新型双外流瘤胃模拟系统研制与运行参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研制了一套新型全自动控制双外流连续培养瘤胃模拟系统,对其综合性能进行了测试,研究了液相稀释率对系统发酵参数的影响,最后用尼龙袋法对系统日粮营养价值评定的准确性进行了评测。
     首先在综合分析了目前国内外人工瘤胃模拟系统的结构和运行性能的基础上,对新型双外流连续培养瘤胃模拟系统的工作原理和结构进行了初步研究,结合反刍动物瘤胃结构,确定了系统的主要构成部分为发酵罐、搅拌装置、排液装置、排固装置和排气装置。以发酵罐为系统为设计的关键点,结合了产气法差压排气的原理,进行了双外流连续培养系统结构方面的研制。通过对现有瘤胃模拟装置排气、排固、搅拌方式的比较,采用了差压排气、底部筛分排固、密闭排液的方式,并对本系统进行了整机设计。
     综合了DCS控制系统和嵌入系统的特点,以嵌入式系统的稳定性和DCS控制模式的可扩展性为中心点,以上层管理的应用便捷性与功能多样性为出发点,确定了整个控制系统总体构成模式,设计了监控层和直接控制层硬件,编写了管理层、监控层和直接控制层软件,开发了一套基于DCS控制模式的双外流连续培养瘤胃模拟装置自动控制系统。
     其次对新型双外流连续培养瘤胃模拟系统性能进行了综合测试试验。试验结果表明:该瘤胃模拟系统稳定期为4d,从第5d可以进入试验期下;进入稳定期后,4个发酵罐平行性好,大部分发酵参数与反刍动物体内接近,因此该系统可再现反刍动物瘤胃体内发酵状况。而且与目前现有的瘤胃模拟装置相比,解决了连续培养发酵罐内固体食糜累积的问题。同时将批次培养系统(产气法)和连续培养系统(双外流)完美结合。
     最后研究液相稀释率对系统发酵参数的影响,并进一步验证了系统工作的稳定性。研究结果表明:①无论在高稀释率还是低稀释率条件,本次设计的双外流连续培养系统适应期和试验期各发酵参数波动较小,说明了系统工作的稳定性。②液相稀释率从8%/h增加到12%/h,发酵罐内容物pH和NH3-N浓度显著升高、溢流液中VFA的浓度下降,但对乙酸/丙酸比例没有影响;日粮中常规营养成分DM、OM、CP、NDF降解率随着稀释率增加虽有下降,但差异不显著;日粮中EE降解率与发酵罐内容中原虫数量、酶活、微生物蛋白都不受稀释率的影响。
     采用尼龙袋法对系统营养价值日粮评定的准确性进行了评测。评测结果表明:双外流连续培养法测定混合日粮的DM、OM、CP、NDF的降解率与尼龙袋法测定的瘤胃内48h降解率相吻合,差异不显著。说明本研究设计的双外流连续培养瘤胃模拟系统能很好的再现反刍动物瘤胃发酵环境。
A novel dual-flow continuous culture rumen simulating system by auto controlled was designed in present study. A series of experiments were conducted to test the instrutment performance, analyze the change of fermentation parameters with different dilution rate, and compare the feed digestion between continuous culture rumen simulating stystem and nylon bag.
     First, the working principle and structure of novel continuous culture rumen simulating system was researched on the bases of structure and performance for all the continuous culture system all over the world. The novel dual-flow continuous culture rumen simulating system combined with the performance of rumen in ruminant contains fermenter, mixing device, and liquid, solid and gas discharge device. The first component is the fermenter which is the key point of design. The other four components includ stirring shaft, liqiud over-flowing apparatus, solid chyme discharging and gas exhausting apparatus. Furthermore these five components were organized in the final design. The typic characteristics of the system are exhausting gas with differential pressure switch, discharging solid chyme with sieving and over-flowing liquid in closed condition.
     Second, based on the stability of embeded system, the expansibility of DCS and the flexibility in use and operation of upper management computer, the auto control model was conducted. A set of auto control system of the continuous culture system based on DCS and embeded system was designed. The hardware of the direct and supervisory control layer was produced. Furthermore the software of the upper management computer, the dirrect and supervisory control layer was programed.
     Third, a comprehensive test for this novel dual-flow continuous culture system was conducted in present study. The results demonstrated there was4days adaptation and the system would be stabled from the5th days incubation to the last day. The results during the experiment period shown that there were parallelism among four fermenters, and most parameters for four fermenters were similar to the animal, so the system is a effective equipment to simulate the rumen fermentation. Compared with the currently continuous culture system, it was effective to solve problem for the solid chyme accumulation in fermenter, and it was a combination with the batch culture (in vitro gas production) and continuous culture system.
     Fourth, the effect of dilution rate on the rumen fermentation was conducted in order to evaluate the stable of present system.The results shown that:the fluctuation of the fermenter during adapation and sampling period were very small no matter how dilution rate it was; the pH and NH3-N concentration in rumen fluid were significant increasing following by the increase of dilution rate from8%/h to12%/h, but the VFA were decreased. There were no differ for the ratio of acetate and propionate; The digestibility of DM, OM, CP, and NDF shown a little decrease, but there were no difference for the treatment of dilution rate.The digestibility of EE, protozoal number, enzyme for cellulose and strarch degradation, and microbial protein were not affected by the dilution rate.
     Fifth, the technology of nylon bag was used to evaluate the nutrition of same feed which was also used in present system. The digestibilty of feed in continuous cultures sytem were coincided with the value of feed in nylon bag, and there were no differfor both way.
引文
[1]Abel, H., Immig, I., Gomez Cda, C., et al. Research note:effect of increasing dietary concentrate levels on microbial biotin metabolism in the artificial rumen simulation system (RUSITEC)[J]. Arch Tierernahr.2001, 55(4):371-376.
    [2]Abel, H., Schroder, B., Lebzien, P., et al. Effects of defaunation on fermentation characteristics and biotin balance in an artificial rumen-simulation system (RUSITEC) receiving diets with different amounts and types of cereal [J]. Br J Nutr.2006,95(1):99-104.
    [3]AbuGhazaleh, A. A., Buckles, W. R. The effect of solids dilution rate and oil source on trans C18:1 and conjugated linoleic acid production by ruminal microbes in continuous culture[J]. J Dairy Sci.2007.90(2): 963-969.
    [4]AbuGhazaleh, A. A., Riley, M. B., Thies, E. E., et al. Dilution rate and pH effects on the conversion of oleic acid to trans C18:1 positional isomers in continuous culture[J]. J Dairy Sci.2005,88(12):4334-4341.
    [5]Alves de Oliveira, L., Jean-Blain. C, Komisarczuk-Bony, S., et al. Microbial thiamin metabolism in the rumen simulating fermenter (RUSITEC):the effect of acidogenic conditions, a high sulfur level and added thiamin[J]. Br J Nutr.1997,78(4):599-613.
    [6]AOAC. Official Methods of Analysis,18th Edition[M]. Arlington, Virginia:Association of Official Analytical Chemists; 1990.
    [7]Bath, I., Rook, J. The evaluation of cattle foods and diets in terms of the ruminal concentration of volatile fatty acids I. The effects of level of intake, frequency of feeding, the ratio of hay to concentrates in the diet, and of supplementary feeds[J]. The Journal of Agricultural Science.1963,61(03):341-348.
    [8]Berthiaume. R., Benchaar, C., Chaves, A. V., et al. Effects of nonstructural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture[J]. J Dairy Sci.2010,93(2):693-700.
    [9]Blummel, M.. Makkar, H. P. S., Becker, K. In vitro gas production:a technique revisited[J]. Journal of Animal Physiology and Animal Nutrition.1997,77(1-5):24-34.
    [10]Blummel, M.,(?)rskov, E. R. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle[J]. Animal Feed Science and Technology.1993,40(2-3):109-119.
    [11]Boguhn, J., Kluth, H., Rodehutscord, M. Effect of total mixed ration composition on fermentation and efficiency of ruminal microbial crude protein synthesis in vitro[J]. J Dairy Sci.2006,89(5):1580-1591.
    [12]Busquet, M., Calsamiglia, S., Ferret, A., et al. Effects of Cinnamaldehyde and Garlic Oil on Rumen Microbial Fermentation in a Dual Flow Continuous Culture[J]. Journal of Dairy Science.2005,88(7):2508-2516.
    [13]Busquet, M., Calsamiglia, S., Ferret, A., et al. Screening for effects of plant extracts and active compounds of plants on dairy cattle rumen microbial fermentation in a continuous culture system[J]. Animal Feed Science and Technology.2005,123-124(Part 2):597-613.
    [14]Calabro, S., Moniello, G., Piccolo, V., et al. Rumen fermentation and degradability in buffalo and cattle using the in vitro gas production technique[J]. J Anim Physiol Anim Nutr (Berl).2008,92(3):356-362.
    [15]Calsamiglia, S., Busquet, M., Cardozo, P. W., et al. Invited Review:Essential Oils as Modifiers of Rumen Microbial Fermentation[J]. journal of dairy science.2007,90(6):2580-2595.
    [16]Calsamiglia, S., Ferret, A., Devant, M. Effects of pH and pH fluctuations on microbial fermentation and nutrient flow from a dual-flow continuous culture system[J]. J Dairy Sci.2002,85(3):574-579.
    [17]Cantalapiedra-Hijar, G., Yanez-Ruiz, D. R., Newbold, C. J., et al. The effect of the feed-to-buffer ratio on bacterial diversity and ruminal fermentation in single-flow continuous-culture fermenters[J]. J Dairy Sci.2011. 94(3):1374-1384.
    [18]Cerrato-Sanchez, M., Calsamiglia, S., Ferret, A. Effects of patterns of suboptimal pH on rumen fermentation in a dual-flow continuous culture system[J]. J Dairy Sci.2007,90(9):4368-4377.
    [19]Cerrato-Sanchez, M., Calsamiglia, S., Ferret, A. Effect of the magnitude of the decrease of rumen pH on rumen fermentation in a dual-flow continuous culture system[J]. J Anim Sci.2008,86(2):378-383.
    [20]Chenost, M., Grenet, E., Demarquilly, C., et al. The use of the nylon bag technique for the study of forage digestion in the rumen and for predicting feed value. In:Proc.11th int. Grassld Congr., Surfers Paradise; 1970:697-701.
    [21]Church. D. C., Fontenot, J. P., Hansard, S. L., et al. Digestive physiology and nutrition of ruminants. Volume 2. Nutrition.[M]. O & B Books, Inc.; 1979.
    [22]Coles, L. T., Moughan, P. J., Darragh, A. J. In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals [J]. Animal Feed Science and Technology.2005,123-124421-444.
    [23]Colucci, P. E., MacLeod, G. K., Grovum, W. L., et al. Digesta kinetics in sheep and cattle fed diets with different forage to concentrate ratios at high and low intakes[J]. J Dairy Sci.1990.73(8):2143-2156.
    [24]Cone, J. W., van Gelder, A. H., Visscher, G. J. W., et al. Influence of rumen fluid and substrate concentration on fermentation kinetics measured with a fully automated time related gas production apparatus[J]. Animal Feed Science and Technology.1996,61(1-4):113-128.
    [25]Crawford, Jr, Hoover, W. H., et al. Effects of Solids and Liquid Flows on Fermentation in Continuous Cultures. I. Dry Matter and Fiber Digestion, VFA Production and Protozoa Numbers[J]. J. Anim Sci.1980.51:11.
    [26]Crawford, R. J., Hoover, W. H., Knowlton, P. H. Effects of Solids and Liquid Flows on Fermentation in Continuous Cultures. I. Dry Matter and Fiber Digestion, VFA Production and Protozoa Numbers[J]. Journal of Animal Science.1980,51(4):975-985.
    [27]Crawford, R. J., Jr., Hoover, W. H., Junkins, L. L. Effects of solids and liquid flows on fermentation in continuous cultures.Ⅱ. Nitrogen partition and efficiency of microbial synthesis[J]. J Anim Sci.1980,51(4): 986-995.
    [28]Crawford, R. J. J., Hoover, W. H., Sniffen, C. J., et al. Degradation of feedstuff nitrogen in the rumen vs nitrogen solubility in three solvents[J]. J. Anim Sci.1978,46(6):1768-1775.
    [29]Czerkawski, J. W., Breckenridge, G. Design and development of a long-term rumen simulation technique (Rusitec)[J]. British Journal of Nutrition.1977,38(3):371-384.
    [30]Davey, L. A., Cheeseman, G. C., Briggs, C. A. E. Evaluation of an improved artificial rumen designed for continuous control during prolonged operation[J]. The Journal of Agricultural Science.1960,55(02):155-163.
    [31]Davies, Z. S., Mason, D., Brooks, A. E., et al. An automated system for measuring gas production from forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass silage[J]. Animal Feed Science and Technology.2000,83(3钬?):205-221.
    [32]de Veth, M. J., Kolver, E. S. Digestion of Ryegrass Pasture in Response to Change in pH in Continuous Culture[J]. Journal of Dairy Science.2001,84(6):1449-1457.
    [33]Dehority, B. Ciliate protozoa Methods in Gut Microbial Ecology for Ruminants. In:H. MakkarC. McSweeney, eds.:Springer Netherlands; 2005:67-78.
    [34]El-Shazly, K., Dehority, B. A., Johnson, R. R. A Comparison of the All-Glass, Semipermeable Membrane, and Continuous Flow Types of Apparatus for In Vitro Rumen Fermentations[J]. journal of dairy science.1960, 43(10):1445-1451.
    [35]Erfle, J., Boila, R., Teather, R., et al. Effect of pH on fermentation characteristics and protein degradation by rumen microorganisms in vitro[J]. journal of dairy science.1982,65(8):1457-1464.
    [36]Erwin, E. S., Elliston, N. G. Rapid method of determining digestibility of concentrates and roughages in cattle[J]. J. Anim. Sci.1959,18:1518(abstract).
    [37]Erwin, E. S., Marco, G. J., Emery. E. M. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography[J]. journal of dairy science.1961,44(9):1768-1771.
    [38]Eun, J. S., Fellner, V., Gumpertz, M. L. Methane production by mixed ruminal cultures incubated in dual-flow fermentors[J]. J Dairy Sci.2004,87(1):112-121.
    [39]Fondevila, M., P'erez-Esp'es, B. A new in vitro system to study the effect of liquid phase turnover and pH on microbial fermentation of concentrate diets for ruminants[J].Animal Feed Science and Technology.2008, 144(2008):196-211.
    [40]Fuchigami, M., Senshu, T., Horiguchi, M. A Simple Continuous Culture System for Rumen Microbial Digestion Study and Effects of Defaunation and Dilution Rates[J]. Journal of Dairy Science.1989,72(11): 3070 3078.
    [41]Fuentes, M. C., Calsamiglia. S., Cardozo, P. W., et al. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture[J]. J Dairy Sci.2009,92(9): 4456-4466.
    [42]Fuentes, M. C., Calsamiglia, S., Fievez, V., et al. Effect of pH on ruminal fermentation and biohydrogenation of diets rich in omega-3 or omega-6 fatty acids in continuous culture of ruminal fluid[J]. Animal Feed Science and Technology.2011,169(1-2):35-45.
    [43]Garcia-Gonzalez, R., Gonzalez, J. S., Lopez, S. Decrease of ruminal methane production in Rusitec fermenters through the addition of plant material from rhubarb (Rheum spp.) and alder buckthorn (Frangula alnus)[J]. Journal of Dairy Science.2010.93(8):3755-3763.
    [44]Giraldo, L. A., Tejido, M. L., Ranilla, M. J., et al. Effects of exogenous cellulase supplementation on microbial growth and ruminal fermentation of a high-forage diet in Rusitec fermenters[J]. Journal of Animal Science. 2007,85(8):1962-1970.
    [45]Gizzi, G., Zanchi, R., Sciaraffia, F. Comparison of microbiological and fermentation parameters obtained with an improved rumen in vitro technique with those obtained in vivo[J]. Animal Feed Science and Technology. 1998,73(3-4):291-305.
    [46]Goetsch, A. L., Galyean, M. L. Effects of alternating high and medium concentrate diets on fermentation in a semi-continuous rumen culture system[J]. J Dairy Sci.1982,65(4):675-679.
    [47]Gudla, P., AbuGhazaleh, A. A., Ishlak, A., et al. The effect of level of forage and oil supplement on biohydrogenation intermediates and bacteria in continuous cultures[J]. Animal Feed Science and Technology. 2012,171(2-4):108-116.
    [48]Hamid, P., Akbar, T., Hossein, a., et al. Nutrient Digestibility and Gas Production of Some Tropical Feeds Used in Ruminant Diets Estimated by the in vivo and in vitro Gas Production Techniques[J]. American Journal of Animal and Veterinary Sciences.2007,2(4):108-113.
    [49]Hannah, S. M., Stern, M. D., Ehle, F. R. Evaluation of a dual flow continuous culture system for estimating bacterial fermentation in vivo of mixed diets containing various soya bean products[J]. Animal Feed Science and Technology.1986,16(1-2):51-62.
    [50]Harrison, D. G., Beever, D. E., Thomson, D. J., et al. Manipulation of rumen fermentation in sheep by increasing the rate of flow of water from the rumen[J]. The Journal of Agricultural Science.1975,85(01): 93-101.
    [51]Hino, T., Sugiyama, M., Okumura, K. Maintenance of protozoa and methanogens, and fiber digestion in rumen-simulating continuous culture [J]. Journal of General and Applied Microbiology.1993,39(1):35-45.
    [52]Hoover, W., Kincaid, C., Varga, G., et al. Effects of solids and liquid flows on fermentation in continuous cultures.Ⅳ. pH and dilution rate[J]. Journal of Animal Science.1984,58(3):692-699.
    [53]Hoover, W. H.. Crawford, R. J., Jr., el al. Effects of Solids and Liquid Flows on Fermentation in Continuous Cultures.Ⅲ. Solids Retention Timel[J]. Journal of Animal Science.1982,1982.54:6.
    [54]Hoover, W. H., Crooker, B. A., Sniffen, C. J. Effects of Differential Solid-Liquid Removal Rates on Protozoa Numbers in Continous Cultures of Rumen Contents[J]. J. Anim Sci.1976,43(2):528-534.
    [55]Hoover, W. H., Kincaid, C. R., Varga, G. A., el al. Effects of Solids and Liquid Flows on Fermentation in Continuous Cultures.Ⅳ. pH and Dilution Rate[J]. J. Anim Sci.1984,58:8.
    [56]Hoover, W. H., Knowlton. P. H., Stern, M. D., el al. Effects of Differential Solid-Liquid Removal Rates on Fermentation Parameters in Continuous Cultures of Rumen Contents[J]. J. Anim Sci..1976,43:535-542.
    [57]Huhtanen, P., Seppala, A., Ots. M., el al. In vitro gas production profiles to estimate extent and effective first-order rate of neutral detergent fiber digestion in the rumen[J]. J Anim Sci.2008,86(3):651-659.
    [58]Huhtanen, P., Vanhatalo, A., Varvikko. T. Enzyme activities of rumen particles and feed samples incubated in situ with differing types of cloth[J]. The British journal of nutrition.1998,79(2):161-168.
    [59]Isaacson. H. R., Hinds, F. C., Bryant. M. P.. et al. Efficiency of energy utilization by mixed rumen bacteria in continuous culture[J]. J Dairy Sci.1975.58(11):1645-1659.
    [60]Jaurena, G., Moorby, J. M., Davies, D. R. Efficiency of microbial protein synthesis on red clover and ryegrass silages supplemented with barley by rumen simulation technique (RUSITEC)[J]. Animal Feed Science and Technology.2005,118(1-2):79-91.
    [61]Johnson, R. R. Techniques and Procedures for In Vitro and In Vivo Rumen Studies[J]. Journal of Animal Science.1966.25(3):855-875.
    [62]Johnson. V., Sutton, J. The continuous recording of the pH in the bovine rumen[J]. Br. J, Nutr.1968,22: 303-307.
    [63]Khazaal, K., Dentinho, M. T., Ribeiro, J. M., et al. A comparison of gas production during incubation with rumen contents in vitro and nylon bag degradability as predictors of the apparent digestibility in vivo and the voluntary intake of hays[J]. Animal Science.1993,57(01):105-112.
    [64]Lassey, K. R. Livestock methane emission and its perspective in the global methane cycle[J]. Australian Journal of Experimental Agriculture.2008,48(2).
    [65]Li, Y.. He, M., Li, C., et al. Effects of wheat dried distillers' grains with solubles and cinnamaldehyde on in vitro fermentation and protein degradation using the Rusitec technique[J]. Archives of Animal Nutrition.2012, 66(2):131-148.
    [66]Lindberg. J. E. Estimation of rumen degradability of feed proteins with the in sacco technique and various in vitro methods:a review [J]. Acta Agriculturae Scandinavica. Supplementum.1985,25:89-97.
    [67]Martinez, M. E., Ranilla. M. J., Tejido, M. L., et al. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters.Ⅰ. Digestibility, fermentation parameters, and microbial growth[J]. Journal of Dairy Science.2010,93(8):3684-3698.
    [68]Martin, C., Morgavi, D., Doreau, M. Methane mitigation in ruminants:from microbe to the farm scale[J]. animal.2010,4(3):351-365.
    [69]Martinez, M. E., Ranilla. M. J., Ramos, S., et al. Effects of dilution rate and retention time of concentrate on efficiency of microbial growth, methane production, and ruminal fermentation in Rusitec fermenters[J]. J Dairy Sci.2009,92(8):3930-3938.
    [70]Matanobu, A., Kumeno, F. In vitro simulation of rumen fermentation:apparatus and effects of dilution rate and continuous dialysis on fermentation and protozoal population[J]. J Anim Sci.1973,36(5):941-948.
    [71]McDonald, I. A revised model for the estimation of protein degradability in the rumen[J]. The Journal of Agricultural Science.1981,96(01):251-252.
    [72]McDougall.E.I. Studies on ruminant saliva.l.The composition and output of sheep's saliva[J]. Biochemical Journal.1949,43(1):99-109.
    [73]Meng, Q., Kerley, M. S., Ludden. P. A., et al. Fermentation substrate and dilution rate interact to affect microbial growth and efficiency[J]. J Anim Sci.1999.77(1):206-214.
    [74]Menke, K. H., Raaba. L., Salewskia et al. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro[J]. The Journal of Agricultural Science.1979, 33(1):217-222.
    [75]Miettinen, H., Setaelae, J. Design and development of a continuous culture system for studying rumen fermentation[J]. Journal of Agricultural Science in Finland.1989,61(5):463-473.
    [76]Muetzel, S. A fermentation system for rapid and accurate modelling of rumen function[R]. New Zealand: Ministry of Agriculture and Forestry(MAF); 2008.
    [77]Muetzel, S., Lawrence, P., Hoffmann, E. M.. et al. Evaluation of a stratified continuous rumen incubation system[J]. Animal Feed Science and Technology.2009,151(1-2):32-43.
    [78]Murphy, M. R., Baldwin, R. L., Koong, L. J. Estimation of Stoichiometric Parameters for Rumen Fermentation of Roughage and Concentrate Diets[J]. Journal of Animal Science.1982,55(2):411-421.
    [79]Nakamura, F., Kurihara, Y. Maintenance of a certain rumen protozoal population in a continuous in vitro fermentation system[J]. Appl Environ Microbiol.1978,35(3):500-506.
    [80]Newbold, C, Wallace, R., Chen, X., et al Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep[J]. Journal of Animal Science.1995,73(6):1811-1818.
    [81]Nocek, J. E. In situ and Other Methods to Estimate Ruminal Protein and Energy Digestibility:A Review[J]. journal of dairy science.1988,71(8):2051-2069.
    [82](?)skov. E. R., Hovell, F. D., Mould, F. The use of the nylon bag technique for the evaluation of feedstuffs[J]. Trop. Anim. Prod.1980,3(4):195-213.
    [83](?)rskov, E. R., McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage[J]. The Journal of Agricultural Science.1979,92(02): 499-503.
    [84]Owens, F. N., Goetsch, A. L. The ruminant animal. Digestive physiology and nutrition[M]. Englewood Cliffs, NJ:Prentice Hall:1988.
    [85]Patterson, J. A., Chalova, V. I., Hespell, R. B., et al. Dilution rates influence ammonia-assimilating enzyme activities and cell parameters of Selenomonas ruminantium strain D in continuous (glucose-limited) culture[J]. J Appl Microbiol.2010,108(1):357-365.
    [86]Pitt, R. E., Pell, A. N. Modeling ruminal pH fluctuations:interactions between meal frequency and digestion rate[J]. J Dairy Sci.1997,80(10):2429-2441.
    [87]Poppi, D.. Norton, B., Minson, D., et al. The validity of the critical size theory for particles leaving the rumen[J]. Journal of Agricultural Science, Cambridge.1980,94(2):275-280.
    [88]Quin. J. I., van der Wath, J. G., Myburgh, S. Studies on the alimentary tract of merino sheep in soputh Africa. IV. Description of experiment technique[J]. Onderstepoort J. Ver. Sci. Anim. Ind,.1939,11:341-360.
    [89]Remond, D., Meschy, F., Boivin. R. Metabolites, water and mineral exchanges across the rumen wall: mechanisms and regulation. In; 1996:EDP Sciences; 1996. p.97-119.
    [90]Ribeiro, C. V., Karnati, S. K., Eastridge, M. L. Biohydrogenation of fatty acids and digestibility of fresh alfalfa or alfalfa hay plus sucrose in continuous culture[J]. J Dairy Sci.2005,88(11):4007-4017.
    [91]Rodriguez, H. The in vivo bag technique in digestibility studies[J]. Rev. Cubana Cienc. Agric.1968,2:77-81.
    [92]Rufener, W. H., Jr., Nelson, W. O., Wolin, M. J. Maintenance of the rumen microbial population in continuous culture[J]. Appl Microbiol.1963,11:196-201.
    [93]Schadt, I., Hoover, W. H., Miller Webster, T. K., et al Degradation of two protein sources at three solids retention times in continuous culture[J]. J Anim Sci.1999,77(2):485-491.
    [94]Shaikh, M. Cementing the Relationship Between DCS and PLC:A Review of Emerging Trends in Plant Control Systems. In; 2009:IEEE; 2009. p.1-12.
    [95]Shingfield, K. J., Griinari, J. M. Role of biohydrogenation intermediates in milk fat depression[J]. European Journal of Lipid Science and Technology.2007,109(8):799-816.
    [96]Shriver. B. J., Hoover, W. H., Sargent, J. P., et al. Fermentation of a High Concentrate Diet as Affected by Ruminal pH and Digesta Flow[J]. journal of dairy science.1986,69(2):413-419.
    [97]Siaw, D. E. K. A., Osuji, P. O., Nsahlai, I. V. Evaluation of multipurpose tree germplasm:the use of gas production and rumen degradation characteristics[J]. The Journal of Agricultural Science.1993,120(03): 319-330.
    [98]Silva, A. T., Wallace, R. J., Orskov, E. R. Use of particle-bound microbial enzyme activity to predict the rate and extent of fibre degradation in the rumen[J]. The British journal of nutrition.1987,57(3):407-415.
    [99]Slyter, L. L., Nelson, W. O., Wolin, M. J. Modifications of a Device for Maintenance of the Rumen Microbial Population in Continuous Culture[J]. Appl Microbiol.1964,12:374-377.
    [100]Soliva. C. R., Amelchanka, S. L., Duval, S. M., et al. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec)[J]. Br J Nutr.2011,106(1):114-122.
    [101]Sternberg, G. M. What Shall Be the Methods Followed in Determining the Relation of Bacteria to Temperature?[J]. Public Health Pap Rep.1894,20:411-414.
    [102]Teather, R. M., Sauer, F. D. A Naturally Compartmented Rumen Simulation System for the Continuous Culture of Rumen Bacteria and Protozoa[J]. Journal of Dairy Science.1988,71(3):666-673.
    [103]Tejido, M. L., Ranilla, M. J., Carro, M. D. In vitro digestibility of forages as influenced by source of inoculum (sheep rumen versus Rusitec fermenters) and diet of the donor sheep[J]. Animal Feed Science and Technology. 2002,97(1-2):41-51.
    [104]Theodorou, M. K., Williams, B. A., Dhanoa, M. S., et al. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds[J]. Animal Feed Science and Technology. 1994,48(3-4):185-197.
    [105]Tilley, J. M. A., Terry, R. A. A two-stage technique for the in vitro digestion of forage crops[J]. Grass and Forage Science.1963,18(2):104-111.
    [106]Tilley, J. M. A., Terry, R. A. A two-stage technique for the in vitro digestion of forage crops[J]. Grass and Forage Science.1963,18(2):104-111.
    [107]Van Keuren, R. W., Heinemann, W. W. Study of a Nylon Bag Technique for In Vivo Estimation of Forage Digestibility[J]. Journal of Animal Science.1962,21(2):340-345.
    [108]Van Soest, P. J., Robertson, J. B., Lewis, B. A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition[J]. journal of dairy science.1991,74(10): 3583-3597.
    [109]Vatthauer, R. J., Hinds, F. C., Garrigus, U. S. Continuous in vitro culture system for ruminant research.Ⅰ. Design[J]. Journal of Animal Science.1970,30(4):618-623.
    [110]Vatthauer, R. J., Hinds, F. C., Garrigus, U. S. Continuous in vitro culture system for ruminant research. Ⅱ. Biological characterization[J]. Journal of Animal Science.1970,30(4):624-633.
    [111]Vinh, N. T., Wanapat, M., Khejornsart, P., et al. Studies of Diversity of Rumen Microorganisms and Fermentation in Swamp Buffalo Fed Different Diets.[J]. Journal of Animal and Veterinary Advances.2011,10: 406-414.
    [112]Wanapat, M., Sundst(?)l, F., Hall, J. M. R. A comparison of alkali treatment methods used to improve the nutritive value of straw. Ⅱ. In sacco and in vitro degradation relative to in vivo digestibility[J]. Animal Feed Science and Technology.1986,14(3-4):215-220.
    [113]Warner, A. Criteria for establishing the validity of in vitro studies with rumen micro-organisms in so-called artificial rumen systems[J]. Journal of General Microbiology.1956,14(3):733.
    [114]Weller, R. A., Pilgrim, A. F. Passage of protozoa and volatile fatty acids from the rumen of the sheep and from a continuous in vitro fermentation system[J]. British Journal of Nutrition.1974,32(2):341-351.
    [115]Wilkins, J. R. Pressure transducer method for measuring gas production by microorganisms[J]. Appl Microbiol.1974,27(1):135-140.
    [116]Woodman, H. E., Evans, R. E. The mechanism of cellulose digestion in the ruminant organism:IV. Further observations from in vitro studies of the behaviour of rumen bacteria and their bearing on the problem of the nutritive value of cellulose[J]. The Journal of Agricultural Science.1938,28(1):43-63.
    [117]Ziemer, C. J., Sharp, R., Stern, M. D., et al. Comparison of microbial populations in model and natural rumens using 16S ribosomal RNA-targeted probes[J]. Environ Microbiol.2000,2(6):632-643.
    [118]北京迪文科技有限公司.工业串口屏造型目录[M].北京:北京迪文科技有限公司;2011.
    [119]陈强.自动化双外流人工瘤胃模拟系统设计[D]:新疆农业大学;2009.
    [120]程正群,许宝祥,钱积新.现场总线与DCS控制系统[J].化工自动化及仪表.1999,(03).
    [121]崔彦召,徐晓明,张克春.反刍动物人工瘤胃技术研究及应用[J].乳业科学与技术.2011,147(02):90-93+98.
    [122]段智勇.反刍动物日粮中淀粉与纤维的组合效应及其机理的研究[D]:浙江大学;2006.
    [123]范一格,李杰,范光永,等.由DCS、工业控制计算机和PLC集成的生产系统[J].机电一体化.2002.(06):36-39.
    [124]方书起,李肖斌,雪金勇.机械搅拌式发酵罐中的消泡技术研究与探讨[J].化学工程.2009,(05):34-37.
    [125]冯仰廉.反刍动物营养学[M].北京:科技出版社;2006.
    [126]韩继福,冯仰廉,张晓明,等.阉牛不同日粮的纤维消化、瘤胃内VFA对甲烷产生量的影响[J].中国兽医学报.1997,(03):71-73.
    [127]胡晓丽,闫凤宇,刘庆福.单外流瘤胃体外培养系统发酵装置的设计与研究[J].安徽农业科学.2011.(30):18678-18679.
    [128]黄炜超.人工模拟瘤胃机械与自动控制系统的研究[J].农业与技术.2011.3](02):121-125.
    [129]卢德勋.反刍动物营养学发展现代化进程的回顾及其展望[J].饲料工业.2010,(S2):1-5.
    [130]孟庆翔,Kerley, M. S瘤胃稀释率对蛋白质发酵和微生物生长效率的影响[J].中国农业科学.1998.31(03).
    [131]孟庆翔,贾凤山,夏兆刚,等.一种模拟瘤胃发酵的双外流型实验室发酵罐[J].(CN01104466.7).
    [132]欧阳五庆.动物生理学[M].北京:科学出版社;2006.
    [133]潘丰.基于FPC2000DCS的发酵过程智能控制系统[J].计算机测量与控制.2003,(07):498-501.
    [134]任鹏,冯仰廉.体外持续发酵法评定反刍动物饲料干物质和蛋白质降解率的研究[J].中国动物营养学报.1989,(01):16-17+19-22.
    [135]任彦硕.自动控制系统(第二版)[M].北京:北京邮电大学出版社;2007.
    [136]沈维军,姜雅慧,王加启,等.固液气分流式瘤胃模拟系统的设计与测试[J].农业工程学报.2012,28(03):20-26.
    [137]石彩霞DFCCS-Ⅱ型双外流连续培养系统模拟瘤胃细菌发酵的研究[D]:内蒙古农业大学;2004.
    [138]史清河,韩友文,刘丽梅,等.全收粪法与尼龙袋法测定幼羊全混合日粮养分消化率的相关性研究[J].东北农业大学学报.2000,(03):270-274.
    [139]宋正河.机械系统人机界面优化设计方法的研究[D];中国农业大学;2000.
    [140]孙雪蕾.基于ARM9的生物发酵过程数字控制系统研究[D]:江苏大学:2010.
    [141]王加启.瘤胃模拟技术和微生物合成影响因素的研究[D].北京:北京农业大学:1993.
    [142]王加启.反刍动物营养学研究方法[M].北京:现代教育出版社;2011.
    [143]王加启,于建国.饲料分析与检验[M].北京:中国计量出版社;2004.
    [144]王照华DFCCS-Ⅱ型双外流连续培养系统与活体牛瘤胃发酵和厌氧真菌培养的比较研究[D]:内蒙古农业大学;2004.
    [145]王照华,侯先志.持续瘤胃模拟法研究不同日粮精粗比对瘤胃真菌生长和发酵参数的影响[J].中国饲料.2005,(09):17-19.
    [146]王照华,侯先志,李鹏飞.利用双外流连续培养系统研究不同稀释率对真菌生长及发酵参数的影响[J].饲料工业.2006,27(18):21-23.
    [147]辛杭书,张永根,孟庆翔et al.包被尿素对活体外瘤胃发酵特性和微生物蛋白合成的影响[J].中国农业大学学报.2011,(03):127-132.
    [148]杨红建,宋正河,祝仕平.et al., inventors;一种发酵微量气体产生量数据自动采集存储装置及方法.2006 2006-1-27.
    [149]意法半导体(中国)投资有限公司.STM32F10xxx参考手册[M].北京:意法半导体(中国)投资有限公司;2010.
    [150]张玉珊,王静,毋茂盛.基于DCS的发酵系统设计与研究[J].河南师范大学学报(自然科学版).2004,(04):33-36.
    [151]赵钢.通用实验室生物发酵罐罐体及搅拌桨设计[J].医药工程设计.2002,(02):5-6.
    [152]赵慧娟,赵广永.接种不同的瘤胃液与缓冲液比例对短期人工瘤胃发酵产气量及pH值的影响[J].中国畜牧杂志.2006,(05):39-41.
    [153]中国畜牧业年鉴编辑委员会.中国农业年鉴[M].北京:中国农业出版社;2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700