江苏东海地区超高压岩石的弹性和热性质——中国大陆科学钻探岩石物理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大别-苏鲁地区出露的超高压变质岩石是研究大陆造山带根部和深部岩石圈的天然实验室,引起了地质学家的广泛关注。地球物理调查显示在苏鲁东海地区深度3.2-4.3km存在相对较高地震波速度(>6.8km/s)、高密度(>3.2g/cm3)、高电阻率(>6000Ωm)的地质体(简称“三高”地质体)。中国大陆科学钻探(Chinese Continental Scientific Drilling, 简称CCSD)的5000米钻孔可能穿过这个地质体。因此,CCSD的主要科学目标之一就是查明该地质体的成分和组成特征。对钻孔岩心及其周围岩石物理性质的研究可以为地球物理资料的解释提供必要的约束,为建立结晶岩地区的地球物理模型和解释标尺提供直接依据。本次研究通过对中国大陆科学钻探先导孔2000米岩心及钻孔周围地表样品岩石物理性质的研究,尤其是通过对超高压变质岩石的弹性性质和热物理性质的大量测试和分析,初步查明了东海地区不同超高压变质岩的物理性质及其相互关系,探讨了本区岩石物理性质的地质和地球物理意义,解释了该区地震深反射的可能成因,并初步阐明了“三高”地质体可能的物质组成。
    
     本次研究主要获得以下四方面的成果:
    一、建立了CCSD先导孔2000米的岩石物理性质连续剖面,为建立精细地球物理模型和钻孔测井成果的合理解释提供了岩石物理学的重要约束。
    在常温常压条件下初步查明了各类岩石的密度、地震波速度(Vp、Vs、饱水Vp、饱水Vs)以及岩石热导率随2000米先导孔深度的变化关系,建立了本区超高压变质岩的弹性性质和热物理性质数据库,为建立和检验各种地质和地球物理模型提供了岩石物理数据基础。此外,根据先导孔的岩性分布特征和岩石物理学的分类需要,把所研究的样品划分为7类(1-金红石榴辉岩、2-多硅白云母榴辉岩、3-角闪石化榴辉岩(弱退变榴辉岩)、4-强退变榴辉岩(石榴角闪岩)、5-副片麻岩、6-正片麻岩、7-蛇纹石化石榴石橄榄岩),并讨论和对比了它们的物理性质随岩石退变质程度、矿物组成、温度和压力的变化关系。
    
    二、查明了先导孔主要类型的岩石在常温常压和高温高压条件下地震波速度及其各向异性的变化特征,探讨了影响岩石波速的主要因素。
    通过对CCSD先导孔2000米共350余块样品的弹性波测量得知,钻孔新鲜榴辉岩的地震波速度最大(平均Vp=7.86km/s),但退变质作用显著降低榴辉岩的地震波速度。片麻岩地震
    
    波速度最小(正负片麻岩的平均Vp分别为5.53km/s和5.71km/s)。先导孔中出现的超基性岩由于蛇纹石化而使地震波速度降低,Vp介于5.96-6.66km/s,与退变质榴辉岩的地震波速度比较接近。从2000米垂向分布上看,先导孔100~1200m具有高波速的特点,平均Vp为6.37km/s,该段主要由榴辉岩夹片麻岩和超基性岩组成。1200~2000米以花岗片麻岩和部分榴辉岩为主,这段的平均Vp为5.91km/s。这两段的速度与地球物理的探测结果(100-1200米Vp≈6.4km/s,1200-2000米Vp≈5.8km/s)相吻合。
    先导孔2000米岩心具有明显的地震波各向异性。平均而言,根据对岩心的测量,地震波速度在水平方向上比在竖直方向上传播快,Vp各向异性为7.04%,饱水后降低到3.92%。岩石面理所引起的各向异性平均为10.79%,片麻岩的各向异性最为明显。
    饱水状态可以改变岩石的弹性性质。通过对近700件样品的统计,Vp在饱水后平均增加19.8%,Vs平均增加6.4%(个别样品饱水后Vs反而降低)。不同岩石在饱水后波速增加的幅度不同,片麻岩增加的最大,正片麻岩饱水后Vp增加33.64%,副片麻岩Vp增加26.74%,榴辉岩平均增加10%。蛇纹石化石榴橄榄岩饱水前后速度基本不变。此外,实验表明饱水后岩石的泊松比增加,这是粒间自由水对岩石泊松比的影响。Gao等的研究表明岩石泊松比随岩石中H20+含量的增加而增加,这是结构水对岩石泊松比的影响,二者有类似之处。
    测试结果表明地震波Vp、Vs随着岩石密度的增加而增加,自然条件下满足方程:Vp=2.636ρ-2.540,相关系数r=0.71;饱水条件下满足方程:Vp=2.076ρ+0.004,相关系数r=0.85;在高压600MPa条件下满足方程:Vp=2.685ρ-1.324,相关系数r=0.94。由不同条件下的相关系数可见,饱水状态可以部分消除裂隙的影响,高压(600MPa)可以基本闭合微裂隙,所以地震波速度和密度的相关性最大。高温高压条件下弹性波的测定结果表明,随压力的增大,在小于200Mpa的条件下,岩石的地震波速度和各向异性都快速非线性变化,速度明显增大,各向异性降低。在压力大于250MPa之后,地震波速度及其各向异性基本上线性变化。该过程是岩石内部微裂隙闭合的过程。岩石在大于250MPa以后的地震波各向异性主要受矿物LPO的控制。
    根据对苏鲁地区的相关超高压变质岩进行岩石地震波速度(Vp、Vs)随压力(最大到600MPa)和温度(最大为600℃)变化的测试,在600MPa近原位条件下,P波波速介于5.08km/s~8.6km/s,S波波速介于2.34km/s~4.93.6km/s。其对应的密度为2.34g/cm3~3.68g/cm3。与大别地区相应的超高压变质岩石相比,苏鲁地区的榴辉岩具有明显的高P波波速和高Vp/Vs(泊松比)。Vp与泊松比和Vp与SiO2的关系证明,由化学组成和变质程度所控制的矿物学是影响原位岩石物性的最重要因素。
    本次研究中得到的Vp和V
The UHPM rock slice exposed in the Dabie-Sulu belt provides a natural laboratory for examining the deep parts of the lithosphere and orogenic roots, and has attracted many geoscientists for frontier researches. Geophysical investigations revealed a high-velocity (>6.8km/s), high-density (>3.2g/cm3) and high resistivity (>6000Ωm) layer (3-high body) at depths between 3.2km and 4.3 km in Donghai area, which can be penetrated by a 5000-meter-deep drillhole. Therefore testing the composition and character of this "3-high body" is one of the scientific goals of CCSD project. Petrophysics investigations on the cores from pilot-hole and rocks form the outcrop around the drillsite supplied necessary constrains on the interpretations of geophysical results, and published the direct evidence in establishing geophysical models and interpretation standards for crystalline rocks. Based on the petrophysical measurements on the cores from CCSD 2000m-pilothole and some rocks from the outcrops in Donghai area, especially according to lots of tests and analysis on the elastic and thermal properties of the rocks, the petrophysical properties and their relationship as well as their significances in geology and geophysics are given for different rocks in Donghai area. Possible origins of deep seismic reflection are discussed and the possible composition of 3-high body is given according to the petrophysical results.
    
    1. Continuous petrophysical profiles of CCSD 2000m pilothole are established, which gives important constrains on geophysical models and well-logging interpretation.
    A dataset of densities, seismic velocities (including compressional wave Vp, shear wave Vs, water saturated Vp and Vs) as well as their profile along the depth of 2000m-pilohole are investigated based on the petrophysical measurements under air pressure and room temperature, which supplied the data foundation in verifying different geological and geophysical models. According to the lithological distributions of pilot hole and the requirements of petrophysical studies, all the samples are classified into 7 types: 1-Rutile-bearing eclogite, 2-Phengite-bearing
    
    eclogite, 3-Amphibolization eclogite, 4-Strongly retrograde eclogite, 5-Paragneiss, 6-Orthogneiss and 7-Serpentinization garnet Peridotite. The petrophysical properties and their relation to the degree of retrograde, the components of minerals, the temperature and the pressure are discussed and compared for 7 kinds of rocks.
    
    2. The characteristics of seismic velocities and their anisotropy of different rocks from pilot-hole are studied. The factors influenced on seismic velocity are discussed and the seismic velocities measurements are performed under high temperature up to 600℃ and high pressure up to 600MPa.
    About 350 core samples from CCSD 2000m-pilothole are measured on the elastic properties, which shows that among the different rocks, fresh eclogite has the maximum seismic velocity with average Vp=7.86km/s, and the gneiss has the minimum velocity (average Vp=5.53km/s for orthogneiss and 5.71km/s for paragneiss). The retrogression can decrease the seismic velocity of eclogite. The ultra-mafic rocks occurred in pilothole has the Vp velocity varies from 5.96km/s to 6.66km/s. The serpentined garnet-peridotite has the decreased velocity near the level of retrograde eclogite. In the vertical profile, the layers from 100 to 1200m have the high velocity with average Vp=6.37km/s because of the eclogite and ultra-mafic rocks in this layer. From 1200 to 2000 meters are made up of orthogneiss and some eclogites, which induced a lower velocity in average Vp=5.91km/s. The velocities of these 2 layers are consistent with those inferred from geophysical results (Vp≈6.4km/s from 100 to 1200m and Vp≈5.8km/s from 1200 to 2000m).
    The core samples from 2000m-pilothole have distinct seismic anisotropy under air pressure and room temperature. In average, seismic wave propagates in horizontal direction is faster than that in vertical direction with the anisotropy 7.04%, decreased to 3.92% after w
引文
1. 邓晋福.岩石物理化学与岩石物理学.地学前缘,1994,1(1~2):57~63
    2. 肖庆辉.大陆岩石圈的结构与动力学.见:肖庆辉等著,当代地质科学前沿,武汉:中国地质大学出版社,1993,7~17
    3. Xu Z. Etude tectonique et microtectonique de la chaine paleozoique et Triasique des Qinglings (Chine). The′se de doctorat, 1987, Univ. Sci. Tch. Langedoc, Montpellier.
    4. Wang X, Liu J G, Mao H K. Coesite-bearing eclogites from the Dabie mountains in central China. Geology, 1989, 17:1085~1088
    5. Okay A I, Xu S, Sengor A M C. Coesite from Dabie Shan eclogites, central China. European Journal of Mineralogy, 1989, 1:595~598
    6. Xu S, Okay A I, Sengor A M C, et al. Diamond from Dabie Shan eclogite and its implication for tectonic setting. Science, 1992, 256: 80~83
    7. 王清晨,从柏林,大别山超高压变质岩的地球动力学意义,中国科学,D辑,1997, 26(3):271~276
    8. 金振民,金淑燕,高山,等.大别山超高压岩石形成深度局限于100~150km吗?———针状含钛铬磁铁矿的发现及其动力学意义的思考.科学通报,1998,43(7):767~770
    9. Ye K, Cong B, Ye D. The possible subduction of continental material to depths greater than 200km. Nature, 2000, 407: 734~736
    10. Sch?n. J.H. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. PERGAMON, 1996, Elsevier.
    11. Reston T J. Evidence for shear zones in the lower crust offshore Britain. Tectonics, 1990, 7: 929~945.
    12. Pavlenkoba N I. The Kola superdeep drillhole and the nature of seismic boundaries. Terra Nova, 1992, 4: 117~123
    13. Hyndman R D, Shearer P M. Water in the lower continental crust: modeling magnetotelluric and seismic reflection results. Geophys. J. Int., 1989, 98(2): 343~365
    14. Green A G, Milkereit B, Percival J A et al. Origin of deep crust reflections: results from seismic reflection profiling across high grade metamorphic terranes in Canada. Tectonophysics, 1990, 173(1-4):627-638
    15. Nelson K D. A unified view of craton evolution motivated by recent deep reflection and refraction results. Geophys. J. Int., 1991, 105: 25~35
    16. Warner M. Basalt, water, or shear zones in the lower continental crust. Tectonophysics, 1990, 173:163~174
    17. 欧新功,金振民,金淑燕等.下地壳地震深反射的可能载体:来自层状辉长岩组构和高温高压波速实验的证据. 科学通报,2003,48(4):388~394
    18. 许志琴.大陆科学钻——深入地球内部的望远镜.中国大陆科学钻探先行研究,北京:冶金工业出版社,1996,9~12
    
    
    19. 许志琴.中国大陆科学钻探面临解决的关键地球科学问题.地球学报,1995,1:101~106
    20. 王广福.大陆科学钻探──固体地球科学新发展的突破口.地球物理学进展,9(4):72~90
    21. 许志琴,张良弼.大陆科学钻探的现状及展望.地球物理学进展,9(4):55~65
    22. 杨文采.大陆科学钻探与中国科学深钻工程.石油地球物理勘探,2002,37(2):196~199
    23. 闵志,张良弼,杨文采.大陆科学钻探的新发现与研究主题.地球科学进展,1998,13(1):15~21
    24. 杨晓松,金振民.大陆科学钻探中岩石物理性质研究的意义.地学前缘,1998,5(4):338~346.
    25. 欧新功.岩石物理学研究在中国大陆科学钻中的应用简介.地质科技情报,2001,20(3):104
    26. Xu Z, Yang W, Yang J, et al. 2000. Chinese continental scientific drilling program in the Sulu ultrahigh pressure metamorphic belt. ICDP Newsletter. 2, 13~16.
    27. Xu Z, Yang W, Zhang Z, et al. Scientific significance and site-selection researches of the first Chinese scientific deep drillhole. Continental Dynamics, 1998, 3 (1-2): 1~13.
    28. 张永康.江苏东海——中国第一口大陆科学钻探的最佳选区之一.江苏地质,1997,21(3):129~137
    29. Yang, W., 1997. Geophysical investigations of Sulu UHPM terrane in east-central China. Episodes 20, 99~103.
    30. Yang, W., 2000. Understanding seismic reflectors in UHP crust via CCSD-PP2 hole. ICDP Newslett. 2, 22~23.
    31. 杨文采,方慧,程振炎等.苏鲁超高压变质带北部地球物理调查(Ⅱ)——非地震方法.地球物理学报,1999,42 (4): 508~519
    32. 杨文采,程振炎,陈国九等.苏鲁超高压变质带北部地球物理调查(Ⅰ)——深反射地震,地球物理学报,1999,42 (1): 41~42
    33. Zhang W. The Proposed Technical Plan for the Drilling of Dabie-Sulu Scientific Bore-hole, Continental Dynamics, 1998, 3 (1-2): 103~107
    34. Fountaun D M, Boundy T M, Austrheim H, et al. Eclogite-facies shear zones - deep crustal reflectors. Tectonophysics, 1994, 232: 411~424
    35. Kern, H., Gao, S., Jin, Z.-M., Popp, T., Jin, S.-Y. Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) belt, central China: implications for the composition and delamination of the lower crust. Tectonophysics, 1999, 301, 191~215.
    36. Kern, H., Popp, T. Gao, S., Jin, Z.-M. P-and S-wave Velocities and Densities of Rocks from the Dabie UltrahighPressure (UHP) Metamorphic Belt to Pressures of 600 MPa and to Temperatures of 600℃. Continental Dynamics, 1998, 3 (1-2): 96~102
    37. Gao, S., Kern, H., Liu, Y.-S., Jin, S.-Y., Popp, T., Jin, Z.-M., Feng, J.-L., Sun, M., Zhao, Z.-B. Measured and calculated seismic velocities and densities for granulites from xenolith occurrences and adjacent exposed lower crustal sections: a comparative study from the North China craton. J. Geophys. Res.2000, 105, 18965~18976.
    38. Gao, S., Kern, H., Jin, Z.M., Popp, T., Jin, S.Y., Zhang, H.-F., Zhang, B.-R. Poisson's ratio of eclogite: the role of retrogression. Earth Planet. Sci. Lett. , 2001, 192, 523~531.
    
    
    39. 高山,Kern, H., 金振民,等.榴辉岩的泊松比及其对造山带下地壳拆沉作用的指示.中国科学(D辑),2002,32(11):881~888
    40. 高山,张本仁,金振民,H.Kern.秦岭-大别造山带下地壳拆沉作用 ,中国科学(D辑),1999,29(6):532~541
    41. 高山,金振民,Kern H等. 大别超高压榴辉岩高温高压下地震波速和密度的初步实验研究———对造山带地壳深部组成和莫霍面性质的启示. 科学通报,1997,42(8):862~866
    42. Zhao Z, Zhou W, Xie H, et al. P-wave velocity in rocks of Dabieshan, China at high pressure and high temperature: constraints for the composition of the lower crust and crust-mantle recycling. Journal of China University of Geosciences, 1999, 10(4):296~298
    43. 赵志丹,谢鸿森,周文戈,等.大别山地壳岩石高压弹性波速及其对岩石圈组成和壳-幔循环的限制.自然科学进展,2001, 11: 52~57
    44. 赵志丹,谢鸿森,周文戈,等.大别山榴辉岩的密度和波速及其对壳—幔循环的启示.矿物岩石地球化学通报,2001,20(1):6~10
    45. Kern, H., Jin, Z.M., Gao, S., Popp, T. and Xu, Z.Q. Physical properties of ultrahigh pressure metamorphic rocks from the Sulu terrain, eastern central China: implications for the seismic structure at the Donghai (CCSD) drilling site. Tectonophysics, 2002, 354, 315~330
    46. 朱茂旭,谢鸿森,郭捷等.高温高压下蛇纹石电导率实验研究.科学通报,1999,44(11):1198~1202
    47. 王多君,李和平,刘丛强等.高温高压下纯橄榄岩电导率的实验研究:改则-鲁谷冷地幔的电导率证据.科学通报,2001,46(19):1659~1661
    48. 周文戈,谢鸿森,赵志丹等.高温、高压下粗面玄武岩相变对其纵波速度影响的研究.科学通报,1999,44(4):424~427
    49. 朱茂旭、谢鸿森, 赵志丹等, 2001. 大别超高压榴辉岩高温高压下电导率实验研究. 地球物理学报, 44(1)
    50. Hofmeister A M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science, 1999, 283: 1699~1706.
    51. Dubuffet F, Yuen D A, Rabinowicz M. Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection. Earth and Planetary Science Letters, 1999, 171(3): 401~409.
    52. Berg A P, Yuen D A, Allwardt J R. Non-linear effects from variable thermal conductivity and mantle internal heating- implications for massive melting and secular cooling of the mantle. Physics of the Earth and Planetary Interiors 2002, 129: 359-375
    53. Leitch A M. Effects of temperature and mantle dynamics on estimates of the thermal conductivity in the deep mantle. Physics of the Earth and Planetary Interiors, 1995, 89: 89-108
    54. Stacey F D. Theory of thermal and elastic properties of the lower mantle and core. Physics of the Earth and Planetary Interiors, 1995, 89: 219~245
    55. Berg A P, Yuen D A, Volker S. The Effects of Variable Thermal Conductivity on Mantle Heat-Transfer, Geophys. Res. Lett. 2001, 28(5): 875~878
    56. Manga M, Jeanloz R. Thermal conductivity of corundum and periclase, and implications for the lower mantle. J. Geophys. Res., 1997, 102(B2): 2999~3008
    
    
    57. Dobson D P, Brodholt J P. The Electrical Conductivity and Thermal Profile of the Earth's mid-Mantle. Geophys. Res. Lett. 2000, 27(15): 2325~2328
    58. Tommasi A, Gibert B, Seipold U, Mainprice D. Anisotropy of thermal diffusivity in the upper mantle. Nature, 2001, 411: 783~786.
    59. Pribnow D, Umsonst T. Estimation of thermal conductivity from the mineral composition: Influence of fabric and anisotropy. Geophys. Res. Lett. 1993, 20(20): 2199~2202
    60. Deming D. Estimation of the thermal conductivity anisotropy of rock with application to the determination of terrestrial heat flow. J. Geophys. Res. 1994, 99(B11): 22,087~22,092
    61. Jokinen J, Kukkonen I T. Inverse simulation of the lithospheric thermal regime using the Monte Carlo method. Tectonophysics, 1999, 306(3-4): 293~310.
    62. Bailey E, Holloway J R. Experimental determination of elastic properties of talc to 800°C, 0.5 GPa; calculations of the effect on hydrated peridotite, and implications for cold subduction zones. Earth and Planetary Science Letters 2000, 183: 487~498
    63. Hauck S A, Phillips R J, Hofmeister A M. Variable conductivity: Effects on the thermal structure of subducting slabs. Geophys. Res. Lett.,1999, 26(21): 3257~3260
    64. Seipold U, Huenges E. Thermal properties of gneisses and amphibolites - high pressure and high temperature investigations of KTB-rock samples. Tectonophysics, 1998, 291(1~4): 173~178.
    65. Arndt J, Bartel T, Scheuber E et al. Thermal and rheological properties of granodioritic rocks from the Central Andes, North Chile. Tectonophysics, 1997, 271(1-2): 75~88.
    66. Vasseur G, Brigaud F, Demongodin L. Thermal conductivity estimation in sedimentary basins. Tectonophysics, 1995, 244(1-3): 167~174.
    67. 熊亮萍,胡圣标,汪缉安.中国东南地区岩石热导率值的分析.岩石学报,1994, 10(3):323~329
    68. 沈显杰,张文仁,陆秀文等.地热—Ⅱ型稳定分棒式热导仪——岩石热导率精密测量装置.岩石学报,1987, 1:86~95
    69. 赵永信,杨淑贞,张文仁等.岩石热导率的温压实验及分析.地球物理学进展,1995, 10(1):104~113
    70. 张儒媛,从柏林,刘忠光.苏鲁超高压变质地体及其成因解释.岩石学报,1993,9(3):211~226
    71. Zhang R Y, Liu J G. Ultrahigh-Pressure Metamorphism of the Sulu Terrane, Eastern China: A Prospective View, Continental Dynamics, 1998, 3 (1-2): 32~53
    72. Wang Y, Yang T. Relationship between the TanLu Fault and Dabie Orogenic Belt in Eastern China, Continental Dynamics, 1999, 4(1): 53~61
    73. 朱光,王道轩,刘国生等.郯庐断裂带的伸展活动及其动力学背景.地质科学,2001,36(3):169~278
    74. 汤加富,侯明金,高天山.郯庐断裂带的主要特征与性质讨论.安徽地质,1995,5(3):60~65
    75. Chopin C. Coesite and pure pyrope in high grade blueschists of the Western Alps: A first record and consequences. Contrib Mineral Petrol, 1984, 86: 107~118
    
    
    76. Smith D C. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 1984, 310:641~644
    77. 从柏林,王清晨.大别山-苏鲁超高压变质带研究的最新进展.科学通报,1999,44(11):1127~1141
    78. 徐佩芬,孙若昧,刘福田等.扬子板块俯冲、断离的地震层析成象证据,科学通报,1999,44(15):1658~1661
    79. 刘景波,叶凯,从柏林等.大别山超高压带片麻岩锆石中柯石英包裹体,科学通报,2001,46(13):1124~1127
    80. Ye, K., Yao, Y., Katayama, I., Cong, B., Wang, Q., Maruyama, S. Large areal extent of ultrahigh-pressure metamorphism in the Sulu ultrahigh-pressure terrane of East China: new implications from coesite and omphacite inclusions in zircon of granitic gneiss. Lithos, 2000, 52: 157~164.
    81. 刘景波,吴颖,国联杰.榴辉岩和围岩片麻岩之间的关系:来自片麻岩副矿物包裹体的研究,科学通报,1997,42(23):2531~2534
    82. 刘福来,许志琴,杨经绥等.中国苏北预先导孔CCSD-PP2片麻岩中锆石的矿物包裹体及其超高压变质作用的证据,科学通报,2001,46(3): 241~246
    83. Liu, F., Xu, Z., Katayama, I., Yang, J., Maruyama, S., Liou, J.G., 2001. Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos 59, 199~215.
    84. 刘良,车自成,罗金海,等 阿尔金山西段榴辉岩的确定及地质意义,科学通报,1996,41(14):1485~1488
    85. 杨经绥,许志琴,李海兵等,柴北缘地区榴辉岩的发现及潜在的地质意义,科学通报,1998,43(13):1544~1549
    86. 杨经绥,许志琴,宋述光等,青海都兰地区榴辉岩的发现及对中国中央造山带高压-超高压变质带研究的意义,地质学报,2000,74(2):156~168
    87. 杨经绥,宋述光,许志琴等.柴北缘早古生代高压-超高压变质带发现典型超高压矿物——柯石英,地质学报,2001,75(2):175~179
    88. 张建新,杨经绥,许志琴等.阿尔金榴辉岩中超高压变质作用证据,科学通报,2002,47(3):231~234
    89. Yang J, Xu Z, Song S, et al. Discovery of coesite in the North Qaidam Early Palaeozoic ultrahigh pressure (UHP) metamorphic belt, NW China. Earth and Planetary Sciences, 2001, 333: 719~724
    90. Xu Z. Drilling operation in the Dabie-Sulu UHPM Belt, East China. Proposal for Scientific Drilling, 1998.
    91. 邱海峻,许志琴,张泽明,等.苏北高压变质带绿片岩中石榴石内文石包裹体的发现.地质通报,2002,21(10):617~624
    92. 张泽明,许志琴,刘福来,等.南苏鲁造山带根部的物质组成及变质作用.地质通报,2002,21(10):609-616
    93. 樊金涛,程振香.苏北榴辉岩变质变形模式与苏胶造山带的隆升机制.中国区域地质,1999,18(2):162~174.
    
    
    94. 赵志丹,高山,骆庭川等.秦岭和华北地区地壳低速层的成因探讨──岩石高温高压波速实验证据.地球物理学报,1996,39(5):642~652
    95. 王祝文,刘菁华,李舟波等.大陆科学钻探测井岩石物理参数的提取.物探与化探,2002,26(4):268~272
    96. 王祝文,刘菁华,李舟波等.中国大陆科学钻探预先导孔-Ⅱ岩性剖面重建方法研究.吉林大学学报(地球科学版),2002,32(3):290~293
    97. Yang, W., 2002. Calibration of seismic reflections investigated in Chinese continental drilling area. Chin. J. Geophys. 45, 346~357.
    98. 杨文采,余长青.根据地球物理资料分析大别——苏鲁超高压变质带演化的运动学与动力学.地球物理学报,2001,44(3):346~359
    99. 杨文采,张春贺,朱光明等.标定大陆科学钻探孔区地震反射体.地球物理学报,2002,45(3):370~384
    100. Yang W. Geophysical profiling across the Sulu ultra-high-pressure metamorphic belt, eastern China. Tectonophysics, 2002, 354: 277- 288
    101. 刘庆生,张泽明,刘勇胜.江苏东海地区ZK703钻孔榴辉岩的磁性结构及其深部地质意义.现代地质,1999,13(Suppl.):45~50.
    102. 余钦范,郭友钊,孟小红等.苏北大陆科学钻探靶区岩石物理性质.地球物理学报,2002,45(1):93~100
    103. 余钦范,姚长利,孟小红等.苏北大陆科学钻探靶区重磁异常反演解释.地球物理学报,2001,44 (6): 826~832
    104. Borradaile G J. Magnetic fabrics and petrofabrics- their orientation distributions and anisotropies. Journal of structural geology, 2001, 23: 1581~1596
    105. Bascou J, Barruol G, Vauchez A, et al. EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics, 2001, 342: 61~ 80
    106. Barruol G, Kern H. Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone--experimental and calculated data. Physics of the Earth and Planetary Interiors, 1996, 95: 175~194
    107. Kern H, Burlini L, Ashchpekov I V. Fabric-related seismic anisotropy in upper-mantle xenoliths - evidence from measurements and calculations. Physics of the Earth and Planetary Interiors, 1996, 95: 195~209
    108. 刘斌.不同温压下岩石弹性波速度、衰减及各向异性与组构的关系.地学前缘,2000,7(1):247~257
    109. Kern, H., Liu, B., Popp, T., Relationship between anisotropy and P and S wave velocities and anisotropy of attenuation in serpentite and amphibolite. J. Geophys. Res. 1997, 102, 3051~3065.
    110. Holl A, Althaus E, Lempp C, et al. The petrophysical behaviour of crustal rocks under the influence of fluids. Tectonophysics, 1997, 275: 253~260
    111. Nur, A., Simmons, G., The effect of saturation on velocity in low porosity rocks. Earth Planet. Sci. Lett. 1969, 7: 183~193.
    
    
    112. Lebedev E B, Kern H. The effect of hydration and dehydration reactions on wave velocities in basalts. Tectonophysics, 1999, 308: 331~340
    113. Kozlovskaya E, Hjelt S E. Modeling of Elastic and Electrical Properties of Solid-Liquid Rock System with Fractal Microstructure. Phys. Chem. Earth(A), 2000, 25 (2): 195~200
    114. Kern H. Popp T. The influence of dry and water saturated cracks on seismic velocities of crustal rocks - a comparison of experimental data with theoretical model. Surveys in Geophysics, 1994, 15(5): 443~465
    115. Liu B, Kern H, Popp T. Attenuation and Velocities of P- and S-Waves in Dry and Saturated Crystalline and Sedimentary Rocks at Ultrasonic Frequencies. Phys. Chem. Earth., 1997, 22 (1-2): 75~79
    116. Gao S, Jin Z, Jin S, et al. Seismic Velocity Structure and Composition of Continental Crust in the Dabie-Sulu Area. Continental Dynamics, 1998, 3(1-2): 108~112
    117. Kern H, Popp T, Gorbatsevich G. Pressure and temperature dependence of Vp and Vs in rocks from the superdeep well and from surface analogues at Kola and the nature of velocity anisotropy. Tectonophysics, 2001, 338: 113~134
    118. Kern H. Popp T. Schmidt R. The effect of a deviatoric stress on physical rock properties. An experimental study simulating the in-situ stress field at the KTB drilling site, Germany. Surveys in Geophysics, 1994, 15(5): 467~479
    119. Christensen, N.I., Szymanski, D.L., Origin of reflections from the Brevard fault zone. J. Geophys. Res. 1988, 93, 1087~1102
    120. Ho¨lker A B, Holliger K, Manatschal G. Seismic reflectivity of detachment faults of the Iberian and Tethyan distal continental margins based on geological and petrophysical data. Tectonophysics, 2002, 350: 127~156
    121. Kern H, Gao S, Jin Z-M. Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, Central China - implications for the composition and delamination of the lower crust. Tectonophysics, 1999, 301: 191~215
    122. Kern H, Gao S, Liu Q. Seismic properties and densities of middle and lower crustal rocks exposed along the North China Geoscience Transect. Earth and Planetary Science Letters, 1996, 139: 439~455
    123. Ji, S., Zhao, X., Francis, D. Calibration of shear-wave splitting in subcontinental upper mantle beneath active orogenic belts using ultramafic xenoliths from the Canadian Cordillera and Alaska. Tectonophysics, 1994, 239, 1~27
    124. Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective. Rev Geophys, 1995, 33: 267~309
    125. Christensen N I. Poisson's ratio and crustal seismology. J Geophys Res, 1996, 101: 3139~3156
    126. Dorbath C, Masson F. Composition of the crust and upper-mantle in the Central Andes (19°30′S) inferred from P wave velocity and Poisson's ratio. Tectonophysics, 2000, 327: 213~223
    
    
    127. Lees J M, Wu H. Poisson's ratio and porosity at Coso geothermal area, California. Journal of Volcanology and Geothermal Research, 2000, 95: 157~173
    128. Seipold U, Raab S. A Method to Measure Thermal Conductivity and Thermal Diffusivity under Pore and Confining Pressure. Phys. Chem. Earth., 2000, 25 (2): 183~187
    129. Lee, T-C. Thermal conductivity measured with a line source between two dissimilar media equals their mean conductivity. J. Geophys. Res., 1989, 94(B9): 12,443~12,447
    130. Williams C F, Anderson R N, Broglia C, et al. In situ investigations of thermal conductivity, heat production, and hydrothermal circulation in the Cajon Pass scientific drillhole, California. Geophys. Res. Lett., 1988, 15(9): 985~988
    131. Silliman S E, Neuzil C E. Borehole determination of formation thermal conductivity using a thermal pulse from injected fluid. J. Geophys. Res., 1990, 95(B6): 8697~8704
    132. Burkhardt H, Honarmand H, Pribnow D. Test measurements with a new thermal conductivity borehole tool. Tectonophysics, 1995, 244(1-3): 161~165.
    133. Pribnow D, Williams C F, Burkhardt H. Well log-derived estimates of thermal conductivity in crystalline rocks penetrated by the 4-km deep KTB Vorbohrung. Geophys. Res. Lett. 1993, 20(12): 1155~1158
    134. Sass J H, Lachenbruch A H, Moses T H. Heat flow from a scientific research well at Cajon Pass, California. J. Geophys. Res., 1992, 97(B4): 5017~5030.
    135. Rauen A, Winter H. Petrophysical properties. In: Emmermann R. et al (Ed), KTB Report 95-2, Hannover, 1995, D24~D28.
    136. Clauser C, Huenges E. Thermal conductivity of rocks and minerals. In Ahrens T. J.(ed), Rock physics and phase relations: A handbook of physical constants, Washington DC, AGU Publisher, 1995, 3:105-126
    137. Buntebarth G. Thermal properties of KTB Oberpfalz VB core samples at elevated temperature and pressure. Sci. Drilling, 1991, 2: 73~80
    138. Diment W H, Pratt H R. Thermal conductivity of some rock-forming minerals: a Tabulation. U.S.G.S. open file report 88-690, U. S. Geol. Survey, Denver Co., 1988, 15
    139. Zoth G, H?nel R. Appendix. In H?nel, R. et al (Ed), Handbook of Terrestrial heat flow density determination. Kluwer, Dordrecht, 1988, 449~466.
    140. Seipold U. Temperature dependence of thermal transport properties of crystalline rocks——a general law. Tectonophysics, 1998, 291(1-4): 161~171.
    141. 汪集旸,胡圣标,杨文采等.中国大陆科学钻探先导孔地热测量.科学通报,2001,46 (10):847~850
    Wang J., Hu S., Yang W. et al. Geothermal measurements in the pilot-boreholes of the China continental scientific drilling. Chinese Sci. Bull., 2001, 46(20):1745~1748.
    142. 汪集旸,胡圣标,程本合,等.中国大陆科学钻探靶区深部温度预测.地球物理学报,2001, 44(6): 774~782.
    143. 宋茂双,谢鸿森,徐有生.俯冲带的热结构研究进展.地质地球化学,1996, 2: 18~22.
    144. 汪洋,汪集旸,邓晋福.中国大陆地壳和岩石圈化学成分模型可信吗?——来自大地热流值的检验.地球化学,2001, 30(2): 186~193.
    
    
    145. Troschke B, Burkhardt H. Thermal Conductivity Models fro Two-Phase Systems. Phys. Chem. Earth., 1998, 23 (3): 351~355
    146. Buntebarth G, Schopper J R. Experimental and Theoretical Investigations on the Influence of Fluids, Solids and Interactions between them on Thermal Properties of Porous Rocks. Phys. Chem. Earth., 1998, 23 (9-10): 1141~1146
    147. Seipold U. The variation of thermal transport properties in the earth's crust. J. Geodynamics, 1995, 20(2):145~154
    148. Pribnow D, Williams C F, Sass J H, et al. Thermal conductivity of water-saturated rocks from the KTB pilot hole at temperatures of 25℃ to 300℃. Geophys. Res. Lett., 1996, 23(4): 391~394
    149. Rudnick R L, McDonough W F, O'Connell R J. Thermal structure, thickness and composition of continental lithosphere. Chemical Geology, 1998, 145: 395~411
    150. Rybach L. Determination of heat production rate. In: Haenel R, Rybach L, Stegena L. eds. Handbook of terrestrial heat-flow density determination. Dordrecht: Kluwer Academic Publishers, 1988, 125~142
    151. 王良书,李成,杨春.塔里木盆地岩石层热结构特征.地球物理学报,39(6):794~803
    152. Birch F, Roy R F, Decker E R. Heat flow and thermal history in New English and New York. In Zen E A ed. Study of Appalachian Geology. New York: John Wiley, 1968, 437~451
    153. Roy R F, Blackwell D, Birch F. Heat generation of plutonic rocks and continental heat flow provinces. Earth Planet Sci. Lett. 1968, 5: 1~12
    154. Pollack, H. N., Hurter, S. J., Johnson, J. R., Heat flow from the Earth's interior: analysis of the global data set, Rev. Geophys.,1993, 31: 267.
    155. Hu, S., He, L., Wang, J., Heat flow in the continental area of China: a new data set, Earth and Planetary Science Letters, 2000,179(2): 407.
    156. 王良书,李成,施央申,等.扬子区地温场和大地热流密度分布.地球物理学报,1995, 38(4):470~476
    157. Popp T, Kern H. Ultrasonic Wave Velocities, Gas Permeability and Porosity in Natural and Granular Rock Salt. Phys. Chem. Earth., 1998, 23 (3): 373~378
    158. Popp T, Kern H. Monitoring the State of Microfracturing in Rock Salt During Deformation by Combined Measurements of Permeability and P- and S- Wave Velocities. Phys. Chem. Earth., 2000, 25 (2): 149~154
    159. Correia A, Ramalhob E C. One-dimensional thermal models constrained by seismic velocities and surface radiogenic heat production for two main geotectonic units in southern Portugal. Tectonophysics 1999, 306: 261-268
    160. Tukkonen I T, Peltoniemi S. Relationships between Thermal and other Petrophysical Properties of Rocks in Finland. Phys. Chem. Earth., 1998, 23 (3): 341~349
    161. Zamora M, Vo-Thanh D, Bienfait G. Poirier J P. An empirical relationship between thermal conductivity and elastic wave velocities in sandstone. Geophys. Res. Lett. 1993, 20(16): 1679~1682
    
    
    162. Huenges E, Lauterjung J, Bücker C. et al. Seismic velocity, density, thermal conductivity, and heat production of cores from the KTB pilot hole. Geophys. Res. Lett., 1997, 24(3): 345~348
    163. Huenges E. Factors controlling the variances of seismic velocity, density, thermal conductivity, and heat production of cores from the KTB pilot hole. Geophys. Res. Lett., 1997, 24(3): 341~344
    164. Bayuk I O, Chesnokov E M. Correlation between Elastic and Transport Properties of Porous Cracked Anisotropic Media. Phys. Chem. Earth., 1998, 23 (3): 361~366
    165. Seipold U, Mueller H-J, Tuisku P. Principle Differences in the Pressure Dependence of Thermal and Elastic Properties of Crystalline Rocks. Phys. Chem. Earth., 1998, 23 (3): 357~360
    166. Ogilvie S R, Glover P W J. The petrophysical properties of deformation bands in relation to their microstructure. Earth and Planetary Science Letters 2001, 193: 129~142
    167. Kukkonen I T, Peltonieml S. Relationships between Thermal and other Petrophysical Properties of Rocks in Finland. Phys. Chem. Earth., 1998, 23 (3): 341~349

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700