苏鲁地区超高压变质带深部磁性结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石圈结构、组成及演化研究是现代地球科学的前缘与热点。本论文选题是将地球物理学、岩石学和地质学等学科的基本理论与思维相结合,依据研究区磁卫星磁场与航空磁异常的数据,研究苏鲁地区超高压变质带深部磁性结构,并应用岩石圈磁性结构与深部地球动力之间相互关系的基本准则,探讨郯庐断裂带以东华北克拉通与扬子克拉通碰撞的动力学模式。
     研究过程中根据Jacobsen提出的不同上延高度位场的残差异常对应岩石圈内某一深度范围的场源物性分布特征,对研究区航磁数据进行多尺度异常分离处理,提取出反映不同尺度的场源信息。经对比分析,将上延10—30km的化极航磁残差异常近似对应上地壳场源的磁性特征,上延60—100km的化极航磁残差异常近似对应中地壳;化极卫星磁异常近似代表下地壳至上地幔顶部场源的分布。该方法计算结果可能存在一定误差,但物理意义明确,算法稳定、简单,可以作为一种地壳或岩石圈磁性结构半定量分析方法。
     为获得研究区视磁化率分布,本文利用等效偶极源方法,对不同尺度的磁异常进行正反演,获得磁性体磁化率的空间分布特征。并据此作为分析研究区磁性分区特征及场源岩性解释的基础。
     为获得磁性体的空间分布,对航磁数据采用三维欧拉反褶积方法反演磁性体边界和深度。
     上述三种方法处理与反演的结果,成为本次研究的基础。通过对比分析并结合其它资料,确定了超高压变质带地壳深部磁性结构,进而尝试建立不同时期俯冲动力学背景下超高压变质带折返机制和华北与扬子克拉通碰撞的概念模式。
     本次研究取得成果具体如下:
     1.将航磁异常与卫星磁异常结合,尤其是航磁长波长磁异常与400公里高度磁卫星磁场对比,分析研究不同尺度的磁异常特征,为研究区深部磁性结构分析提供基础。依据化极上延航磁残差异常、卫星磁异常及其对应的视磁化率,得到了研究区三维空间磁性结构。一般规律为:中酸性岩石,如花岗岩、花岗闪长岩与花岗片麻岩区表现为低磁性特征;基性超基性岩大多分布规模小,引起的磁异常不明显;基底深变质岩表现出较强磁异常。
     2.根据不同尺度磁异常特征,对研究区进行了构造分区。共划分出华北克拉通、扬子克拉通及苏鲁造山带三个Ⅰ级构造单元;郯庐断裂带、鲁西台隆、徐淮断隆、苏北胶南地体和苏北断坳五个Ⅱ级构造单元。这些结果与区域地质构造基本一致。
     3.研究区深部存在明显北西向分布的大尺度地质体,自鲁西台隆跨过郯庐断裂带,经胶南、日照进入黄海。磁性体项界面埋深约为19km,在郯庐断裂以西略浅,以东略深,大致反
Research on lithosphere is the forward position of the contemporary geosciences. The data of geophysics, petrology and geology are integrated to study the deep magnetic structure of the ultra-high-pressure metamorphic belt in Sulu. The intensive dynamic processes which have occurred after the collision between the Sino-Korean and Yangtze cratons are discussed based on the study.
    In this study, three methods (upward-continuation, equivalent source and euler deconvolution) are used to process the aeromagnetic data and satellite magnetic data. The magnetic structure of crust is obtained.
    According to Jacobsen, the information corresponded to various deep layers can be obtained when the gravity or magnetic data are processed by upward continuation. The property of upper crust can be deduced from the residual anomaly which is got by subtracting the anomaly at 10km from the total anomaly and the anomaly at 30km from the anomaly at 10km. Similarly, subtracting the anomaly at 60km from the anomaly at 30km and the anomaly at 100km from the 60km correspond to the magnetic sources in the middle crust. The large-scale and deep-seated terranes and structures in the lower crust can be interpreted from the satellite magnetic anomaly. Through this method may produce much big error, it is easy to calculate and has clear geophysical principle. It can be a semi-quantative approach.
    The apparent susceptibility can be received by an equivalent source technique. The spacial distribution of apparent susceptibility is obtained by inversing various scale magnetic anomaly.
    The depth and horizontal position of magnetic object are estimated by Euler deconvolution. The technique is based on Euler's homogeneity relationship and requires no prior knowledge of the source magnetization direction. It has been widely used in automatic aeromagnetic interpretation.
    The results are as following:
    1. According to the characteristic of magnetic anomaly and the distribution of faults, the study aero can be divided into three main tectonic units (Sino-Korean, Sulu orogenic belt and Yangtze
引文
[1] Fountain D M, Arculus R, Kay R W. Continental lower crust. Elsevier Science Publisher, I992, 145-200pp.
    [2] Pechersky D M, Genshaft Y S. Petromagnetism of the continental crust: A summary of 20th century research. Phys. Solid Earth, 2002, 38: 4~36.
    [3] Dunlop D J. Magnetism in rocks. Journal of Geophysical Research, 1995, 100: 2161~2174.
    [4] 刘庆生,高山,郑建平.大陆地壳磁性结构研究及其意义.科学通报,1998,41(12):1246~1252
    [5] Pikington, Percival. Relating crustal magnetization and satellite-altitude magnetic anomalies in the Ungava peninsula, northern Quebec, Canada. Earth and Planetary Science Letters, 2001, 194: 127~133.
    [6] Carmichael R S, Black R A. Analysis and use of MAGSAT satellite magnetic data for interpretation of crustal structure and character in the U. S. mid-continent. Physics of the Earth and Planetary Interiors, 1986, 44: 333~347.
    [7] Arkani-Hamed J, Zhao S K and Strangway D W. Geophysical interpretation of the magnetic anomalies of China derived from Magsat data. Geophysical Journal, 1988, 95: 347~359.
    [8] Fountain D M, Salisbury M H. Exposed cross sections through the continental crust: Implications for crustal structure, petrology and evolution. Earth Plant Sci Lett, 1981, 5: 263~277.
    [9] 刘庆生,高山.太古宙高级地体的磁性岩石学研究——窥探地壳深部结构及地球动力学的窗口.中国科学基金,1997,11(3):179~184.
    [10] Toft P B, Scowen P A H, Arkani-Hamed J, et al. Demagnetization by hydration in deep crust rocks in the Grenvile Province of Quebec, Canada: implications for magnetic anomalies of continental collision zones. Geology, 1993, 21: 999~1002.
    [11] 游振东.变质地质学的三大前缘课题.地学前缘,1994,1:111~124.
    [12] 张立飞,崔文元.超高压变质作用研究现状及问题.地学前缘,1994,1:125~133.
    [13] 韩郁菁.当前高压变质作用研究中几个值得注意的动向.地学前缘,1994,1:134~139.
    [14] 魏春景.蓝片岩及其有关高压变质带研究的新进展.地学前缘,1994,1:140~144.
    [15] 翟明国,从柏林.苏鲁—大别山变质带岩石大地构造学.中国科学(D辑),1996,26(3):258~264.
    [16] 张泽明,游振东,韩郁菁等.大别—苏鲁榴辉岩带的岩石学、变质作用过程及成因研究.地质学报,1995,69(4):306~323.
    [17] 李曙光,李惠民,陈移之等.大别山—苏鲁地体超高压变质年代学——Ⅱ锆石U—Pb同位素体系.中国科学(D辑),1997,27(3):200~206.
    [18] 王椿镛,张先康,丁志峰等.大别造山带上部地壳结构的有限差分层析成像.地球物理学报,1997,40(4):493~502.
    [19] 董树文,吴宣志,高锐等.大别造山带地壳速度结构与动力学.地球物理学报,1998,41(3):349~361.
    [20] 高山,金振民,Kern H等.大别超高压榴辉岩高温高压下地震波速和密度的初步实验研究.科学通报,1997,8:862~866.
    [21] 王鹤年.苏北榴辉岩的特征及成因探讨.南京大学学报,1963,1:109~123.
    [22] Okay A I. Coesite from the Dabieshan eclogites, Central China. Eur J Mineral, 1989, 17: 1085~1088.
    [23] 徐树桐等.大别山东段高压变质岩中的金刚石.科学通报,1991,17:1318~1321.
    [24] Meancktelow N. On metamorphic "pressure" during defomation, Schweiz. Mineral. Petrogr. Mitt., 1993,73: 340~341.
    [25] Schreyer W. Ultradeep metamorphic rocks: The retrospective viewpoint. J. Geophys. Res., 1995, 100(B5): 8353~8366.
    [26] Donna E P, Martin R. Continental subduction and three-dimensional crustal structure: The north South Island, New Zealand. J. Geophys. Res., 1997, 102(B6): 11843~11861.
    [27] 苏尚国,王仁民.山东诸城地区胶南群榴辉岩围岩高压变质作用特征.现代地质,1994,8(1):65~71.
    [28] 张泽明,游振东,韩郁菁.桐柏-大别山高压超高压变质带.地球科学,1994,19(1):1~7.
    [29] 张儒媛,从柏林,刘忠光.苏鲁超高压变质地体及其成因解释.岩石学报,1993,9(3):211~223.
    [30] 李曙光,葛宁洁.大别北冀大别群中C型榴辉岩的Sm-Nd同位素及其构造意义.科学通报,1989,3:522~525.
    [31] Smith D C. A comparative evaluation of six problematical geodynamical models for creation of UHPM coesite-eclogite subfacies assemblages in crustal-derived metamorphic terrains. Abstracts of the Meeting of Testing Models for Metamorphism. Oxford Univ, 1992.
    [32] Chopin C. Very-high-pressure metamorphism in western Apls; implications for subduction of continental crust. Phil. Trans. R. Soc. Lond., 1987, 321A: 179~183.
    [33] Platt J P. The uplift of high-pressure low-temperature rocks. Phil. Trans. R. Soc. Lond., 1987, 321A: 87~103.
    [34] England P C, Holland T B. Archimedes and the tauem eclogites: the role of buoyancy in the preservation of exotic eclogite blocks. Earth and Planetary Science Letters, 1979, 44:287~294.
    [35] Platt J P. Exhumation of high-pressure rocks: a review of concepts and processes. Terra. Nova., 1993, 5: 119~133.
    [36] Hsu K J. Exhumation of high-pressure metamorphic rocks (Alps). Geology, 1991, 19:107~110.
    [37] 王清晨,从柏林.大别山超高压变质岩的地球动力学意义.中国科学(D辑),1996,26(3):271~276.
    [38] 王清晨,张儒嫒,从柏林等.鲁东-苏北榴灰岩的构造特征及其折返机制.岩石学报,1992,8(2):153~160.
    [39] Hodges K V, Walker J D. Extension in the Cretaceous Sevier orogen, North America Cordillera. Geol. Soc. Am. Bull., 1992, 104: 560~569.
    [40] Dobretsov N L. Blueschists and eclogites: a possible plate tectonic mechanismfor their emplacement from the upper mantle. Tectonophysics, 1991, 219: 253~268.
    [41] Davies J H, Blanckenburg F V. Slab break-off: A model of lithosphere detachment and its test in the magmatism and deformation of collision orogents. Earth Plan Sci Lett, 1995, 129: 85~102.
    [42] Peacock S M. Numerical simulation of metamorphic pressure-temperature-time path and fluid production in subduting slabs. Tectonics, 1990, 9: 1197~1211.
    [43] Lappin M A, Smith D C. Mantle equilibrated orthopyroxene eclogite pods from the Basal Gneisses in the Selje District, Western Norway. Journal of Petrology, 1978, 19: 530~584.
    [44] Smith D C. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 1984, 310(5979): 641~644.
    [45] Bryhni I, Griffin W L. Zoning in eclogite garnets from nordfjord, west Norway. Contr Mineral andPetrol, 1971, 32: 112~125.
    [46] Platt J P. Dynamics of orogenic wedges and the uplift of high pressure metamorphic rocks. Bull Geol SocAm, 1986, 97: 1037~1053.
    [47] Dov Avigad. Exhumation of coesite-bearing rocks in the Dora Maira massif (Western Alps, Italy). Geology, 1992, 20: 947~950.
    [48] Okay A, Senger A M. Evidence for intracontinental thrust-related exhumation of the ultrahigh pressure rocks in China. Geology, 1992, 20:411~414.
    [49] Li Z X. Collision between the north and south China blocks: a crustal-detachment model for suturing in the region east of the Tanlu fault. Geology, 1994, 22: 739~742.
    [50] 王晓凤,李中坚,陈柏林等.郯庐断裂带。北京:地质出版社,2000.
    [51] Chung S L. Trace element and isotope characteristics of Cenozoic basalts around the Tanlu fault with implications for the eastern plate boundary between north and south China. Journal of Geology, 1999, 107: 739~742.
    [52] 徐佩芳,孙若昧,刘福田等.扬子板块俯冲、断离的地震层析成象证据.科学通报,1999,44(15):1658~1661.
    [53] 杨文采,程振炎,陈国九等.苏鲁超高压变质岩带北部地球物理调查(Ⅰ)—深反射地震.地球物理学报,1999,42(1):41~52.
    [54] 杨文采,方慧,程振炎等.苏鲁超高压变质岩带北部地球物理调查(Ⅱ)—非地震方法.地球物理学报,1999,42(4):508~519.
    [55] 曲国胜,王绳祖.中国大陆及邻近海域航磁—大地构造解释及分区.地质科学,1997,32(4):455~464.
    [56] 戴明刚.东海及邻域的两条剖面地球物理反演与综合解释.地球物理学进展,2004,19(2):331~340.
    [57] 余钦范,姚长利,孟小红,郭友钊.苏北大陆科学钻探靶区重磁异常反演解释.地球物理学报,2001,44(6):825~832.
    [58] 吴其反,路凤香,刘庆生等.苏鲁地区地壳深部太古代残留岩片:来自航磁资料的证据.科学通报,2003,48(4):395~399.
    [59] 吴其反.郯庐断裂带岩石圈结构研究.2001,中国地质大学博士学位论文.
    [60] 吴其反,路凤香,程建平等.中国东部新编重磁异常图及构造解释研究.地球学报,2004,25(1):83~88.
    [61] 张昌达.岩石圈磁场研究.地质科技情报,2001,20(3):83~90.
    [62] 张昌达.中国境内卫星磁异常的初步解读.中国地球物理学会年刊,2001,
    [63] 张昌达.由卫星和航空磁测成果推断中国岩石圈的磁性结构.地球物理学进展,2003,18(1):103~110.
    [64] 中国地质科学院地质研究所.大别—苏鲁造山带地质图.北京:地质出版社,2002.
    [65] 山东地矿局.山东区域地质志。北京:地质出版社,1991.
    [66] 江苏地矿局.江苏及上海市区域地质志.北京:地质出版社,1991.
    [67] 王来明,宋明春.胶南造山带中高压、超高压变质矿物.山东地质,1998,14(1):20~25.
    [68] 于津海,王锡银,林黎明.苏北高压变质带及其与北侧超高压变质带的关系.地质学报,2001,75(1):10~12.
    [69] 张希道,王来明.胶东威海—乳山麻粒岩相岩石的发现及初步研究.中国区域地质,1996,153:38~40.
    [70] 苏相国,王仁民,顾德林.山东诸城地区胶南群榴辉岩围岩高压变质作用特征.现代地质,1994,8(1):19~23.
    [71] 宋明春,王来明.胶南造山带变质作用及其演化.山东地质,1997,13(1):34~36.
    [72] 国家地震局地学断面编委会.江苏响水至内蒙古满都拉地学断面.北京:地震出版社,1991.
    [73] Byedy P E, Stolt R H. An attempt to define the curie point isotherm in northern and central Arizona. Geophysics, 42(7): 1394~1400.
    [74] Blakely R J. Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada. Journal of Geophysical Research, 1988, 93(B10): 11817~11832.
    [75] Tselentis G A. An attempt to define curie point depths in Greece from aeromagnetic and heat flow data. Pure and Applied Geophysics, 1991, 136(1): 87~101.
    [76] Wasilewski P, Fountain D M. The ivrea zone as a model for the distribution of magnetization in the continental crust. Geophysical Research Letters, 1982, 9: 333~336.
    [77] 刘庆生.河南登封至鲁山地区大陆地壳岩石磁性结构研究.中国科学(B辑),1993,23(10):1091~1098.
    [78] 徐海军.中国大陆科学钻探工程主孔(100—2000m)岩心及周边地区岩石的磁化率研究.2005,中国地质大学硕士学位论文.
    [79] Dolmaz M N, Hisarli Z M, Orbay N and et al. Curie point depths based on spectrum analysis of aeromagnetic data, west Anatolian extensional province, Turkey. Pure appl. Geophys., 2005, 162: 571~590.
    [80] Jacobson B H. A case for upward continuation as a standard separation for potential field maps. Geophysics, 1987, 52(8): 1138~1148.
    [81] Arkani-Hamed J, Strangway D W. An interpretation of magnetic signatures of subduction zones detected by MAGSAT. Tectonopnysics, 1987, 133: 45~55.
    [82] Mayhew M A. An equivalent layer magnetization model for the United States derived from satellite altitude magnetic anomalies. Journal of Geophysical Research, 1982, 8 (B6): 4837~4845.
    [83] Mayhew M A. Application of satellite magnetic anomaly data to curie isotherm mapping. Journal of Geophysical Research, 1982, 87(B6): 4837~4845.
    [84] Mikhailov V, Galdeano A, Diament M, and et al. Application of artificial intelligence for Euler solutions clustering. Geophysics, 2003, 68(1): 168~180.
    [85] Valeria C F B, Joao B C S and Walter E M. Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics, 1999, 64(1): 48~60.
    [86] Thompson D T. EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 1982, 47(1): 31~37.
    [87] Reid A B, Alisop J M, Granser H, and et al. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 1990, 55(1): 80~91.
    [88] Langel R A, Phillips J D, Homer R J. Initial scalar magnetic anomaly map from MAGSAT. Geophysical Research Letters, 1982, 9(4): 269~272.
    [89] 陈沪生,周雪青,李道琪等.中国东部灵壁—奉贤地学断面图.北京:地质出版社,1993.
    [90] 杨文采,余长青.根据地球物理资料分析大别——苏鲁超高压变质带演化的运动学与动力学.地球物理学报,2001,44(3):346~359.
    [91] 杨文采.东大别超高压变质带的深部构造.中国科学,2003,33(2):183~192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700