中国大陆超深钻(CCSD)高压变质岩嗜碱铁还原菌培养研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国大陆科学钻探项目(CCSD)研究中,从地下深880米的钻孔深处,采集的泥浆样品中分离出了一个嗜碱性厌氧菌新种。在形态上,该细菌新种表现出轻微的弧形杆菌形态。在生理上对该细菌进行了定性,通过在10-48℃这一温度范围内进行观察,发现其最适生长温度为38℃,通过对0-7.5% NaCl盐度范围和0-6% KCl盐度范围分别进行观察,并对6.4-12.4 pH值范围进行测量,发现其最适pH值为9.4。严格意义上的厌氧细菌能够利用多种有机物作为营养物质,如蛋白胨、肉汁、乳酸盐、纤维二糖、葡萄糖、核糖和延胡索酸盐等。该菌基因组G+ C含量为35.4 mol%。基于16S rRNA序列的系统发生分析,结果表明分离到的细菌新种属于厚壁菌门,即G+ C含量较低的革兰氏阳性菌。对16S rRNA进行的系统发育分析,表明该细菌属于Clostridiaceae科,G+ C含量低,与Anaerobranca gottschalkii和Anaerobranca californiensis的核苷酸同源性分别达到94%和93%。分离出来的细菌代表了一个嗜碱性新种。根据其生理和分子特性,建议将该细菌命名为Alkaliphilus Aanaerobic- sp. nov。高度厌氧生存环境,以及该细菌与CCSD钻孔中的其他分离物的比较,也在本文中进行了讨论。
A novel iron-reducing alkaliphilic anaerobic species was isolated from an 880-m-depth drilling mud sample of a subsurface borehole of CCSD (Chinese Continental Scientific Drilling Program). The bacterium displayed a slightly curved rod morphologically, and was physiologically characterized with an optimal temperature of 38℃, the salinity of (NaCl), (KCl), respectively, and an optimal pH 9.4. The strictly anaerobic bacterium was able to utilize various carbon substrates such as peptone, nutrient broth, lactate, cellobiose, glucose, ribose, fumarate and so on. The G+ C content of genomic DNA was 35.4 mol%. Phylogenetic analysis based on the 16S rRNA sequence indicated that the isolate is a member of Firmicutes within the low G+C Gram-positive bacteria. Phylogenetic analysis of the 16S rRNA indicated the bacterium was a low G+C Gram-positive microorganism in the Clostridiaceae, and had 94% and 93% nucleotide identity with Anaerobranca gottschalkii and Anaerobranca californiensis, respectively. The isolate represented a novel metal-reducing, alkaliphilic species and the name Alkaliphilus Aanaerobium sp. nov. is proposed based on its physiological and molecular properties. The highly anaerobic habitat and the comparison with other isolates from the CCSD boreholes are discussed. The interactions between the iron-reducing and iron-bearing minerals are also tested in the paper.
引文
[1]K. Horikoshi. K. Tsujii. 1999. Extremophiles in Deep-Sea Environments
    [2]Y. Taniguchi, H.E. Stanley, H. Ludwig (Eds.), Biological Systems Under Extreme Conditions, Springer, Berlin, 200
    [3]He L J ,Hu S B , Yang W C ,et al. Temperature measurement in the main hole of the Chinese Continental Scientific Drilling. Chinese J . Geophys. (in Chinese) , 2006 , 49 (3) : 745~752
    [4]Wang Jiyang , Hu Shengbiao, Yang Wencai.2001. Geothermal measurements in the pilot-boreholes of t he china continental scientific drilling. Chinese Science Bulletin. Volume 46, Number 20 / October, 2001. Page: a1~a4
    [5]Prowe SG, Antranikian G. Anaerobranca gottschalkii sp. nov., a novel thermoalkaliphilic bacterium that grows anaerobically at high pH and temperature. Int J Syst Evol Microbiol. 2001 Mar; 51(Pt 2):457-65.
    [6]Schwertmann & R.M.Cornell.1991. Iron oxides in the laboratory. P114
    [7]Lovley, D. R., and F. H. Chapelle (1995), Deep Subsurface Microbial Processes, Rev. Geophys., 33(3), 365–381
    [8]Bligh, E. G. & Dyer, W. J. (1959). A rapid method to total lipid extraction and purification. Can J Biochem Physiol 37, 911~917.
    [9]Boone, D. R., Liu, Y., Zhao, Z.-J., Balkwill, D. L., Drake, G. R.,Stevens, T. O. & Aldrich, H. C. (1995). Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45, 441~448.
    [10]Cato, E. P., George, W. L. & Finegold, S. M. (1986). Genus Clostridium. In Bergey's Manual of Systematic Bacteriology, pp.1141-1200. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharp & J. G. Holt. Baltimore, MD: Williams & Wilkins.
    [11]Horikoshi, K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63, 735~750.
    [13]Jeanthon, C., Reysenbach, A. L., L’Haridon, S., Gambacorta, A., Pace, N. R., Glenat, P. & Prieur, D. (1995). Thermotoga subterranean sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164, 91~97.
    [14]Kieft, T. L., Fredrickson, J. K., Onstott, T. C. & 8 other authors (1999). Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65, 1214~1221.
    [15]Krulwich, T. A. & Guffanti, A. A. (1989). Alkalophilic bacteria. Annu Rev Microbiol 43, 435~463.
    [16]Krumholz, L. R., Harris, S. H., Tay, S. T. & Suflita, J. M. (1999). Characterization of two subsurface H2-utilizing bacteria,
    [17]Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles. Appl Environ Microbiol 65, 2300~2306.
    [18]Orphan, V. J., Taylor, L. T., Hafenbradl, D. & DeLong, E. F. (2000). Culture-dependent and culture-independent characterizationof microbial assemblages associated with high-temperature reservoirs. Appl Environ Microbiol 66, 700~711.
    [19]L’Haridon, S., Reysenbach, A. L., Glenat, P., Prieur, D. & Jeanthon,C. (1995). Hot subterranean biosphere in a continental oil reservoir. Nature 377, 223-225.
    [20]Li, Y., Mandelco, L. & Wiegel, J. (1993). Isolation and characterization of a moderately thermophilic anaerobic alkaliphile, Clostridium paradoxum sp. nov. Int J Syst Bacteriol 43, 450~460.
    [21]Li, Y., Engle, M., Weiss, N., Mandelco, L. & Wiegel, J. (1994). Clostridium thermoalcaliphilum sp. nov., an anaerobic and thermotolerant facultative alkaliphile. Int J Syst Bacteriol 44, 111-118.
    [22]Kevbrin, V. V., Zhilina, T. N., Rainey, F. A. & Zavarzin, G. A. (1998). Tindallia magadii gen. nov., sp. nov.: an alkaliphilic anaerobic ammoni?er from soda lake deposits. Curr Microbiol 37, 94~100.
    [23]Horikoshi, K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63, 735~750.
    [24]Yul Roh. Metal reduction and biomineralization by an alkaliphilic metal-reducing bacterium, Alkaliphilus metalliredigens (QYMF). December 2007. Geosciences Journal. Vol. 11, No. 4, p. 415 ? 423.
    [25]Francis, A.J., Dodge, C.J. and Meinken, G.E., 2002, Biotransformation of pretechnetate by Clostridia. Radichimica Acta, 90, 791~ 97.
    [26]Fredrickson, J.K., Zachara, J.M., Kukkadau, R.K., Gorby, Y.A., Smith, S.C. and Brown, C.F., 2001, Biotransformation of Ni-substituted hydrous ferric oxide by a Fe(III)-reducing bacterium. Environmental Science & Technology, 35, 03~712.
    [27]Liu, S.V., Zhou, J., Zhang, C., Cole, D. R., Gajdarziska-Josifovska, M. and Phelps, T.J. 1997, Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science, 277, 1106~1109.
    [28]Zachara, J.M., Kukkadapu, R.K., Fredrickson, J.K., Gorby, Y.A. and Smith, S.C., 2002, Biomineralization of poorly crystalline Fe(III) oxides by dissimilatory metal reducing bacteria (DMRB). Geomicrobiology Journal, 19, 179~207.
    [29]Abildgaard L, Birger-Ramsing N, Finster K. 2004. Ancylobacter rudongensis sp. nov., isolated from roots of Spartina anglica. International Journal of Systematic and Evolutionary Microbiology 54: 393~399.
    [30]Balch WE, Wolfe RS. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl. Environ. Microbiol. 32: 781~791.
    [31]Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Mol. Biol. Rev. 43: 260~296.
    [32]DeLong EF. 1992. Archaea in coastal marine environments. Proceedings of the National Academy of Science 89: 5685~5689.
    [33]Lovley DR, Chapelle FH. Deep Subsurface Microbial Processes. Rev. Geophys. 33.
    [34]Moser DP, et al. 2005. Desulfotomaculum and Methanobacterium spp. Dominate a 4- to 5-Kilometer-Deep Fault. Appl. Environ. Microbiol. 71: 8773~8783.
    [35]Myers JM, Antholine WE, Myers CR. 2004. Vanadium(V) Reduction by Shewanella oneidensis MR-1 Requires Menaquinone and Cytochromes from the Cytoplasmic and Outer Membranes. Appl. Environ. Microbiol. 70: 1405~1412.
    [36]Onstott TC, et al. 2003. Indigenous and contaminant microbes in ultradeep mines. EnvironmentalMicrobiology 5: 1168~1191.
    [37]Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR. 2004. Vanadium Respiration by Geobacter metallireducens: Novel Strategy for In Situ Removal of Vanadium from Groundwater. Appl. Environ. Microbiol. 70: 3091-3095.
    [38]Pedersen K. 2001. Diversity and activity of microorganisms in deep igneous rock aquifers of the fennoscandian shield. Pages 97-139 in Frederick JF, Fletcher M, eds. Subsurface Microgeobiology and Biogeochemistry. New York: Wiley-Liss.
    [39]Prowe SG, Antranikian G. 2001. Anaerobranca gottschalkii sp nov., a novel thermoalkaliphilic bacterium that grows anaerobically at high pH and temperature. International Journal of Systematic and Evolutionary Microbiology 51: 457~465.
    [40]Sahl JW, et al. 2007. Subsurface Microbial Diversity in Deep Granitic Fracture Water, Colorado, USA. Appl. Environ. Microbiol.: AEM.01133~01107.
    [41]Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK. 2001. Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. International Journal of Systematic and Evolutionary Microbiology 51: 1245~1256.
    [42]van Marwijk J, Opperman D, Piater L, van Heerden E. 2009. Reduction of vanadium(V) by Enterobacter cloacae EV-SA01 isolated from a South African deep gold mine. Biotechnology Letters 31: 845~849.
    [43]Wang JY, Hu SB, Yang WC, Chen BH, Chen ZY, Li TJ. 2001. Geothermal measurements in the pilot-boreholes of the China Continental Scientific Drilling. Chinese Science Bulletin 46: 1745~1748.
    [44]Zhang G, Dong H, Xu Z, Zhao D, Zhang C. 2005. Microbial Diversity in Ultra-High Pressure Rocks and Fluids From the Chinese Continental Scientific Drilling in China. Applied and Environmental Microbiology 71: 3213~3227.
    [45]Ehrlich, H.L., Geomicrobiology, New York: Marcel Dekker,2002.
    [46]Lovley, D.R., Dissimilatory Metal Reduction, Annu.Rev. Microbiol., 1993, vol. 47, pp. 263~290.
    [47]Lovley, D.R., Holmes, D.E., and Nevin, K.P., DissimilatoryFe(III) and Mn(IV) Reduction, Adv. Microb. Physiol.,2004, vol. 49, pp. 219~286.
    [48]Lovley, D.R., Dissimilatory Fe(III) and Mn(IV) Reduction,Microbiol. Rev., 1991, vol. 55, pp. 259~287.
    [49]Nealson, K.H. and Saffarini, D., Iron and Manganese inAnaerobic Respiration: Environmental Significance,Physiology, and Regulation, Annu. Rev. Microbiol.,1994, vol. 48, pp. 311~343.
    [50]Straub, K.L., Benz, M., and Schink, B., Iron Metabolism in Anoxic Environments at Near Neutral pH, FEMSMicrobiol. Ecol., 2001, vol. 34, pp. 181–186.
    [51]Walker, J.C.G., Was the Archaean Biosphere Upside Down?, Nature, 1987, vol. 329, pp. 710–712.
    [52]Lovley, D.R., Bioremediation of Organic and Metal Contaminants with Dissimilatory Metal Reduction, J. Ind. Microbiol., 1995, vol. 14, pp. 85–93.
    [53]Lee, A.K. and Newman, D.K., Microbial Iron Respiration: Impacts on Corrosion Processes, Appl. Microbiol. Biotechnol., 2003, vol. 62, pp. 134–139.
    [54]Lloyd, J.R., Lovley, D.R., and Macaskie, L.E., Biotechnological Applications of Metal-Reducing Microorganisms, Adv. Appl. Microbiol., 2003, vol. 53, pp. 85–128.
    [55]Nealson, K.H. and Cox, B.L., Microbial Metal-Ion Reduction and Mars Extraterrestrial Expectations?,Curr. Opin. Microbiol., 2002, vol. 5, pp. 296–300.
    [56]Zavarzin, G.A., Rise of the Biosphere, Vestn. Ross. Akad.Nauk, 2001, vol. 71, pp. 988–1001.
    [57]Gold, T., The Deep, Hot Biosphere, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 6045–6049.
    [58]Slobodkin, A.I., Zavarzina, D.G., Sokolova, T.G., and Bonch-Osmolovskaya, E.A., Dissimilatory Reduction of Inorganic Electron Acceptors by Thermophilic Anaerobic Prokaryotes, Mikrobiologiya, 1999, vol. 68, pp. 600–623.
    [59]Glasauer, S., Langley, S., and Beveridge, T.J., Intracellular Iron Minerals in a Dissimilatory Iron-Reducing Bacterium, Science, 2002, vol. 295, pp. 117–119.
    [60]Glasauer, S., Langley, S., and Beveridge, J., Intracellular Manganese Granules Formed by Subsurface Bacterium, Environ. Microbiol., 2004, vol. 6, pp. 1042–1048.
    [61]Schroeder, I., Johnson, E., and de Vries, S., Microbial Ferric Iron Reductases, FEMS Microbiol. Rev., 2003, vol. 27, pp. 427–447.
    [62]Schuler, D. and Frankel, R.B., Bacterial Magnetosomes: Microbiology, Biomineralization and Biotechnological Applications, Appl. Microbiol. Biotechnol., 1999, vol. 52, pp. 464–473.
    [63]Wackett, L.P., Dodge, A.G., and Ellis, L.B.M., Microbial Genomics and the Periodic Table, Appl. Environ. Microbiol., 2004, vol. 70, pp. 647–655.
    [64]Hobman, J.L, Wilson, J.W., and Brown, N.L, Microbial Mercury Reduction, Environmental Metal–Microbe Interactions, Lovley, D.R., Ed., Am. Soc. Microbiol., 2000, pp. 177–197.
    [65]Cervantes, C., Campos-Garcia, J., Devars, S., Gutierrez- Corona, F., Loza-Tavera, H., Torres-Guzman, J.C.
    [66]Moreno-Sanchez, R., Interactions of Chromium with Microorganisms and Plants, FEMS Microbiol. Rev., 2001, vol. 25, pp. 355–347.
    [67]Hernandez, M.E. and Newman, D.K., Extracellular Electron Transfer, Cell. Mol. Life Sci., 2001, vol. 58, pp. 1562–1571.
    [68]Nevin, K.P. and Lovley, D.R., Mechanisms for Fe(III) Oxide Reduction in Sedimentary Environments, Geomicrobiol. J., 2002, vol. 19, pp. 141–159.
    [69]Nealson, K.H., Belz, A., and McKee, B., Breathing Metals as a Way of Life: Geobiology in Action, Antonie van Leeuwenhoek, 2002, vol. 81, pp. 215–222.
    [70]Zachara, J.M., Kukkadapu, R.K., Fredrickson, J.K., et al., Biomineralization of Poorly Crystalline Fe(III) Oxides by Dissimilatory Metal Reducing Bacteria, Geomicrobiology J., 2002, vol. 19, pp. 179–207.
    [71]Brock, T.D. and Gustafson, J., Ferric Iron Reduction by Sulfur- and Iron-Oxidizing Bacteria, Appl. Environ. Microbiol., 1976, vol. 32, pp. 567–571.
    [72]Slobodkin, A.I., Eroshchev-Shak, V.A., Kostrikina, N.A., Lavrushin, V.Yu., Dainyak, L.G., and Zavarzin, G.A., Formation of Magnetite by Thermophilic Anaerobic Microorganisms, Dokl. Akad. Nauk, 1995, vol. 345, no. 5, pp. 694–697.
    [73]Boone, D.R. and Liu, Y., Zhao, Z.J., Balkwill, D.L.,Drake, G.R., Stevens, T.O., and Aldrich, H.C., Bacillus infernus sp. nov., an Fe(III)- and Mn(III)-Reducing Anaerobe from the Deep Terrestrial Subsurface, Int. J.Syst. Bacteriol., 1995, vol. 45, pp. 441–448.
    [74]Slobodkin, A.I. and Wiegel, J., Fe(III) as an Electron Acceptor for H2 Oxidation in Thermophilic Anaerobic Enrichment Cultures from Geothermal Areas, Extremophiles,1997, vol. 1, pp. 106–109.
    [75]Greene, A.C., Patel, B.K.C., and Sheehy, A.J., Deferribacter thermophilus gen. nov., sp. nov., a Novel Thermophilic Manganese- and Iron-Reducing Bacterium Isolated from a Petroleum Reservoir, Int. J. Syst. Bacteriol., 1997, vol. 47, pp. 505–509.
    [76]Slobodkin, A.I., Reysenbach, A.-L., Strutz, N., Dreier, M.,and Wiegel, J., Thermoterrabacterium ferrireducens gen. nov., sp., nov. a Thermophilic Anaerobic, Dissimilatory Fe(III)-Reducing Bacterium from a Continental Hot Spring, Int. J. Syst. Bacteriol., 1997, vol. 47, pp. 541–547.
    [77]Slobodkin, A.I., Tourova, T.P., Kuznetsov, B.B., Kostrikina, N.A., Chernyh, N.A., and Bonch-Osmolovskaya, E.A., Thermoanaerobacter siderophilus sp. nov., a Novel Dissimilatory Fe(III)-Reducing Anaerobic Thermophilic Bacterium, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 1471–1478.
    [78]Woese CR. 1987 Bacterial evolution. Microbiol Rev. 51(2):221-71.
    [79]Woese C R., Gutrll R., Noller H F. 1983 Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev. 47:621-669
    [80]Woese C R , Gutell R R 1989 Evidence for several higher order structural elements in ribosomal RNA Proc Natl Acad Sci U S A. 86(9): 3119–3122
    [81]Woese CR, Kandler O, Wheelis ML. 1990. Towards to a natural system of organisms. Proposal for the domains Archaea, Bacteria and Eucaria. Proc. Natl. Acad. Sci. USA, 87: 44576– 44579.
    [82]Whitman, W.B., Coleman, D.C. and Wiebe, W.J. 1998 Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:6578-6583.
    [83]Wellsbury, P., Goodman, K., Barth, T., Cragg, B.A., Barnes, S.P.and Parkes, R.J. 1997 Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature 388:573-576.
    [84]Yoshikazu K, Hisaya K, Manabu F 2005 Potential sulfur metabolisms and associated bacteria within anoxic surface sediment from saline meromictic Lake Kaiike (Japan) FEMS Microbiology Ecology,52(3):297-305
    [86]Yul Roh, Shi V. Liu, Guangshan Li, Heshu Huang, Tommy J. Phelps, and Jizhong Zhou 2002 Isolation and Characterization of Metal-Reducing Thermoanaerobacter Strains from Deep Subsurface Environments of the Piceance Basin, Colorado Applied And Environmental Microiology 68(12):6013–6020
    [87]Yunjuan Chang, Aaron D. Peacock, Philip E. long et al 2003 Diversity and Characterization of Sulfate-Reducing Bacteria in Groundwater at a Uranium Mill Tailings Site ,Applied And Environmental Microiology 7:307-317
    [88]Yu Youngseob, Lee Changsoo, Kim Jaai, Hwang Seokhwan 2005 Group-Specific Primer and Probe Sets to Detect Methanogenic Communities Using Quantitative Real-Time Polymerase Chain Reaction Biotechnol Bioeng. 89(6):670-679.
    [89]Zhou J., Liu S. ,Xia B. , Zhang C. , Palumbo1 A.V. and Phelps T.J. 2001 Molecular characterization and diversity of thermophilic iron-reducing enrichment cultures from deep subsurface environments Journal of Applied Microbiology 90:96-105
    [90]东秀珠,蔡妙英等编著. 2001a常见细菌系统鉴定手册.北京:科学出版社.
    [91]东秀珠,洪俊华.原核微生物的多样性.生物多样性. 2001b 9(1):18-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700