒保留有主量元素成分环带,这表明矿物微量元素对超高压变质岩形成条件的变化更灵敏。
     (5)在超临界流体的作用下,榴辉岩与高压-超高压脉体中金红石的Nb、Ta发生了明显的分异,导致其榴辉岩中金红石的Nb/Ta比值增大,脉体金红石的Nb/Ta比值降低,由此推测俯冲到地幔深处的巨量榴辉岩是地球内部高Nb/Ta比值的物质源区。超高压岩石折返退变早期由多硅白云母脱水熔融或分解产生的富LILE的熔/流体,参与了水-岩相互作用和退变矿物的生长,使得榴辉岩和高压脉体中绿辉石大斑晶局部LILE急剧升高,退变质矿物角闪石的LILE比其被继承矿物的高。
     (6)在对CCSD主孔榴辉岩锆石显微观察、阴极发光及激光拉曼研究基础上,进行了LA-ICPMS和SHRIMP定年,并选取一部分锆石进行了LA-ICPMS微量元素分析,结果表明榴辉岩中有岩浆结晶锆石和变质增生锆石两种成因,岩浆结晶锆石年龄(~(206)pb/~(238)U的年龄)变化很大,为294~781Ma,表明原岩继承锆石来源的复杂性,以及部分继承性锆石在超高压变质过程中发生不完全重结晶,导致年龄变新,含超高压变质矿物的变质增生锆石记录的超高压变质年龄(~(206)pb/~(238)U的年龄)为206~237Ma,加权平均年龄220Ma代表超高压变质峰期年龄。在微量元素成分上,岩浆结晶锆石具丰富可变的REE、Y、Th、U含量和高的Th/U比值,REE配分模式呈LREE强烈亏损,HREE显著富集,Ce高度正异常和不同程度的Eu负异常。与岩浆锆石相比,变质增生锆石的Y、REE、Th、Nb含量和Th/U比值的显著降低,Hf含量增高。其REE配分模式表现为LREE强烈亏损,HREE富集程度明显低于岩浆锆石的。变质锆石形成在超高压变质条件,并与金红石和石英达到了化学平衡,因此锆石Ti温度计算结果(671~882℃)可能更接近榴辉岩的峰期变质条件。
The main hole of the Chinese Continental Scientific Drilling Project(CCSD) is located at Donghai,The 0~2050 m recovered cores in CCSD-MH are mainly comprised of eclogite, orthogneiss(granitic gneiss),paragneiss and ultramafic rock,and cumulate thickness of eclogite is about 1200 m.This UHP terrane were subducted to mantle and experienced ultral-high pressure metamorphism simultaneously,finally these UHP rocks were exhumed to the crust,These typical UHP rocks can provide critical information for element chemical behavior during the continental deep subduction.The eclogite form the hole have a very wide variation of major and trace element abundances,and have been classified into high-Si,high-Al,high-Ti,high Fe-Ti,high-Mg and normal types.On the basic of petrology,in this study,we collected these eclogite and garnet pyroxene,trace element compositions of UHP minerals in the eclogites and garnet pyroxenites are carefully analyzed by in situ LA-ICP-MS.Using these data together with whole-rock compositions of UHP rocks and major element compositions of UHP minerals,the authors discussed the distribution and partitioning of trace elements in various minerals,and the UHP metamorphic P-T conditions and the fluid-rocks interaction.The results show that LREE and Sr are mainly concentrated in apatite,epidote and omphacite,HREE are mainly concentrated in garnet,LILE such as Ba and Rb are strongly partitioned in phengite,HFSE in rutile and ilmenite, V,Sc,Co and Ni in garnet and omphacite,while Zr and Hf in zircon.The study indicate that the trace element contents and their distribution pattern in UHP minerals are controlled by the whole rock compositions,the mineral assemblages and contents of the host rocks.In addition,the following conclusions are reached,the distributions of trace elements among UHP minerals are of mutual equilibrium,and the partition coefficients are very similar to those in mantle eclogites, and probably indicating that the peak-stage UHP metamorphic temperatures of eclogites were higher than 900~1000℃.some garnets from the high-Ti eclogite,high-Si eclogite and high Fe-Ti eclogite show obvious growth compositional zoning both in major and trace elements,suggesting that the host UHP rocks were very rapidly uplifted.Zr contents in eclogitic rutiles are not only controlled by the metamorphic temperature but also by other factors such as the Zr contents in the whole rocks and the compositional diffusion during the retrograde metamorphism,so the Zr-in-rutile geothermometer is not always credible.During the UHP metamorphism,supercritical silicate-rich aqueous fluids have resulted in major fractionation between Nb and Ta in rutiles,so that the eclogitic rutiles have superchondrite Nb/Ta value.Therefore,voluminous eclogites that had been subducted to the mantle depth provide probably a hidden reservoir with higher than chondrite Nb/Ta ratio in the Earth.The fluids in the various stages of retrogression of UHP eclogites are different in origin,composition and flow scale.The melts or fluids came from the phengite can interact with rocks and other minerals,so have been recorded by them.
     Combined study of Laser Raman spectroscopy,cathodoluminescene(CL) images and SHRIMP and LA-ICPMS U-Pb dating reveals that zircons separated from the eclogite in the main drill hole CCSD-MH retain magmatic core with inherited ages(~(206)pb/~(238)U) of 294~781Ma, indicating that the magmatic zircons of the protolith have a variety of sources,and partial loss of Pb from some zircons in the protolith.UHP mineral-bearing domains of zircons recorded 206~237Ma(~(206)pb/~(238)U) for the UHP metamorphic condition,with an weighted mean age of 220Ma.Magmatic zircons are characterized by high heavy rare earth element(HREE),Y,Th,U content,and high Th/U ratio,its chondrite normalized REE pattern are characterized by LREE strongly depleted,HREE strongly riched,with a minus Eu anomalies.Compared with the magmatic zircon,the UHP zircon domains are characterized by lower HREE,Y,Th,Nb composition,and lower Th/U ratio,and high Hf content,its chondrite normalized REE pattern are characterized by LREE strongly depleted,HREE gentle riched.
引文
Alessandro B, Roberto C, Filippo Olmi, Raffaella R, Gloria Vaggelli. 2002. EPMA major and trace element analysis in garnet and its petrological application. Mikrochim. Acta, 139: 17-25
    Barth M G, McDonough W F, Rudnick R L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol., 165: 197-213
    Belousova E A, Griffin W L, O'Reilly S Y. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contrib. Mineral. Petrol., 143: 602- 622.
    Chalot-Prat F, Ganne J, Lombard A. 2003. No significant element transfer form the oceanic plate to the mantle wedge during subduction and exhumation of the Tethys lithosphere (Western Alps). Lithos, 69: 69-103
    Cheng H, Nakamura E, Kobayashi K, Zhou Z Y. 2007. Origin of atoll garnets in eclogites and implications for the redistribution of trace elements during slab exhumation in a continental subduction zone. Am. Mineral., 92:1119-1129
    Chenoff C B and Carlson W D. 1999. Trace element zoing as a record of chemical disequilibrium during garnet growth. Geology, 27(6):555-558
    Cooke R A, Brien P J and Carswell D A. 2000. Garnet zoning and the identification of equilibrium mineral compositions in high-pressure-temperature granulites from the Moldanubian Zone, Austria. J. Metamorphic Geol., 18: 551-569
    Compston W, Williams I S, Kirschvinck J L. 1992. Zircon U-Pb ages for the Early Cambrian time-scale. J. Geol., 149: 171-184
    Craig S, Shawandt, Gordon A, Makay. 2006. Minor- and trace element sector zoning in synthetic enstatite. Am. Mineral., 91: 1607-1615
    Donohue C I, Manning C E, Essene E J. 2001. The pressure and temperature dependence of Zr and Ti substitution in almandine. GSA
    Foley S F, Barth M G, Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta, 64: 933-938
    Gebauer D, Scherti H P, Brix M. 1997. 35Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in Dora Maria Massif. Western Alps. Lithos, 41: 5-24
    Green T H, Pearson N J. 1986. Ti-Rich accessory phase saturation in hydrous mafic-felsic compositions at high P and T. Chem. Geol., 54: 185-201
    Green T H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol., 120: 347-359
    Grimes C B, John B E, Kelemen P B, Mazdab F K, Wooden J L. 2007. Trace element chemistry of zircons from oceanic crust: A methord for distinguishing detrital zircon provenance. Geology, 35: 643-646 Hacker B, Kirkley B. 1998. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet. Sci. Lett.,161: 215-230
    Harte B, Kirkley B. 1997. Partitioning of trace elements between clinopyroxene and garnet: data from mantle eclogites. Chem. Geol., 136: 1-24
    Hermann J, Green D H, 2001. Experimental constraints on high pressure melting in subducted crust. Earth Planet. Sci. Lett., 188: 149-186
    Hermann J, Rubattto D, Korsakov A. 2001. Multiple Zircon Growth During Fast Exhumation of Diamondiferous, Deeply Subducted Continental Crust (Kokchetav Massif, Kazakhstan). Contrib. Mineral. Petrol., 141: 66-82.
    Hermann J. 2002. Allanite: thorium and light rare earth element carrier in subducted crust. Chem. Geol., 192: 289-306
    Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implication for element transfer in subduction zones. Lithos, 92: 399-417
    Hickmott D D, Spear F S. 1992. Major- and trace-element zoning in garnets from calcareous pelites in the NW Shellburne Falls Quadrangle, Massachusetts: Garnet growth histories in retrograded rocks. J. Petrol., 33: 965-1005
    Hoskin P, Ireland T R. 2000 Rare earth element chemistry of zircon and its use as a provenance indicator. Geology. 28: 627-632
    Hoskin P, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol., 18:423-439
    Hoskin P W O, Schaltegger U. 2003. The compostion of zircon and igneous and metamorphic petrogenesis. Rev. mineral. Geochem., 53: 27-55
    Hinton R W, Upton B G J. 1991.The chemistry of zircon: variation within and between large crystals from syenite and alkali basalt xenoliths. Geochim. Cosmochim. Acta. 55: 3287-3302
    Jochum K P, Stolz J. 1997. High-precision Nb, Ta, Zr, and Y data for carbonaceous chondrites: constrains on solar system Nb/Ta and Zr/Nb ratios. Meteorit, 32: 67
    Jochum K P, Hofmann A W. 1998. Nb/Ta in MORB and continental crust implications for a superchondritic Nb/Ta reservoir in mantle. EOS, 79: 354
    Jochum A, Polat B, Stoll A, Hofmann A W. 2001. Low Nb/Ta in the archean mantle: Ancient missing niobium in the silicate Earth. EOS, 12: 82
    Jahn B, Fan Q C, Yang J J, Henin O. 2003. Petrogenesis of the Maowu pyroxenite-eclogite body from the UHP metamorphic terrane of Dabieshan: chemical and isotopic constraints. Lithos, 70: 243-267
    Katayama I, Maruyama S, Parkinson C D. 2001. Ion micro-probe U-Pb zircon geochronology of peak and retrograde stages of ultrahigh-pressure metamorphic rocks from the Kokchetav massif, northern Kazakhstan. Earth Planet. Sci. Lett, 188:185-198
    Kenneth J, Domanik, John R. 1996. The stability and composition of phengitic muscovite and associated phases from 5.5 to 11GPa: Implications for deeply subducted sediments. Geochim. Cosmochim. Acta, 60:4133-4150
    Kosler J. 2001. Laser-ablation ICPMS study of metamorphic minerals and processes. In: P. Sylvester (Editor), Laser-ablation-ICPMS in the earth sciences. Mineral. Asso. Can., 185-202
    Krenn E, Finger F. 2004.Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif. Am. Mineral., 89: 1323-1329
    Kretz R. 1983. Symbols for rock-forming minerals. Am. Mineral., 68: 277-279
    Krogh E. 1998. The garnet-clinopyroxene Fe-Mg geothermometer reinterpretation of existing experimental data. Contrib. Mineral. Petrol., 99: 44-48
    Lanzirotti A. 1995. Yttrium zoning in metamorphic garnets. Geochim. Cosmochim. Acta, 59(19): 4105-4110
    Liou J G, Zhang R Y, Ernst W G, Liu J, McLiman R. 1998. Mineral parageneses in the Piampaludo elclogitic body, Gruppo di Voltri, Western Ligurian Alps. Schweiz. Min. Petrol. Mitt., 78: 317-335
    Liou J G, Zhang R Y, Ernst W G, Rumble D, Maruyama S. 1998. High-pressure minerals from deeply sbducted metamorphic rocks. Rew. Mineral., 37:33-96
    Liou J G, Zhang R Y, Jahn B M. 2000. Petrological and geochemical characteristics of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu terrane, east-central China. Int. Geol. Rev., 42: 328-352
    Lidwig K R. 1999. User's manual for Isotope/EX, v2.06, a geochronological Toolkit for Microsoft Excel. Berkely Geochronological Center,. Special Publication, 1-47
    
    Lidwig K R. 2001. A user manual. Berkely Geochronological Center,. Special Publication, 1-19
    Liu F L, Xu Z Q, Liou J G. 2004. Tracing the boundary between UHP and HP metamorphic belts in the southwestern Sulu terrane, eastern China: Evidence from mineral inclusion in zircon from metamorphic rocks. Int. Geol. Rev., 46: 409-425
    Liu J B, Ye K, Maruyama S. 2001. Mineral inclusions in zircon from gneisses in the ultrahigh pressure zone of the Dabie Mountains, China. J. Geol., 109: 523-535.
    Malaspina N, J Hermann, Scambelluri M, Compagnoni R. 2006. Multistage metasomatism in ultrahigh-pressure mafic rocks from the North Dabie Complex (China). Lithos, 90: 19-42
    Maruyama S, Liou J G 1998. Initiation of UHP metamorphism and its significance on the Proterozoic/Phanerozoic boundary. The Island Arc, 7: 6-35
    Messiga B, Tribuzio R, Bottazzi P, Ottolini L. 1995. An ion mircroprobe study on trace element composition of clinopyroxenes from blueschist and eclogitized Fe-Ti-gabbros, Ligurian Alps, northwestern Italy: some petrologic consideration. Geochim. Cosmochim. Acta, 59: 59-75
    McDonough W F. 1991. Partial Melting of Subducted Oceanic Crust and Isolation of its Residual Eclogitic Lithology. Phil. Trans. R. Soc. Lond A, 335: 407-418
    Poitrasson F, Hanchar J M, Schaltegger U, 2002. The Current State of Accessory Mineral Research. Chem. Geol., 191:3-24.
    Rapp R P, Shimizu U, Norman M D. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425: 605-609
    Rubatto D. 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem. Geol.,184:123-138
    Rudnick R L. 1995. Making continental crust. Nature, 378: 571578
    Rudnick R L, Barth M, Horn I, McDonough W F. 2000. Rutile-bearing refractory eclogites missing link between continents and depleted mantle. Science, 287: 278-281
    Sassi R, Harte B, Carswell A. 2000. Trace element distribution in Central Dabie eclogites. Contrib. Mineral. Petrol., 139: 298-315
    Schmidt M W, Dardon A, Chazot G, Vannucci R. 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth Planet. Sci. Lett., 226: 415-432
    Spandler C, Hermann J. 2003. Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies: implications for deep subduction-zone processes. Contrib. Mineral. Petrol., 146: 205-222
    Spandler C, Hermann J, Arculus R, Mavrogenes J. 2004. Geochemical heterogeneity and element mobility in deeply subducted oceanic crust: Insights from high-pressure mafic rocks from New Caledonia. Chem. Geol., 206: 21-42
    Spear F S and Kohn M J. 1996. Trace element zoing in garnet as monitor of crustal melting. Geology, 24(12): 1099-1102
    Stalder R, Foley S F, Brey G P, Horn I. 1998. Mineral-aqueous fluid partitioning of trace elements at 900-1200°C and 3.0-5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim. Cosmochim. Acta, 62: 1781-1801
    Stephan K, Jonathan D B, Bernard J W. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim. Cosmochim. Acta, 66: 3109-3123
    Tang H F, Liu C Q, Nakai S I, Orihashi Y J. 2006. Geochemistry of eclogites from the Dabie-Sulu terrane, eastern China: New insights into protoliths and trace element behaviour during UHP metamorphism. Lithos,
    Thomkins H S, Powell R, Ellis D J. 2007. The pressure dependence of the zirconium- in-rutile thermometer. J. Metamorphic Geol., 25: 703-713
    Tsujimori T, Sisson V B, Liou J G, Harlow G E, Sorensen S S. 2006. Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites. Lithos, 92: 609-624
    Watson E B, Wark D A, Thomas J B. 2006. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol., 151: 413-433
    Xiao Y L, Sun W D, Hoefs J, Simon K, Zhang Z M, Li S G, Hofrnann A W. 2006. Making continental crust through slab melting: Constrains from niobium-tantalum fractionation in UHP metamorphic rutile. Geochim. Cosmochim. Acta, 70: 4770-4782
    Xiong X L, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem. Geol., 218: 80-82
    Xu Z Q, Yang W C, Zhang Z M, Yang T N. 1998. Scientific significance and site-selection researches of the first Chinese Continental Scientific Deep Drillhole. Continental Dynamics, 3: 1-13
    Yao Y, Ye K, Liu J. 2000. A transitional eclogite to high-pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressute terrane, eastern China. Lithos, 52: 109-120
    Ye Kai. 2001. Study progress of mineralogy and petrology in Dabieshan-Sulu ultrahigh-pressure (UHP) metamorphic terrane. Bull. Mineral. Petrol, 20: 141-148
    Zack T, Kronz A, Foley S F, Rivers T. 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem. Geol., 184: 97-122
    Zack T, Moraes R, Krone A. 2004. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol., 148: 471-488
    Zhang R Y, Liou J G, Cong B L. 1994. Petrogenesis of garnet-bearing ultramafic rocks and associated eclogites in the Su-lu ultrahigh-pressure metamorphic terrane, China. J. Metamorphic Geol., 12: 169-186
    Zhang Z M, Xiao Y L, Hoefs J, Liou J G, Simon K. 2006a. Ultrahigh pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project: I. Petrology and geochemistry of the main hole (0~2050m). Contrib. Mineral. Petrol, 152: 421-441
    Zhang Z M, Liou J G, Zhao X D, Shi C. 2006b. Petrogenesis of Maobei rutile eclogites from the southern Sulu ultrahigh-pressure metamorphic belt, eastern China. J. Metamorphic Geol, 24: 727-741
    Zhang Z M, Shen K, Xiao Y L, Hoefs J, Liou J G, Xu Z Q. 2006c. Mineral and fluid inclusions in zircon of UHP metamorphic rocks from the CCSD-Main Drill Hole: a record of metamorphism and fluid activity. Lithos, 92: 378-398
    Zhang Z M, Shen K, Liu Y S, Sun W D, Liou J G 2008. Fluids in the deeply subducted continental crust: A study of petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim. Cosmochim. Acta (in press)
    Zhang R Y, Liou J G, Shu J F. 2002. Hydroxyl-rick topaz in high pressure and ultrahigh-pressure kyanite quartizite with retrograde woodhouseite, from the Sulu terrane, eastern China. Am. Mineral, 87:445-453
    Vavara G, Schmid R, Gebauer D. 1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon: Geochronology of the Evren Zones(Southern Alps). Contrib. Mineral. Petrol, 134:380-404
    Wu Y B, Zheng Y F, Zhou J B. 2004. Neoproterozoic granitoid in northwest Sulu and its bearing on the North China-South China Blocks boundary in east China. Geophys. Res. Lett., 31
    陈能松,孙敏,杨勇,刘嵘,王勤燕.2003.变质石榴石的成分环带与变质过程.地学前缘,10(3):315-320
    陈振宇,王登红,陈毓川,徐珏,余金杰,王平安.2006.榴辉岩中金红石的矿物地球化学研究及其意义.地球科学.中国地质大学学报,4:533-550
    侯振辉,李曙光,刘金高.2007.大别苏鲁造山带深俯冲过程中榴辉岩和原岩辉长岩锆的地球化学及其锆石U-Pb年代学意义.2007年全国岩石学及地球动力学暨化学地球动力学研讨会论文摘要集,488
    高天山,郑永飞,陈仁旭.2006.大别造山带黄镇榴辉岩矿物不同类型地质温度计应用和对比.岩石学报,22(7):1957-1968
    梁风华,曾令森,许志琴,陈方远,陈晶.2006.中国大陆科学钻探主孔540~600m榴辉岩中赤铁矿-钛铁矿固溶体出溶结构的特征及对榴辉岩折返动力学过程的意义.岩石学报,22(07):1905-1914
    李秋立,李曙光,侯振辉,洪吉安,杨蔚.2004.青龙山榴辉岩高压变质新生锆石SHRIMP U-Pb定年、微量元素及矿物包裹体研究.科学通报,49(22):2329-2334
    李天福,杨经绥,Douglas R.2006.苏鲁超高压变质带的岩浆型超镁铁原岩:来自中国大陆科学钻探主孔的亏损氧同位素证据.岩石学报,22(07):1933-1940
    刘福来,许志琴,杨经绥,张泽明.2004.中国大陆科学钻探工程主孔及周边地区花岗质片麻岩的地球化学性质和超高压变质作用标志的识别.岩石学报,20(1):9-26
    刘福来,许志琴,薛怀民,孟繁聪.2005.中国大陆科学钻探主孔0~4500米变质岩石锆石中保存的超高压矿物包体.岩石学报,21(2):277-292
    刘福来,许志琴,杨经绥,薛怀民.2005.南苏鲁超高压带和高压带边界的准确限定.岩石矿物学杂志,24(1):32-45
    刘福来,薛怀民,许志琴,梁风华,Axel G.2006.大别超高压变质带的进变质、超高压和退变质时代的准确限定:以双河大理岩中榴辉岩锆石SHRIMP U-Pb定年为例.岩石学报,22(7):1761-1778
    刘勇胜,胡圣虹,柳小明,高山,2003.高级变质岩中zr、Hf、Nb和Ta的ICP-MS精确分析.地球科学,28(2):151-156
    刘勇胜,张泽明,Lee C T,高山,宗克清.2005.CCSD主孔高Ti榴辉岩非耦合的高Ti低Nb(Zr):对玄武岩浆房中磁铁矿分离结晶作用的指示.岩石学报,21(2):339-346
    罗彦,高山,袁洪林,柳小明,D.Cunther,金振民,孙敏.2004.大别-苏鲁榴辉岩和石榴辉石岩中矿物Ce异常:对氧化环境下形成沉积物深俯冲作用的示踪.中国科学D辑地球科学,34(1):14-23
    倪涛,陈道公,靳平.2006.大别山变质岩锆石微区稀土元素和Th、U特征.高校地质学报,12(2):249-258
    邱海峻,许志琴,张泽明.2002.苏北高压变质带绿片岩中石榴石内文石包裹体的发现.地质通报,21(10):617-624
    邱检生,王汝成,蒋烧涌,胡建.2007.中国大陆科学钻探主孔榴辉岩中石榴石和绿辉石原位激光探针分析及其成岩成矿指示意义.岩石学报,23(12):3221-3230
    宋彪,张玉海,万渝生,简平.2002.锆石SHRIMP样品靶制作、年龄测试及有关现象讨论.地质论评,48(增刊):26-30
    孙卫东,丁兴,Huang F,Lundstrom C,Li J.2007年全国岩石学及地球动力学暨化学地球动力学研讨会论文摘要集,497
    吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,49(16):1589-1604
    吴元保,陈道公,夏群科等.2002.大别山黄镇榴辉岩锆石的微区微量元素分析:榴辉岩相变质锆石的微量元素特征.科学通报,47(11):859-863.
    吴元保,陈道公,夏群科,涂湘林.2004.大别山黄土岭麻粒岩和共生矿物的微量元素分析及其地质意义.地球化学,33(4):334-342
    王大志,张泽明,沈昆,赵旭东.2006.南苏鲁超高压变质带东海地区富钛榴辉岩及金红石矿的成因.地质通报,25(7):839-849
    王汝成,王硕,邱检生,倪培.2005.CCSD主孔揭示的东海超高压榴辉岩中的金红石:微量元素地球化学及其成矿意义.岩石学报,21(2):465-474
    王汝成,邱检生,倪培,王硕,胡建,朱霞.2006.苏鲁超高压榴辉岩中的钛成矿作用:大陆板块汇聚边界的成矿作用.地质学报,80(12):1828-1835
    熊小林,Hans K.2007.金红石饱和TTG熔体TiO_2溶解度和金红石/熔体Nb,Ta分配实验及其应用.2007年全国岩石学及地球动力学暨化学地球动力学研讨会论文摘要集,29-30
    徐珏,陈毓川,王登红,余金杰,李纯杰,傅旭杰,陈振宇.2004.中国大陆科学钻探主孔100~2000m 超高压变质岩中的钛矿化.岩石学报,20:119-126
    徐珏,陈振宇,陈毓川,王登红.2006.大陆科学钻探工程CCSD主孔中发现的大量流体交代脉体.地球科学-中国地质大学学报,31(4):551-556
    许志琴,张泽明,刘福来,杨经绥,李海兵,杨天南.2003.苏鲁高压.超高压变质带的折返构造及折返机制.地质学报,77(4):432-450
    许志琴,张泽明,刘福来,杨经绥,唐哲民.2004.中国大陆科学钻探工程主孔1200米构造柱及构造初步解析.岩石学报,20(1):53-72
    许志琴,杨经绥,张泽明,刘福来,杨文采,金振民,王汝成,罗力强,黄力,董海良.2005.中国大陆科学钻探终孔及研究进展.岩石学报,32(2):177-182
    许志琴,刘福来,戚学祥,张泽明,杨经绥,曾令森,梁风华.2006.南苏鲁超高压变质地体中罗迪尼亚超大陆裂解事件的记录.岩石学报,22(07):1745-1760
    杨天南.2001a.东海榴辉岩的早期退变质-后成和晶的形成、特点及地质意义.地质学报,75(1):91-96
    杨天南,张子军.2001b.苏鲁造山带东部荣成榴辉岩中蓝晶石及绿辉石的分解--一种可能的新成因解释.岩石矿物学杂志,20(1):21-28
    杨天南,许志琴,陈方远.2003.江苏东海榴辉岩向斜长角闪岩转化的研究.地质学报,77(4):510-521
    杨天南,徐文华,陈方远.2004.青龙山榴辉岩的退变质显微结构及相关的物质迁移--南苏鲁榴辉岩退变质过程中流体活动的证据.岩石矿物学杂志,23(3):236-252
    叶凯,2001.大别山-苏鲁超高压变质带的矿物学和岩石学研究进展.矿物岩石地球化学通报,20(3):141-148
    游振东,苏尚国,梁风华,张泽明.2005.中国大陆科学钻探主孔榴辉岩类岩石退变质过程--对超高压变质地体隆升的启示.岩石学报,21(02):381-388
    余金杰,陈振宇,王平安,李晓峰,黄建平,王辉.2006.苏北榴辉岩中金红石的微量元素地球化学特征.岩石学报,22(7):1883-1890
    曾令森,张泽明,刘福来,梁风华,陈晶,许志琴.2006.V/Sc在CCSD主孔榴辉岩中的系统关系:一种可透视变质作用并指示基性岩浆作用的地球化学工具。岩石学报,22(07):2051-2059
    曾令森,张泽明,刘福来,梁风华.2007.非保守元素在苏鲁超高压榴辉岩退变质作用中有限迁移和近原地重新分布.岩石学报,23(12):3215-3220
    张辉斌,刘勇胜,宗克清,高山.2006.榴辉岩退变质过程中的微量元素地球化学行为:对CCSD主孔退变榴辉岩的研究.岩石学报,22(07):1833-1844
    张泽明,许志琴,刘福来,游振东,孟繁聪,李天福.2003.南苏鲁造山带的超高压变质岩及岩石化学研究.地质学报,77(4):478-491
    张泽明,许志琴,刘福来,游振东,沈昆,杨经绥,李天福,陈世忠.2004.中国大陆科学钻探工程主孔(100-2050m)榴辉岩岩石化学研究.岩石学报,20(1):27-42
    张泽明,张金凤,游振东,沈昆2005a.苏鲁造山带超高压变质作用及P-T-t轨迹.岩石学报,21(2):257-270
    张泽明,肖益林,沈昆,高勇军.2005b.苏鲁超高压榴辉岩生长成份环带及变质作用P-T轨迹.岩石 学报,21(3):809-818
    张泽明,张金凤,许志琴,刘福来,杨经绥,肖益林,沈昆.2005c.中国大陆科学钻探工程主孔榴辉岩的岩石学研究.中国地质,32(2):205-217
    张泽明,沈昆,刘勇胜,游振东,石超,王金丽.2007.南苏鲁造山带毛北超高压变质岩体的成因与成矿作用.岩石学报,23(12):3095-3115
    郑永飞.2004.深俯冲大陆板块折返过程中的流体活动.科学通报,49(10):917-929
    郑永飞,赵子福,陈仁旭.2007.大陆碰撞和超高压变质的化学地球动力学:来自中国大陆科学钻探的结果.岩石学报,23(12):3078-3094
    钟玉芳,马昌前,余振兵.2006.锆石地球化学特征及地质应用研究综述.地质科技情报,25(1):27-34
    宗克清,刘勇胜,高山,袁洪林,柳小明,王选策.2005.汉诺坝辉石岩包体中单斜辉石的微量元素组成特征及其动力学意义.岩石学报,21(3):909-920
    宗克清,刘勇胜,柳小明,张辉斌.2006.CCSD主孔100-1100m榴辉岩中单矿物的原位微区微量元素地球化学研究.岩石学报,22(7):1891-1904

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700