中、新生代旋回地层学研究及其油气地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋回地层学是近年来国际上兴起的一个地层学分支学科,用于识别、描述、对比以及解释地层中周期性或准周期性的旋回变化,尤其可应用于地质年代学中,用来提高时间地层格架的精确性和分辨率。自从Hays于1976年在《Science》上发表文章报道他们在第四纪深海钻探岩芯中发现了米兰科维奇旋回以来,国际地学界对旋回地层学的研究如火如荼。在中国,虽然一些学者自上世纪九十年代以来对该学科进行了有益的尝试性研究,但却一直没有得到发展,甚至没有中文资料系统的介绍旋回地层学。因此,本论文首先详细归纳、总结旋回地层学的相关概念、发展历程、研究方法和研究现状,然后,对珠江口盆地惠州凹陷古近系和浙江煤山剖面早三叠世地层这两个实例进行详细解剖和系统研究,最后,尝试性地将旋回地层学与石油地质学结合,力争将级次结构及持续时间已知的米兰科维奇旋回引入油气地质勘探,满足其对研究精度日趋提高的要求。
     珠江口盆地古近系地层序列普遍发育三角洲相硅质碎屑岩及浅海相碳酸盐岩的韵律性互层,且显示出较强的周期性变化规律。为了提高地层分辨率以满足油气勘探需求,本研究选取珠江口盆地若干钻穿中新世的钻井,利用其自然伽马测井曲线进行频谱分析,找出旋回的主要周期从而判断其驱动机制。因为高频旋回地层学的应用需要其它地质定年手段提供的独立的年龄格架,本论文利用浮游有孔虫、钙质超微化石、颗石藻类、孢粉四个化石门类进行微体古生物地层格架的建立,根据标志种与《地质年代表2004》的对比获得旋回地层学所需的绝对年龄控制点。然后,从最新的天文周期解决方案中选择斜率和日照量作为目标曲线,将自然伽马测井曲线进行天文调谐,得到高分辨率天文调谐地质年代表或浮动天文年代表,并利用该地质年代表对发现的地质及古生物事件进行定年。针对研究层段完整性、沉积物类型及沉积持续时间等的不同,分别利用频谱分析法、滑动窗口频谱分析法、高密度滑动窗口法及相位对比法求取研究层段的精细沉积速率变化。最后还从替代指标的选择、频谱分析以及天文调谐过程,详细深入分析可能产生误差,并最终影响天文调谐地质年代表结果的可能因素。
     作为二叠-三叠系全球界限层型及“金钉子”剖面,浙江煤山剖面在生物地层、生态地层等方面得到了极大关注和发展,但层序地层、旋回地层学方面,却鲜有研究者涉及。前人依靠生境型等证据建立的层序地层格架及依靠定性分析得出的旋回地层学结果大大提高了我们对层型剖面地层学的认识,但难以满足在该剖面上对二叠纪末大绝灭之后生物复苏机制及古气候的研究对地层精确度的要求。二叠纪末生物大灭绝造成海洋生物的萧条,但同时也意味着较低的生物扰动,使得早三叠纪可以较好地保存精细的韵律性旋回。论文对浙江煤山剖面下三叠统可进行区域对比的高频泥岩、碳酸盐岩薄互层进行级次划分,利用相对碳酸盐岩含量作为替代指标进行频谱分析找出主要频率,定量分析其旋回驱动机制并分析天文轨道参数对沉积影响的可能途径。结合天文轨道理论,分析频谱分析结果中丢失的信号及仍然存在的噪音的主控因素,并尝试性地提出一种解决深度域-时间域转换过程中不同岩性沉积速率不同导致的时间序列不可信的算法。最后利用改进的Fischer图解重建煤山地区早三叠世相对海平面变化曲线,并与全球同时期海平面变化进行对比,分析其异同点及可能的影响因素。
     国际上对旋回地层学领域的研究,主要集中在天文轨道周期理论及其对气候的影响,古季风、冰川、古生物、海平面变化等的演化机制研究等方面,天文调谐建立的地质年代标尺这一高分辨率定年工具,始终没有在石油地质勘探中得到充分的应用。论文最后探讨了高频米兰科维奇旋回在经典层序地层学三级层序的起因和持续时间、高频层序划分、层序边界及沉积间断的识别、有利砂体预测、地层剥蚀厚度恢复及盆地沉积速率演化和动力过程等问题中的应用。
Cyclostratigraphy is the subdiscipline of stratigraphy that deals with the identification,characterization, correlation, and interpretation of cyclic variations in the stratigraphic recordand, in particular, with their application in geochronology by improving the accuracy andresolution of time-stratigraphic frameworks. Since the recognition of ‘Milankovitch' orbitalforcing as the ‘pacemaker of the ice ages', cyclostratigraphy has attracted more and moreattentions from geoscientists and stratigraphers because it can considerably enhance bothrelative and absolute age controls at a resolution of10-100Ka, better understanding of thesedimentology, quantification of rates and duration of sedimentary, climatic, andpaleontological processes, as well as possibilities for correlation within and beyond the basin.During the past two decades, there have been many efforts to construct an accurate geologicaltimescale based on astronomical tuning of climatic response records to astronomical solutions.This provides a better accuracy than the conventional timescales which are often based onlinear interpolation between biozones and/or geomagnetic reversals and/or radiometricallydated calibration points. But in China, only few people focus on this discipline, with even nosystematic introduction of cyclostratigraphy in Chinese. In this dissertation, we introduce thefundamental conceptions, development history, research methods, and research status ofcyclostratigraphy in detail, and then undertake cyclostratigraphic research on several differentgeological times in the Huizhou Depression and the Meishan Section.
     Several formations of Tertiary in the Pearl River Mouth Basin of South China Seaconsist of deltaic siliciclastic and neritic shelf carbonate rhythmic alternations. To improve thestratigraphic resolutions for hydrocarbon prospecting and exploration in the basin, this study undertakes spectral analysis of high-resolution natural gamma-ray well-logging record todetermine the dominant frequency components and test whether Milankovitch orbital signalsare registered in the rhythmic successions. Because the high-frequency cyclostratigraphyrelies on the conventional timescales based on biostratigraphy, magnetostratigraphy, and/orradio dating, we use planktonic foraminifera, calcareous nannofossil, dinoflagellates, andspore-pollen to construct micropaleontology stratigraphic framework to providebiochronological constraints. Within biochronological constraint, a high-resolutionastronomical timescale was constructed through astronomical tuning of the naturalgamma-ray well-logging record to the most recent astronomically calculated variation ofearth's orbit. The astronomically tuned timescale can be used to calculate astronomical agesfor geological events and bioevents recognized throughout the period. The differentsedimentary completeness, sedimentary duration, and types of sediment of the researchinterval determine that the sedimentary rate can not be obtained by the same method.Therefore, spectral analysis, sliding windows spectral analysis, high-density sliding windowsspectral analysis and phase relationship correlation methods were advanced to obtain thesedimentary rate in different research intervals.
     As the Global Stratotype Section and Point for the Permian-Triassic boundary (PTB), thebiostratigraphy, chronostratigraphy, event stratigraphy and ecostratigraphy of the intervalfrom the Upper Permian Changhsingian through the PTB to the lower Triassic YinkengFormation at Meishan section have been extensively studied. However, the sequencestratigraphy and cyclostratigraphy of the lower Triassic of this section have received far lessattention even though exposure of the Lower Triassic succession is also spectacular. Thesequence stratigraphic framework has been constructed by the regional sea-level changesinferred from the hatitat type which represents certain ecological geographic environments.As we know, the Permian-Triassic transition resulted in the most devastating biotic crisis inPhanerozoic history and drastically altered the balance of the biosphere and its subsequentevolution. As consequence of the most devastated biotic crisis, the Early Triassic marinefauna fossils appeared very rare worldwide. So, sequence stratigraphic framework constructedon the basis of ecostratigraphic analyses is questionable. Milankovitch signals have beendetected quanlitatively at Chaohu section which is near the Meishan section by previous works. While quantitative tests of Milankovitch climatic signals in Early Triassic marinerecords at Meishan section are lacking. Whether Milankovitch orbital forcing was a majorclimatic driver during this time is essential to understanding the controlling factors anddepositional mechanisms, and the prolonged biotic recovery after the end-permian massextinction. The depauperate nature of marine faunas suggests a rather low bioturbation level,which enables the excellent preservation of very fine rhythmic cyclicity in the Early Triassicsediments. The well-preserved rhythmic sediments are characteristics of the Lower Triassicsuccessions worldwide. Here, we present a case study of the lower Triassic YinkengFormation exposed at Meishan section, with objectives to distinguish different orders ofembedded cycles and employ modified version of Fischer plots to define the third-andhigher-order sea-level changes. Aiming at the lost signals and the existing noise in the resultof spectral analysis, we proposed an algorithm which deals with the depth-time domaintransformation in the last of this part, with advantages that it can take the differentsedimentation rates between different rock types into account during the transformationperiod.
     According to the recent published papers, most cyclostratigraphic researchs are focus onhow the variations of earth's orbit affect the climatic system, and the evolution mechanisms ofthe monsoon, glaciations, bioevents, sea-level changes and etc. While the high-resolutionastronomically tuned Time Scale has still not been applied in hydrocarbon exploration. As thealready known cycles hierarchy and duration, in this dissertation, we attempt to probe intohow the high-frequency Milankovitch cycles can be used in the hydrocarbon explorationdomain like the orgin and duration of the third-order sequence in the classic sequencestratigraphy, high-frequency sequence division, the dection of sequence boundary andsedimentary discontinuity, the prediction of favorable sandbodies, and the estimation oferosion thickness.
引文
[1] Holmes A. A revised geological time-scale [J]. Transactions of the Geological Society ofEdinburgh,1960,17:183-216.
    [2] Turgeon Steven C and Creaser Robert A. Cretaceous oceanic anoxic events2triggered bya massive magmatic episode [J]. Nature,2008,454:323-326.
    [3] Raup D M and Sepkoski J J. Mass Extinctions in the Marine Fossil Record [J]. Science,1982,215(4539):1501-1503.
    [4] Knoll A H, Bambach R K, Canfield D E, and et al. Comparative Earth History and LatePermian Mass Extinction [J]. Science,1996,273(5274):452-457.
    [5] Kirschvink J L, Kirschvink A K, Woodford B J. Magnetite biomineralization in the humanbrain [J]. Proceedings of the National Academy of Sciences of the United States of America,1992,89(16):7683-7687.
    [6] Zwally H J, Abdalati W, Herring T, and et al. Surface Melt-Induced Acceleration ofGreenland Ice-Sheet Flow [J]. Science,2002,297(5579):218-222.
    [7] Overpeck J T, Otto-Bliesner B L, Miller G H, and et al. Paleoclimatic Evidence for FutureIce-Sheet Instability and Rapid Sea-Level Rise [J]. Science,2006,311(5768):1747-1750.
    [8] Bowring S A, Erwin D H, Jin Y G, and et al. U/Pb Zircon Geochronology and Tempo ofthe End-Permian Mass Extinction [J]. Science,1998,280(5366):1039-1045.
    [9] Mundil Roland, Ludwig Kenneth R, Metcalfe Ian, and et al. Age and Timing of thePermian Mass Extinctions: U/Pb Dating of Closed System Zircons [J]. Science,2004,305(5691):1760-1763.
    [10] Idnurm M and Cook P J. Palaeomagnetism of beach ridges in South Australia and theMilankovitch theory of ice ages [J]. Nature,1980,286:699-702.
    [11] Winograd I J, Coplen T B, Szabo B J, and et al. A250,000-Year Climatic Record fromGreat Basin Vein Calcite: Implications for Milankovitch Theory [J]. Science,1988,242(4883):1275-1280.
    [12] Imbrie J, Mix A C, Martinson D G. Milankovitch theory viewed from Devils Hole [J].Nature,1993,363:531-533.
    [13] Cannariato K G and Kennett J P. Structure of the penultimate deglaciation along theCalifornia margin and implications for Milankovitch theory [J]. Geology,2005,33(2):157-160.
    [14] Hays J D, Imbrie J, Shackelton N J. Variations in the Earth’s orbit: pacemaker of the IceAges [J]. Science,1976,194:1121-1132.
    [15] Hilgen F J and Langereis C G. The age of the Miocene-Pliocene boundary in the CapoRossello area (Sicily)[J]. Earth and Planetary Science Letters,1988,91:214-222.
    [16] Hilgen F J, Iaccarino S, Krijgsman W, and et al. The Global Boundary Stratotype Sectionand Point (GSSP) of the messinian Stage (uppermost Miocene)[J]. Episodes,2000,23(3):172-178.
    [17] Hilgen F J, Aziz H A, Bice D, and et al. The Global Boundary Stratotype Section andPoint (GSSP) of the Tortonian Stage (Upper Miocene) at Monte Dei Corvi [J]. Episodes,2005,28(1):6-17.
    [18] Hilgen F J, Abels H A, Iaccarino S, and et al. The Global Boundary Stratotype Sectionand Point (GSSP) of the Serravallian Stage (Middle Miocene)[J]. Episodes,2009,32(3):152-166.
    [19] Hüsing S K, Cascella A, Hilgen F J, and et al. Astrochronology of the MediterraneanLanghian between15.29and14.17Ma [J]. Earth and Planetary Science Letters,2010,290:254-269.
    [20] Laskar J, Joutel F, Boudin F. Orbital, precessional and insolation quantities for the earthfrom-20Myr to+10Myr [J]. Astronomy&Astrophysics,1993,270:522-533.
    [21] Laskar J, Robutel P, Joutel F, and et al. A long term numerical solution for the insolationquantities of the Earth. Astronomy&Astrophysics,2004,428:261-285.
    [22] Heslop D, Langereis C G, Dekkers M J. A new astronomical time scale for the loessdeposits of northern China [J]. Earth and Planetary Science Letters,2000,184:125-139.
    [23] Sageman B B, Meyers S R, Arthur M A. Orbital time scale and new C-isotope record forCenomanian-Turonian boundary Stratotype [J]. Geology,2006,34(2):125-128.
    [24] Mourik A A, Bijkerk J F, Cascella A, and et al. Astronomical tuning of the La VedovaHigh Cliff section (Ancona, Italy)-Implications of the Middle Miocene Climate Transition forMediterranean sapropel formation [J]. Earth and Planetary Science Letters,2010,297:249-261.
    [25] Westphal H, Hilgen F J, Munnecke A. An assessment of the suitability of individualrhythmic carbonate successions for astrochronological application [J]. Earth-Science Reviews,2010,99:19-30.
    [26] Giraud F, Beaufort L, Cotillon P. Periodicities of carbonate cycles in the Valanginian ofthe Vocontian Trough: a strong obliquity control [A]. In: House M R, Gale A S (eds.): Orbitalforcing time-scales and cyclostratigraphy [C]. Geological Society Special Publications,1995,85:143-164, London.
    [27] Riall J A. Abrupt climate change: Chaos and order at orbital and millennial scales [J].Global Planetary Change,2004,41:95-109.
    [28] Schwarzacher W. Repetitions and cycles in stratigraphy [J]. Earth-Science Reviews,2000,50:51-75.
    [29] Andreas Prokoph, Frederik P.Agterberg. Wavelet analysis of well-logging data from oilsource rock, Egret Member, offshore eastern Canada [J]. AAPG Bulletin,2000,84(10):1617-1632.
    [30] Hilgen F J, Schwarzacher W, Strasser A. Concepts and definitions in cyclostratigraphy(second report of the cyclostratigraphy working group)[J]. SEPM Special Publications,2004,81:303-305.
    [31] Strasser A, Hilgen F J, Heckel P H. Cyclostratigraphy-concepts, definitions, andapplications [J]. Newsletters on Stratigraphy,2006,42(2):75-114.
    [32] Fischer A G, DeBoer P L and Silva I P. Cyclostratigraphy [A]. In: Ginsburg R N andBeaudoin B, Editors, Cretaceous Resources, Events and Rhythms-Background and Plans forResearch [M], Kluwer, Dordrecht,1990:139-172.
    [33] Lyell C. Principles of geology, Vol.1[M]. London: John Murray, Albemarle-street,1830.
    [34] Herschel J F W. On the astronomical causes which may influence geological phenomina[J]. Trans. Geol. Soc.2-nd Ser.,1832,3:393-399.
    [35] Croll J. On the physical cause of the change of climate during geological epochs [J]. Phil.Mag.,1864,28:121-137.
    [36] Gilbert J K. Sedimentary measurement of Cretaceous time [J]. Journal of Geology,1895:121-127.
    [37] Bradley W B. The varves and climate of the Green River epoch [J]. U.S. GeologicalSurvey Professional Paper,1929,158:87-110.
    [38] Fischer A G. Lofer cyclothems of the Alpine Trias [J]. Kansas Geological SurveyBulletin,1964,169:107-148.
    [39] Milankovitch M. Kanon der Erdbestrahlung und seine Anwendung auf dasEiszeitproblem [M]. Akademie. Royale Serbe,1941,133,1-633.
    [40] Schwarzacher W. Cyclostratigraphy and the Milankovitch Theory. Amsterdam: Elsevier,1993:11-56.
    [41] Emiliani C. Pleistocene temperature [J]. Journal of Geology,1955,63:538-578.
    [42] Pisias NG. Late Quaternary sediment of the Panama Basin: Sedimentation rates,periodicities, and controls of carbonate and opal accumulation [J]. Geological Society ofAmerica Memoir,1976,145:375-391.
    [43] Kukla G J. Pleistocene land-sea correlations in Europe [J]. Earth-Science Reviews,1977,13(4):307-374.
    [44] Imbrie J, Imbrie J Z. Ice Ages, Solving the Mystery [M]. New Jersey: Harvard UniversityPress,1979,224pp.
    [45] Berger A, Imbrie J, Hays G, and et al. Milankovitch and Climate [M]. Reidel, Dordrecht,1984,895pp.
    [46] Fischer A G. Climate rhythms recorded in strata [J]. Annual Reviews of Earth andPlanetary Science,1986,14:351-376.
    [47] Grotzinger J P. Cyclicity and palaeoenvironmental dynamics, Rocknest platform,northwest Canada [J]. Geological Society of America Bulletin,1986,97:1208-1231.
    [48] Goldhammer R K. Dunn P A, Hardie LA. High frequency flacio-eustatic sea-leveloscillations with Milankovitch characteristics record in Middle Triassic platform carbonates innorthern Italy [J]. American Journal of Science,1987,287:853-892
    [49] Bond G C, Kominz M A, Beavan J. Evidence for orbital forcing of Middle Cambrianperitidal cycles: Wah Wah Range, south-central Utah [A]. In Franseen E K et al, eds.,Sedimentary modeling: computer simulation and methods for improved parameter definition
    [M]. Kansas Geological Survey Bulletin,1991,233:293-318.
    [50] Elrick M, Read J F. Cyclic ramp-to-basin carbonate deposits, Lower MississippianWyoming and Montana: a combined field and computer modeling study [J]. Journal ofSedimentary Petrology,1991,61:1194-1224.
    [51] Crowell J C. Gondwanan glaciation, cyclothems, continental positioning and climatechange [J]. American Journal of Science,1978,278:1345-1372.
    [52] Maynard J R, Leeder M R. On the periodicity and magnitude of Late Carboniferousglacio-eustatic sea-level changes [J]. Journal of Geological Society, London,1992,149:303-311.
    [53] Holterhoff P F. Crinoid biofacies in Upper Carboniferous cyclothems, mid-continentNorth America: faunal tracking and the role of regional processes in biofacies recurrence [J].Palaeogeography, Palaeoclimatology, Palaeoecology,1996,127:47-81.
    [54] Tucker M E, Gallagher J, Melanie J L. Are beds in shelf carbonates millennial-scalecycles? An example from the mid-Carboniferous of northern England [J]. SedimentaryGeology,2009,214:19-34.
    [55] Anderson R Y. A long geoclimatic record from the Permian [J]. Journal of GeophysicsResearch,1982,87:7285-7294.
    [56] Anderson R Y. Orbital forcing of evaporate sedimentation [A]. In: Berger A, Imbrie J,Hays J, et al, eds. Milankovitch and Climate [M]. Dordecht: Dordrecht Reidel PublicationCompany,1984,147-162.
    [57] Mawson M and Tucker M E. High-frequency cyclicity(Milankovitch andmillennial-scale) in slope-apron carbonates:Zechstein(Upper Permian), North-east England [J].Sedimentology,2009,56:1905-1936.
    [58] Weedon G P. Hemipelagic shelf sedimentation and climatic cycles: the basal Jurassic(Blue Lias) of South Britain [J]. Earth and Planetary Science Letters,1986,76:321-335.
    [59] House M R. A new approach to an absolute timescale from measurements of orbitalcycles and sedimentary microrhythms [J]. Nature,1985,315:721-725.
    [60] Vanbuchem F S P, Meinyk D H, Mccave I N. Chemical cyclicity and correlation ofLower Lias mudstones using gamma ray logs, Yorkshire, UK [J]. Journal of the GeologicalSociety, London,1992,149:991-1002.
    [61] Huang Chunju, Hesselbo S P, Hinnov L. Astrochronology of the late JurassicKimmeridge Clay(Dorset, England) and implications for Earth system processes [J]. Earthand Planetary Science Letters,2010,289:242-255.
    [62] Sucheras-Marx B, Mattioli E, Pittet B, and et al. Astronomically-paced coccolith sizevariations during the early Pliensbachian (Early Jurassic)[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2010,295:281-292.
    [63] Herbert T D, Fischer A G. Milankovitch climatic origin of mid-Cretaceous black shalerhythms in central Italy [J]. Nature,1986,321:739-743.
    [64] Fischer A G, Herbert T D. Stratification rhythms: Italo-American studies in the Umbrianfacies [J]. Geological Society of Italy Memoirs,1986,31:45-51.
    [65] Andrew S G, Hardenbol J, Hathway B, and et al. Global correlation ofCenomanian(Upper Cretaceous)sequences: Evidence for Milankovitch control on sea level [J].Geology.2002,30:291-294.
    [66] Gil J, Garcia-Hidalgo J F, Mateos R, and et al. Orbital cycles in a Late Cretaceousshallow platform (Iberian Ranges, Spain)[J]. Palaeogeography, Palaeoclimatology,Palaeoecology,2009,274,40-53.
    [67] Goldhammer R K, Dunn P A, Hardie L A. High frequency glacio-eustatic sealevaloscillations with Milankovitch characteristics recorded in middle Triassic platform carbonatesin northern Italy [J]. American Journal of Science,1987,287:853-892.
    [68] Hinnov L A, Goldhammer R K. Spectral analysis of middle Triassic latemar limestone [J].Journal of Sedimentary Petrology,1991,61:1173-1193.
    [69] Osleger D A. Subtidal carbonate cycles: implications for allocyclic versus autocycliccontrols [J]. Geology,1991,19:917-920.
    [70] William F K and Read J F. Field and modeling studies of Cambrian carbonate cycles,Virginia Appalachians [J]. Journal of sedimentary petrology,1989,59(5):654-687.
    [71] House M R. Devonian sedimentary microrhythms and a Givetian time scale [J].Proceedings of the Ussher Society,1991,7:392-395.
    [72] Elrick M, Hinnov L A. Millennial-scale climate origins for stratification in Cambrian andDevonian deepwater rhythmites, western USA [J]. Palaeogeography, Palaeoclimatology,Palaeoecology,1996,123(1-4):353-372.
    [73] Hansen H J, Lojen S, Toft P, and et al. Magnetic susceptibility and organic carbonisotopes of sediments across some marine and terrestrial Permo-Triassic boundaries [A]. In:Yin H, Dickins J M, Shi G R, et al, eds. Permian-Triassic Evolution of Tethys and WesternCircum Pacific. Amsterdam [M]: Elsevier,1999:271-289.
    [74] Rampino M R, Prokoph A, Adler A. Tempo of the end-Permian event: high-resolutioncyclostratigraphy at the Permian-Triassic boundary [J]. Geology,2000,28:643-646.
    [75] Dolenec T, Lojen S, Ramovs A. The Permain-Triassic boundary in westernSlovenia(Idijca Valley section): magnetostratigraphy, stable isotopes, and elemental variations[J]. Chemical Geology,2001,175:175-190.
    [76] Peng X F, Feng Q L,Li Z B, and et al. High-resolution cyclostratigraphy of geochemicalrecords from Permo-Triassic boundary section of Dongpan, southwestern Guangxi, SouthChina [J]. Science in China, series D,2008,51(2):187-193.
    [77] Gong Y M, Xu R, Tang Z D, and et al. The Upper Devonian orbital cyclostratigraphy andnumerical dating conodont zones from Guangxi, South China [J]. Science in China, Series D,2005,48(1):32-41.
    [78] Tiwari R K. Higher-order eccentricity cycles of the middle and late Miocene climaticvariations [J]. Nature,1987.327:219-221.
    [79] Stirling C H, Esat T M, Lambeck K, and et al. Orbital Forcing of the Marine IsotopeStage9Interglacial [J]. Science,2001,291(5502):290-293.
    [80] Lourens L J, Becker J, Bintanja R, and et al. Linear and non-linear response of lateNeogene glacial cycles to obliquity forcing and implications for the Milankovitch theory [J].Quaternary science reviews,2010,29:352-365.
    [81] Prokpha A and Agterberg F P. Wavelet analysis of well-logging data from oil source rock,Egret Member, offshore eastern Canada [J]. AAPG Bulletin,2000,84(10):1617-1632.
    [82] Sageman B B, Rich J, Arthur M A, and et al. Evidence for Milankovitch periodicities inCenomanian-Turonian lithologic and geochemical cycles, Western interior U.S.A.[J]. Journalof sedimentary research,1997,67(2):286-302.
    [83] Williams G E. Late Precambrian tidal rhythmites in South Australia and the history of theEarth’s rotation [J]. Journal of the Geological Society, London,1989,146:97-111.
    [84] Williams G E. Tidal rhythmites: Geochronometers for the ancient Earth-Moon system [J].Episodes,1989,12:162-171.
    [85] George E W. Milankovitch-band cyclicity in bedded halite deposits contemporaneouswith late Ordovician-early Silurian glaciation, Canning Basin, Western Australia [J]. Earthand Planetary Science Letters,1991,103(1-4):143-155.
    [86] Yoo C M, Lee Y. Origin and modification of early dolomites in cyclic shallow platformcarbonates, Yeongheung Formation (middle Ordovician), Korea [J]. Sedimentary Geology,1998,118:141-157.
    [87] Egenhoff S, Cassle C, Maletz J, and et al. Sedimentology and sequence stratigraphy of apronounced Early Ordovician sea-level fall on Baltica-The Bjorkasholmen Formation inNorway and Sweden [J]. Sedimentary Geology,2010,224:1-14.
    [88] Olsen H. Astronomical forcing of meandering river behaviour: Milankovitch cycles inDevonian of East Greenland [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1990,79:99-115.
    [89] Stage M. Recognition of cyclicity in the petrophysical properties of a Maastrichtianpelagic chalk oil field reservoir from the Danish North Sea [J]. AAPG Bulletin,2001,85(11):2003-2015.
    [90] Laurin J, Bradley B S. Cenomanian-Turonian coastal record in SW Utah, U.S.A.:Orbital-scale transgressive-regressive events during oceanic anoxic event Ⅱ[J]. Journal ofSedimentary Research,2007,77:731-756.
    [91] Forkner R M, Hinnov L A, Smart P. Use of insolation as a proxy for high-frequencyeustasy in forward modeling of platform carbonate cyclostratigraphy-A promising approach[J]. Sedimentary Geology,2010,231:1-13.
    [92] Yilmaz I O, Altner D. Cyclostratigraphy and sequence boundaries of inner platformmixed carbonate-siliciclastic successions (Barremian-Aptian)(Zonguldak, NW Turkey)[J].Journal of Asian Earth Sciences,2007,30:253-279.
    [93] Fischer A G, Roberts L T. Cyclicity in the Green River Formation (Lacustrine Eocene) ofWyoming [J]. Journal of Sedimentary Petrology,1991,61(7):1146-1154.
    [94] Heard T G, Pickering K T, Robinson S A. Milankovitch forcing of bioturbation intensityin deep-marine thin-bedded siliciclastic turbidities [J]. Earth and Planetary Science Letters,2008,272:130-138.
    [95] Kroon D, shimmield G, Austin W E N, and et al. Century-to millennial-scalesedimentological-geochemical records of glacial-Holocene sediment variations from theBarra Fan (NE Atlantic)[J]. Journal of Geological Society, London,2000,157:643-653.
    [96] Gale A S, Huggett J M, Palike H, and et al. Correlation of Eocene-Oligocene marine andcontinental records: orbital cyclicity, magnetostratigraphy and sequence stratigraphy of theSolent Group, Isle of Wight, UK [J]. Journal of Geological Society, London,2006,163:401-415.
    [97] Beget J E, Hawkins D B. Influence of orbital parameters on Pleistocene loess depositionin central Alaska [J]. Nature,1989,337:151-153.
    [98] Bloemendal J, deMenocal P. Evidence for a change in the periodicity of tropical climatecycles at2.4Myr from whole-core magnetic susceptibility measurements [J]. Nature,1989,342:897-900.
    [99] Bloemendal J, Liu X M, Rolph T C. Correlation of the magnetic susceptibilitystratigraphy of Chinese loess and the marine oxygen isotope record: chronological andpaleoclimate response [J]. Earth and Planetary Science Letters,1995,131:371-380.
    [100] Long D G. Tempestite frequency curves: a key to late Ordovician and early Siluriansubsidence, sea-level change, and orbital forcing in the Anticosti foreland basin, Quebec,Canada [J]. Canadian Journal of Earth Sciences,2007,44(3):413-431.
    [101] Boulila S, Galbrun B, Hinnov L A, and et al. Milankovitch and sub-Milankovitchforcing of the Oxfordian (Late Jurassic) Terres Noires Formation (SE France) and globalimplications [J]. Basin Research,2010,22(5):717-732.
    [102] Croll J. Climate and Time [M]. London,1890.
    [103] Bretagnon P. Termes a longues periods dans le systems solaire [J]. Astronomy&Astrophysics,1974,30:141-154.
    [104] Berger A. Long-term variations of daily insolation and Quaternary climatic changes [J].Journal of Atmospheric Sciences,1978,35:2362-2367.
    [105] Laskar J. Accurate methods in general planetary theory [J]. Astronomy&Astrophysics,1985,144:133-146.
    [106] Laskar J. Secular terms of classical planetary theories using the results of general theory[J]. Astronomy&Astrophysics,1986,157:59-70.
    [107] Laskar J. Secular evolution of the solar system over10million years [J]. Astronomy&Astrophysics,1988,198:341-362.
    [108] Laskar J. A numerical experiment on the chaotic behavior of the solar system [J].Nature,1989,338:237-238.
    [109] Berger A, Loutre M F. Insolation values for the climate of the last10million years [J].Quaternary Science Reviews,1991,10(4):287-317.
    [110] Laskar J. The chaotic motion of the Solar sysrem: A numerical estimate of the size ofthe chaotic zones [J]. Icarus,1990,88(2):266-291.
    [111] Berger A. Pre-Quaternary Milankovitch frequencies [J]. Nature,1989,342(9):133.
    [112] Berger A, Loutre M F. Astronomical solutions for paleoclimate studies over the last3million years [J]. Earth and Planetary Science Letters,1992,111:369-382.
    [113] Quinn T R, Tremaine S, and Duncan M. A three million year integration of the Earth’sorbit [J]. Astronomical Journal,1991,101:2287-2305.
    [114] Hilgen F, Brinkhuis H, Zachariasse W J. Unit stratotypes for global stages: TheNeogene perspective [J]. Earth Science Review,2006,74(1-2):113-125.
    [115] Imbrie J. The orbital theory of Pleistocene climate: Support from a revised chronologyof the marine δ18O record [A], In: Berger A., et al., Milankovitch and climate, Part1[M].Dordrecht, Netherlands: D.Riedel Publishing Company,1984:269-305.
    [116] Ruddiman W F, Mcintyre A, Raymo M E. Matuyama41,000-year cycles: North AtlanticOcean and northern hemisphere ice sheets [J]. Earth and Planetary Science Letters,1986,80:117-129.
    [117] Martinson D G, Pisias N G, Hays J D, and et al. Age dating and the orbital theory of theice ages: Development of a high-resolution0to300,000-year chronstratigraphy [J].Quaternary Research,1987,27:1-29.
    [118] Berger A. Obliquity and precession for the last5,000,000years [J]. Astronomy&Astrophysics,1976,51:127-135.
    [119] Berger A. Milankovitch theory and climates [J]. Reviews of Geophysics,1988,26:624-657
    [120] Berger A, Loutre M F. New insolation values for the climate of the last10million years
    [R]. Scientific Report,1988.
    [121] Pisias N G, Moore T C. The evolution of Pleistocene climate: A time series approach [J].Earth and planetary Science Letters,1981,52:450-458.
    [122] Williams D F, Thunell R, Tappa E, and et al. Chronology of the Pleistocene oxygenisotope record:0-1.88m.y. B.P.[J]. Paleogeography, Paleoclimatology, Paleoecology,1988,6:221-240.
    [123] Ruddiman W F, Raymo M E, Martinson D G, and et al. Pleistocene evolution: Northernhemisphere ice sheets and North Atlantic Ocean [J]. Paleoceanography,1989,4:353-412.
    [124] Raymo M E, Ruddiman W F, Backman J, and et al. Late Pliocene variation in northernhemisphere ice sheets and North Atlantic deep water circulation [J]. Paleoceanography,1989,4(4):413-446.
    [125] Hilgen F J. Astronomical calibration of Gauss to Matuyama sapropels in theMediterranean and implication for the geomagnetic polarity time scale [J]. Earth andPlanetary Science Letters,1991,104:226-244.
    [126] Hilgen F J, Krijgsman W, Langereis C G, and et al. Extending the astronomical(polarity) time scale into the Miocene [J]. Earth and Planetary Science Letters,1995,136:495-510.
    [127] Gradstein F M, Ogg J G, Smith A G. A geologic time scale2004[M]. Cambridge:Cambridge University Press,2005:1-610.
    [128] P like H, Norris R D, Herrle J O, and et al. The heartbeat of the Oligocene climatesystem [J]. Science,2006,314:1894-1898.
    [129] Jovane L, Florindo F, Sprovieri M, and et al. Astronomic calibration of the lateEocene/early Oligocene Massignano section (central Italy)[J]. Geochemistry, Geophysics,Geosystems,2006,7(7): Q07012.
    [130] Brown R E, Koeberl C, Montanari A, and et al. Evidence for a change in Milankovitchforcing caused by extraterrestrial events at massignano, Italy, Eocene-Oligocene boundaryGSSP [A]. In: Koeberl C, Montanari A (Eds.), The Late Eocene Earth-hothouse, icehouse, andimpacts [C]. Geological Society of America Special Paper,2009,452:119-137.
    [131] P like H, Lyle M W, Ahagon N, and et al. Pacific equatorial age transect [R]. IODPSci.Prosp.,2008:320/321.
    [132] Jovane L, Sprovieri M, Coccioni R, and et al. Astronomical calibration of the middleEocene Contessa Highway section (Gubbio, Italy)[J]. Earth and Planetary Science Letters,2010,298:77-88.
    [133] Westerhold T, R hl U, Raffi I, and et al. Astronomical calibration of the Paleocene time[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2008,257:377-403.
    [134] Hilgen F J, Kuiper K F, Lourens L J. Evaluation of the astronomical time scale for thePaleocene and earliest Eocene [J]. Earth and Planetary Science Letters,2010,300:139-151.
    [135] Ridente D, Trincardi F, Piva A, and et al. The combined effect of sea level and supplyduring Milankovitch cyclicity: Evidence from shallow-marine δ18O records and sequencearchitecture (Adriatic margin)[J]. Geology,2009,37(11):1003-1006.
    [136] Denison S M, Maslin M A, Boot C, and et al. Precession-forced changes in South WestAfrican vegetation during Marine Isotope Stage101-100(2.56-2.51Ma)[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2005,220:375-386.
    [137] Sabrina A, Vittoria F, Bruno D A, and et al. Carbon-isotope stratigraphy andcyclostratigraphy of shallow-marine carbonates: the case of San Lorenzello, LowerCretaceous of southern Italy [J]. Cretaceous Research,2008,29:803-813.
    [138] Cleaveland L C, Jensen J, Goese S, and et al. Cyclostratigraphic analysis of pelagiccarbonates at Monte dei Corvi (Ancona, Italy) and astronomical correlation of theSerravallian-Tortonian boundary [J]. Geology,2002,30(10):931-934.
    [139] Weedon G P, Coe A L, Gallois R W. Cyclostratigraphy, orbital tuning and inferredproductivity for the type Kimmeridge Clay (Late Jurassic), Southern England [J]. Journal ofGeological Society, London,2004,161:655-666.
    [140] Lauridsen B W, Gale A S, Surlyk F. Benthic macrofauna variations and communitystructure in Cenomanian cyclic chalk-marl from Southerham Grey Pit, SE England [J].Journal of the Geological Society, London,2009,166:115-127.
    [141] Machlus M L,Olsen P E, Christie-Blick N, and et al. Spectral analysis of the lowerEocene Wilkins Peak Member Green River Formation, Wyoming: Support for Milankovitchcyclicity [J]. Earth and Planetary Science Letters,2008,268:64-75.
    [142] Vimeus F, Cuffey K M, Jouzel J. New insights into Southern Hemisphere temperaturechanges from Vostok ice cores using deuterium excess correction [J]. Earth and PlanetaryScience Letters,2002,203:829-843.
    [143] Hinnov L A, Park J. Strategies for assessing Early-Middle (Pliensbachian-Aalenian)Jurassic cyclochronologies [J]. Philosophical Transactions of the Royal Society London,1999,357:1831-1859.
    [144] Wilkinson B H, Diedrich N W, and Drummond C N. Facies successions in peritidalcarbonate sequences [J]. Journal of Sedimentary Research,1996,66:1065-1078.
    [145] Olsen P E, Kent D V. Long-term Milankovitch cycles from the Late Triassic and EarlyJurassic of eastern North America and their implications for the calibration of the EarlyMesozoic timescale and the long term behavior of the planets [J]. Philosophical Transactionsof the Royal Society London, Series A,1999,357:1761-1788.
    [146] Ten Kate W G H Z, and Sprenger A. Orbital cyclicities above and below theCretaceous/Paleogene boundary (N Spain)[J]. Sedimentary Geology,1993,87:69-101.
    [147]Premoli Silva I, Tornaghi M E, and Ripepe M. Planktonic foranimiferal distributionrecords productivity cycles: evidence from the Aptian-Albian Piobbico core (Central Italy)[J].Terra Nova,1989,1:443-448.
    [148] Herrle J O. Paleoceanographic and paleoclimatic implications on mid-Cretaceous blackshale formation in the Vocontian basin and the Atlantic: evidence from calcareous nannofossiland stable isotopes [D]. PhD thesis, Universit t Tübingen, Institut and Museum für Geologieund Pal ontologie,2002,114pp
    [149] Erba E and Premoli Silva I. Orbitally driven cycles in trace-fossil distribution fromPiobbico core (Late Albian, central Italy)[A]. In: de Boer P L, and Smith D G,(Eds.), Orbitalforcing and Cyclic Sequences [C]. International Association of Sedimentologists, SpecialPublication,1992,19:211-225.
    [150] Herbert T D. Reading orbital signals distorted by sedimentation: models and examples
    [A]. In: de Boer P L and Smith D G,(Eds.). Orbital forcing and cyclic sequences, SpecialPublication number19of The International Association of Sedimentologists [C]. Oxford:Blackwell,1994:483-507.
    [151] Weedon G P. Time-series analysis and cyclostratigraphy: Examining stratigraphicrecords of environmental cycles [M]. New York: Cambridge University Press,2003:1-259.
    [152] Schwarzacher W. Sedimentation models and quantitative stratigraphy [M]. Amsterdam:Elsevier,1975:1-382.
    [153] Tagliaferri R, Pelosi N, Ciaramella A, and et al. Soft computing methodologies forspectral analysis in cyclostratigraphy [J]. Computers&Geosciences,2001,27:535-548.
    [154] Brescia M, D’Argenio B, Ferreri V, and et al. Neural net aided detection of astronomicalperiodicities in geologic records [J]. Earth and Planetary Science Letters,1996,139:33-45.
    [155] Barron E J, Arthur M A and Kauffman E G. Cretaceous rhythmic bedding sequences: aplausible link between orbital variation and climate [J]. Earth and Planetary Science Letters,1985,72:327-340.
    [156] Algeo T J, Wilkinson B H. Periodicity of mesoscale Phanerozoic sedimentary cyclesand the role of Milankovitch orbital modulation [J]. Journal of Geology,1988,96:313-322.
    [157] Bailey R J. Sequence stratigraphy and orbital forcing in Permian (Rotliegend) desertdeposits: a discussion [J]. Journal of the Geological Society, London,2001,158:785-791.
    [158] Lever H. Cyclic sedimentation in the shallow marine upper Permian Kennedy Group,Carnavon Basin, Western Australia [J]. Sedimentary Geology,2004,172:187-209.
    [159] Poletti L, Premoli S, Masetti I, and et al. Orbitally driven fertility cycles in thePaleocene pelagic sequences of the Southern Alps (Northern Italy)[J]. Sedimentary Geology,2004,164:35-54.
    [160] Pestiaux P, Berger A. An optimal approach to the spectral characteristics of deep-seaclimatic records [A], In: Berger A., Imbrie J, Hays J, Kukla G, and et al, eds., Milankovitchand Climate, Part Ⅰ[M]: Dordrecht: D. Reidel,1984:417-445.
    [161] Hinnov L A, Goldhammer R K. Spectral analysis of the middle Triassic Latemarlimestone [J]. Journal of Sedimentary Petrology,1991,61(7):1173-1193.
    [162] Ghil M, Allen M R, Dettinger M D, and et al. Advanced spectral methods for climatictime series [J]. Reviews of Geophysics,2002,40(1):1-1-1-41.
    [163]Dunn C E. Identification of sedimentary cycles through Fourier analysis of geochemicaldata [J]. Chemical Geology,1974,13:217-232.
    [164] Percival D B, Walden A T. Spectral analysis for physical applications. Multitaper andConventional Univariate Techniques [M]. Cambridge: Cambridge University Press,1993:1-583.
    [165] Dimitrov B D, Shangova-Gigoriadi S, Grigoriadis E D. Cyclicity in variations ofincidence rates for breast cancer in different countries [J]. Folia Med.(plovdiv),1998,40:66-71.
    [166] Priestiey M B. Spectral analysis and time series [M]. London: Academic Press,1981:1-890.
    [167] Bayer U, Seilacher A. Sedimentary and Evolutionary Cycles [M]. New York: Springer-Verlag,1985:1-464.
    [168] Yang W, Lehrmann D J. Milankovitch climatic signals in Lower Triassic (Olenekian)peritidal carbonate successions, Nanpanjiang Basin, South China [J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2003,201:283-306.
    [169] Blackman R B, Tukey J W. The measurement of power spectra from the point of viewof communication engineering [M]. New York,1958.
    [170] Lomb N R. Least-squares frequency analysis of unequally spaced data [J]. Astrophysicsand Space Science,1976,39:447-462.
    [171] Scargle J D. Studies in astronomical time series analysis; statistical aspects of spectralanalysis of unevenly spaced data [J]. the Astrophysical Journal,1982,263:835-853.
    [172] Press W H. Numerical recipes in FORTRAN [M]. Cambridge: Cambridge UniversityPress,1992:569-577.
    [173] D’Argenio B, Ferreri V, Raspini A, and et al. Cyclostratigraphy of a carbonate platformas a tool for high-precision correlation [J]. Tectonophysics,1999,315:357-384.
    [174] Beauchamp K G. Applications of Walsh and related functions, with an introduction toSequency Theory [M]. London: Academic Press,1984:1-308.
    [175] Walsh J L. A closed set of normal orthogonal functions [J]. American Journal ofMathematics,1923,45(1):5-24.
    [176] Ables J G. Maximum Entropy Spectral Analysis [J]. Astronomy and AstrophysicsSupplement,1974,15:383-393.
    [177] Childers D G. Modern Spectrum Analysis [M]. Piscataway: IEEE Press,1978:1-331.
    [178] Thomson D J. Spectrum estimation and harmonic analysis [J]. Proceedings of the IEEE,1982,70(9):1055-1096.
    [179] Park J. Envelope estimation for quasi-periodic geophysical signals in noise: Amultitaper approach [A], In: Walden A T and Guttorp P,(eds.), statistics in the Environmentaland Earth Sciences [M]. London: Edward Arnold,1992:189-219.
    [180] Lall U, Mann M. The Great Salt Lake: A barometer of low-frequency climaticvariability [J]. Water Resource Reaearch,1995,31:2503-2515.
    [181] Mann M E, Park J. Joint spatiotemporal modes of surface temperature and sea levelpressure variability in the Northern Hemisphere during the last century [J]. Journal of Climate,1996,9:2137-2162.
    [182] Yiou P, Loutre F, Baert E. Spectral analysis of climate data [J]. Surveys in Geophysics,1996,17:619-663.
    [183] Koch D M, Mann M E. Spatial and temporal variability of7Be surface concentration [J].Tellus, Serirs B,1996,48:387-398.
    [184] Park J, Herbert T D. Hunting for periodicities in a mid-Cretaceous sedimentary series[J]. Journal of Geophysical Research,1987,92:14027-14040.
    [185] Yiou P, Fuhrer K, Meeker L D, and et al. Paleoclimatic variability inferred from thespectral analysis of Greenland and Antarctic ice core data [J]. Journal of GeophysicalResearch,1997,102(26):441-26.
    [186] Meyers S R, Sageman B B, and Pagani M. Resolving Milankovitch: Consideration ofsignal and noise [J]. American Journal of Science,2008,308:770-786.
    [187] Aziz H A, Dam J V, Hilgen F J, and et al. Astronomical forcing in Upper Miocenecontinental sequences: implications for the Geomagnetic Polarity Time Scale [J]. Earth andPlanetary Science Letters,2004,222:243-258.
    [188] Abels H A, Hilgen F J, Krijgsman W, and et al. Long-period orbital control on middleMiocene global cooling: integrated stratigraphy and astronomical tuning of the Blue ClayFormation on Malta [J]. Paleoceanography,2005,20: PA4012.
    [189] Shackleton N J, Hagelberg T K, Crowhurst S J. Evaluating the success of astronomicaltuning: pitfalls of using coherence as a criterion for assessing pre-Pleistocene timescales [J].Paleoceanography,1995,10:693-697.
    [190] Clemens S. An astronomical tuning strategy for Pliocene sections: implications forglobal-scale correlation and phase relationships [J]. Philosophical Transactions of the RoyalSociety London,1999,357:1949-1973.
    [191]张小会,赵重远.鄂尔多斯盆地上三叠统延长组米兰科维奇旋回的确定[J].石油与天然气地质,2002,23(4):372-375.
    [192]程日辉,王国栋,王璞珺.松辽盆地白垩系泉三段-嫩二段沉积旋回与米兰科维奇周期[J].地质学报,2008,28(1):55-64.
    [193]吴怀春,张世红,黄清华.中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J].地学前缘,2008,15(4):159-169.
    [194]姚益民,付国斌,徐道一,等.新疆吐哈盆地侏罗系旋回地层的初步研究[J].地层学杂志,2003,27(2):122-128.
    [195]陈建业,冯庆来,陈晶,等.广西东攀二叠系-三叠系界线剖面基于岩石磁参数的米兰科维奇旋回特征和地层对比[J].地层学杂志,2007,31(4):309-316.
    [196]姚益民,徐道一,李保利,等.东营凹陷牛38井沙三段高分辨率旋回地层[J].地层学杂志,2007,31(3):229-239.
    [197]徐道一,姚益民,韩延本,等.山东东营凹陷新近系明化镇组天文地层研究[J].古地理学报,2008,10(6):287-296.
    [198]鹿化煜,胡挺,王先彦.1100万年以来中国北方风尘堆积与古气候变化的周期及驱动因素分析[J].高校地质学报,2009,15(2):149-158.
    [199] Ding Z L, Derbyshire E, Yang S L, and et al. Stacked2.6Ma grain size record from theChinese loess based on five sections and correlation with the deep-sea δ18O record [J].Paleoceanography,2002,17(3):1033.
    [200]田军,汪品先,成鑫荣.更新世南海上部上层海水结构变化的岁差驱动[J].自然科学进展,2004,14(6):683-688.
    [201] Tian J, Pak D K, Wang P X, and et al. Late Pliocene monsoon linkage in the tropicalSouth China Sea [J]. Earth and Planetary Science Letters,2006,252:72-81.
    [202]万天丰,朱鸿.中国大陆及临区中生代-新生代大地构造及环境变迁[J].现代地质,2002,16(2):107-120.
    [203]陈长民,施和生,许仕策,等.珠江口盆地(东部)第三系油气藏形成条件[M].北京:科学出版社,2003:1-266.
    [204]李前裕,郑洪波,钟广法,等.南海晚渐新世滑塌沉积指示的地质构造事件[J].地球科学-中国地质大学学报,2005,30(1):20-24.
    [205]邵磊,庞雄,乔培军,等.珠江口盆地的沉积充填与珠江的形成演变[J].沉积学报,2008,26(2):179-185.
    [206]邵磊,朱伟林.珠江口及北部湾盆地泥岩地球化学特点[J].同济大学学报,2000,28(5):523-527.
    [207]龚再升,李思田,谢泰俊,等.南海北部大陆边缘盆地分析与油气聚集[M].北京:科学出版社,1997:1-510.
    [208]陈长民.珠江口盆地东部石油地质及油气藏形成条件初探[J].中国海上油气(地质),2000,14(2):73-83.
    [209]钟建强.珠江口盆地的构造特征与盆地演化[J].海洋湖沼通报,1994,(1):1-8.
    [210]姚伯初.南海海盆新生代的演化史[J].海洋地质与第四纪地质,1996,16(2):1-13.
    [211]李思田,林畅松,张启明,等.南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件[J].科学通报,1998,43(8):797-810.
    [212]金庆焕.南海地质与油气资源[M].北京:地质出版社,1989, pp417.
    [213]梁杏,王旭升,张人权,等.珠江口盆地东部第三纪沉积环境与古地下水流模式[J].地球科学-中国地质大学学报,2000,25(5):542-546.
    [214]张志杰,于兴河,侯国伟,等.张性边缘海的成因演化特征及沉积充填模式-以珠江口盆地为例[J].现代地质,2004,18(3):284-289.
    [215]彭大钧,陈长民,庞雄,等.南海珠江口盆地深水扇系统的发现[J].石油学报,2004,25(5):17-23.
    [216]邵磊,雷永昌,庞雄,等.珠江口盆地构造演化及对沉积环境的控制作用[J].同济大学学报,2005,33(9):1177-1181.
    [217]秦国权.珠江口盆地新生代晚期层序地层划分和海平面变化[J].中国海上油气(地质),2002,16(1):1-10.
    [218]赵中贤,周蒂,廖杰.珠江口盆地第三纪古地理及沉积演化[J].热带海洋学报,2009,28(6):52-60.
    [219]吕学菊,肖力,林正良,等.珠江口盆地西部珠三坳陷沉降史分析[J].新疆石油地质,2008,29(2):195-197.
    [220]傅宁,米立军,张功成.珠江口盆地白云凹陷烃源岩及北部油气成因[J].石油学报,2007,28(3):32-38.
    [221]秦国权.珠江口盆地新生代地层问题讨论及综合柱状剖面图编制[J].中国海上油气(地质),2000,14(1):21-28.
    [222]徐钰林.珠江口盆地第三纪钙质超微化石分带及古海洋环境[A].郝诒纯,徐钰林,许仕策,等.南海珠江口盆地第三纪微体古生物及古海洋学研究[M].武汉:中国地质大学出版社,1996:74-87.
    [223]万晓樵,郝诒纯,董军社.珠江口盆地第三纪浮游有孔虫分带[A].郝诒纯,徐钰林,许仕策,等.南海珠江口盆地第三纪微体古生物及古海洋学研究[M].武汉:中国地质大学出版社,1996:10-18.
    [224]雷作淇.珠江口盆地第三纪孢粉组合序列及相关问题的探讨[A].郝诒纯,徐钰林,许仕策,等.南海珠江口盆地第三纪微体古生物及古海洋学研究[M].武汉:中国地质大学出版社,1996:32-42.
    [225]祝幼华,陈芳.珠江口盆地新近系钙质超微化石研究综述[J].微体古生物学报,2007,24(1):76-81.
    [226]黄虑生.珠江口盆地第三系生物地层框架[J].中国海上油气(地质),1999,13(6):406-414.
    [227]庞雄,陈长民,彭大均,等.南海珠江深水扇系统及油气[M].北京:科学出版社,2007:1-361.
    [228]庞雄,陈长民,邵磊,等.白云运动:南海北部渐新统-中新统重大地质事件及其意义[J].地质论评,2007,53(2):145-151.
    [229]柳宝军,申俊,庞雄,等.珠江口白云凹陷珠海组浅海三角洲沉积特征[J].石油学报,2007,28(2):49-56.
    [230]李平鲁.珠江口盆地新生代构造运动[J].中国海上油气(地质),1993,7(6):11-17.
    [231]江德昕,杨惠秋.珠江口盆地早第三纪油源岩形成环境[J].沉积学报,2000,18(3):469-455.
    [232]龚再升.中国近海含油气盆地新构造运动和油气成藏[J].石油与天然气地质,2004,25(2):133-138.
    [233]刘宝珺,许效松,潘杏南,等.中国南方古大陆沉积地壳演化与成矿[M].北京:科学出版社,1993:50-109.
    [234]于水明,施和生,梅廉夫,等.过渡动力学背景下的张扭性断陷-以珠江口盆地惠州凹陷古近纪断陷为例[J].石油实验地质,2009,31(5):485-489.
    [235]施和生,于水明,梅廉夫,等.珠江口盆地惠州凹陷古近纪幕式裂陷特征[J].天然气工业,2009,29(1):35-37.
    [236]李平鲁.珠江口盆地构造特征及油气聚集[J].广东地质,1994,9(4):21-28.
    [237]李潇雨,郑荣才,魏钦廉.珠江口盆地惠州凹陷古近系物源分析[J].沉积与特提斯地质,2007,27(4):33-38.
    [238]邓宏文,郑文波.珠江口盆地惠州凹陷古近系珠海组近海潮汐沉积特征[J].现代地质,2009,23(5):767-775.
    [239]程涛,王振奇,张尚锋,等.海陆交互相三角洲高分辨率层序地层探析[J].油气地质与采收率,2007,14(3):46-48.
    [240]杨少坤,黄丽芬,李希宗,等.珠江口盆地特殊层序地层模式及其对勘探的指导意义[J].中国海上油气(地质),1996,10(3):137-152.
    [241]魏水建,王英民,施和生,等.珠江口盆地惠州凹陷陆架砂沉积成因探讨[J].内蒙古石油化工,2008,(7):144-148.
    [242]龙更生,施和生,杜家元.珠江口盆地惠州地区中新统地层岩性圈闭形成条件分析[J].中国海上油气,2006,18(4):229-235.
    [243]朱俊章,施和生,邓宏文,等.珠江口盆地惠州凹陷古近系烃源岩层序地层学和地球化学研究[J].天然气地球科学,2007,18(5):709-714.
    [244]龙更生,施和生,王英民,等.珠江口盆地惠州凹陷新近系坡折带成因类型及对地层沉积的控制作用[J].石油与天然气地质,2009,30(2):215-222.
    [245] Blow W H. The Cainozoic Globigerinida, Part1[M]. Leiden: Brill E J,1979:1-90.
    [246] Bolli H B, Saunders J B. Oligocene to Holocene low latitude planktic foraminifera [A].In: Bolli H B, Saunders J B, Perch-Nielsen K,(eds.). Plankton Stratigraphy [M]. Cambridge:Cambridge University Press,1985:155-262.
    [247] Martini E. Standard Tertiary and Quaternary calcareous nannoplankton zonation [A]. In:Farinaci A (Eds.), Proceedings of2ndPlanktonic Conference (Roma,1970)[C]. Roma:Edizioni tecnoscienza,1971:739-785.
    [248] Okada H, Bukry D. Supplementary modification and introduction of code numbers tothe lowlatitude coccolith biostratigraphic zonation [J]. Marine Micropaleontology,1980,5:321-325.
    [249] Williams G L and Bujak J P. Mesozoic and Cenozoic dinoflagellates [A]. In: Bolli H B,Saunders J B, Perch-Nielsen K,(eds.). Plankton Stratigraphy [M]. Cambridge: CambridgeUniversity Press,1985:847-964.
    [250] Williams G L, Stover L E, Kidson E J. Morphology and Stratigraphic range of selectedMesozoic-Cenozoic dinoflagellate laxa in the northern hemisphere [M]. Ottawa: GeologicalSurvey of Canada,1993:1-137.
    [251] Haq B U, J and Vail P R. Chronology of fluctuating sea levels since the Triassic [J].Science,1987,235:1156-1167.
    [252] Haq B U, Jardenbol J, and Vail P R. Mesozoic and Cenozoic chronostratigraphy andcycles of sea-level change [J]. SEPM Special Publication,1988,42:71-108.
    [253]黄虑生.珠江口盆地东部地区渐新统-更新统钙质超微化石带及其地质意义[R].珠江口盆地(东部)石油地质科研报告集(3),1989:144-190.
    [254]许仕策.层序地层学在划分、对比沉积层序的应用[R].珠江口盆地(东部)石油地质科研报告集(6),1992:1-25.
    [255]庞雄,陈长民,施和生,等.相对海平面变化与南海珠江深水扇系统的响应[J].地学前缘,2005,12(3):167-177.
    [256] Serra O. Fundamentals of well-log interpretation.1. The acquisition of logging data [M].Amsterdam: Elsevier,1984:1-423.
    [257] Prokoph A, Agterberg F P. Detection of sedimentary cyclicity and stratigraphiccompleteness by wavelet analysis: an application to Late Albian cyclostratigraphy of thewestern Canada sedimentary basin [J]. Journal of Sedimentary Research,1999,60:862-875.
    [258] Prokoph A, Thurow J. Diachronous pattern of Milankovitch cyclicity in late Albianpelagic marlstones of the North German Basin [J]. Sedimentary Geology,2000,134:287-303.
    [259] Hinnov L A. Earth’s orbital parameters and cycle stratigraphy [A]. In: Gradstein F M,Ogg J G, Smith A G (Eds.), A Geologic Time Scale2004[M]. Cambridge: CambridgeUniversity Press,2000:55-62.
    [260] Wu H C, Zhang S H, Jiang G, and et al. The floating astronomical time scale for theterrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of NortheastChina and its stratigraphic and paleoclimate implications [J]. Earth and Planetary ScienceLetters,2009,278:308-323.
    [261] Prokoph A, Thurow J. Orbital forcing in a ‘Boreal’ Cretaceous epeiric sea:high-resolution analysis of core and logging data (upper Albian of the Kirchrode Ιdrill core-Lower Saxony Basin, NW Germany)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2001,174:67-96.
    [262] Wendler J, Grafe K U, Willems H. Reconstruction of mid-Cenomanian orbitally forcedpaleoenvironmental changes based on calcareous dinoflagellate cysts [J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2002,179:19-41.
    [263] Scott G H, King P R, Crundwell M P. Recognition and interpretation of depositionalunits in a Late Neogene progradational shelf margin complex, Taranaki Basin, New Zealand:foraminiferal data compared with seismic facies and wireline logs [J]. Sedimentary Geology,2004,164:55-74.
    [264] Lourens L J, Antonarakou A, Hilgen F J, et al. Evaluation of the Plio-Pleistoceneastronomical time scale [J]. Paleoceanography,1996,11:391-413.
    [265] Ciarnfi N, Lirer F, Lirer L, et al. Integrated stratigraphy and astronomical tuning oflower-middle Pleistocene Montalbano Jonico section (Southern Italy)[J]. QuaternaryInternational,2010,219:109-120.
    [266] P LIKE H, LASKAR J, SHACLETON N J. Geologic constraints on the chaoticdiffusion of the solar system [J]. Geology,2004,32(11):929-932.
    [267] Scotese C R and Mckerrow W S. Revised world maps and introduction [A]. In:McKerrow W S, Scotese C R (eds.), Palaeozoic Palaeogeography and Biogeography [R].Geological Society Memoir,1990,12:1-21.
    [268] Sloan L and Morrill C. Orbital forcing and Eocene continental temperatures [J].Palaeogeography, Palaeoclimatology, Palaeoecology.1998.144(1-2):21-35.
    [269] Shackleton N J, Crowhurst S J, Weedon W L, et al. Astronomical calibration ofOligocene-Miocene time [J]. Philosophical Transactions: Mathematical, Physical andEngineering Sciences,1999,357:1907-1929.
    [270] Rio D, Cita M B, Iaccarino S, and et al. Langhian, Serravallian, and Tortonian historicalstratotypes [A]. In: Montanari A, Odin G S, Coccioni,(eds.), Miocene Stratigraphy: AnIntegrated Approach, Developments in Paleontology and Stratigraphy [C]. Amsterdam:Elsevier,1997,15,57-87.
    [271] Fornaciari E, Iaccarino S, Mazzei R. Calcareous plankton biostratigraphy of theLanghian historical stratotype [A]. In: Montanari A, Odin G S, Coccioni,(eds.), MioceneStratigraphy: An Integrated Approach, Developments in Paleontology and Stratigraphy [C].Amsterdam: Elsevier,1997,15,89-96.
    [272] Paillard D, Labeyrie L, Yiou P. Macintosh program performs time-series analysis [J].EOS Transactions American Geophysical Union,1996,77(39):379.
    [273] Bruggerman W. A minimal cost function method for optimizing the age-depthrelationship of deep-sea sediment cores. Paleoceanography,1992,7:467-487.
    [274] Howell P, Pisias N, Balance J, and et al. ARAND Time-Series Analysis Software.Brown University, Providence RI.
    [275] Tian J, Zhao Q, Wang P X, and et al. Astronomically modulated Neogene sedimentrecords from the South China Sea [J]. Paleoceanography,2008,23: PA3210.
    [276] Iaccarino S. Mediterranean Miocene and Pliocene planktic foraminifera [A]. In: BolliH.M. et al.(Eds.)-Plankton Stratigraphy,1[C]. Cambridge: Cambridge University Press,1985:283-310
    [277] Lirer F. and Iaccarino S. Integrated Stratigraphy (Cyclostratigraphy and Biochronology)of late Middle Miocene deposits in the Mediterranean area and comparison with the Northand Equatorial Atlantic Oceans: synthesis of the major results [J]. Terra Nova,2005,17:338-349
    [278] Turco E., Bambini A.M., Foresi L.M., and et al. Middle Miocene high-resolutioncalcareous plankton biostratigraphy at Site926(Leg154, equatorial Atlantic Ocean):paleoecological and paleobiogeographical implications [J]. Geobios Memoire Special,2002,24:257-276
    [279] Thompson P.R. and Abbott W.H. Chronostratigraphy and Microfossil-derived sea-levelhistory of the Qiongdongnan and Yinggehai Basins, South China Sea [J]. SEPM SpecialPublications,2003,75:97-117
    [280] Hinnov L A, Ogg J G. Cyclostratigraphy and the astronomical time scale [J].Stratigraphy,2007,4:239-251.
    [281] Bukry D. Low latitude cocolith biostratigraphic zonation [J]. Init. Rep. DSDP,1973,15:685-703.
    [282] Muller R A and MacDonald G J. Ice ages and astronomical causes: data, spectralanalysis and mechanisms [M]. Chichester: Praxis Publishing Limited Company,318pp.
    [283] Cleaveland L C. Calcium carbonate and magnetic susceptibility analysis at Monte deiCorvi, Italy: Trends in the Mediterranean climate proxy record during Middle Miocene icesheet expansion [R]. Carleton College,34pp.
    [284] Fornaciari E, Di Stefano A, Rio D, and et al. Middle Miocene quantitative calcareousnannofossil biostratigraphy in the Mediterranean region [J]. Micropaleontology,1996,42:37-64.
    [285] Rider M H. Gamma ray log shape used as a facies indicator: critical analysis of anoversimplified methodology [A]. In: Hurst A., Lovell M.A., Morton A.C.(Eds.). GeologicalApplications of Wireline Logs [C]. London: Geological Society Special Publications,1990,48:27-37.
    [286] Yang C S and Kouwe W F P. Wireline log cyclicity analysis as a tool for dating andcorrelating barren strata: an example from the Upper Rotliegend of the Netherlands [A]. In:Dunay R.E., Hailwood A.E.(Eds.). Non-Biostratigraphical Methods of Dating andCorrelation [C]. London: Geological Society Special Publications,1995,89:237-259.
    [287] Yang C S and Baumfalk Y A. Application of high-frequency cyclicity analysis inhigh-resolution sequence stratigraphy [A]. In: Ziegler K.A., Turner P., Daines S.R.(Eds.).Petroleum Geology of the Southern North Sea: Future Potential. Geological Society [C].London: Geological Society Special Publications,1997,123:181-203.
    [288] Zhou L P, Shackleton N J. Misleading positions of geomagnetic reversal boundaries inEurasian loess and implications for correlation between continental and marine sedimentarysequences [J]. Earth and Planetary Science Letters,1999,168:117-130.
    [289] Yin H F, Zhang K X, Tong J N, and et al. The Global Stratotype Section and Point(GSSP) of the Permian-Triassic Boundary [J]. Episodes,2001,24(2),102-114.
    [290] Frakes L A, Francis J E, Skytus J I. Climate Models of the Phanerozoic: The History ofEarth’s Climate over the past600Million Years [M]. Cambridge: Cambridge University Press,1992,274pp.
    [291] Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean: Recordsfrom the lost deep sea [J]. Science,1997,276:235-238.
    [292]Chen Z Q, Tong J N, Kaiho K, and et al. Onset of biotic and environmental recoveryfrom the end-Permian mass extinction within1-2million years: A case study of the LowerTriassic of the Meishan section, South China [J]. Palaeogeography, Palaeoclimatology,Palaeoecology,2007,252:176-187.
    [293]Erwin D H. The Great Paleozoic Crisis: Life and Death in the Permian [M]. New York:Columbia University Press,1993.
    [294] Maxwell W D. Permian and Early Triassic Extinction of Non-marine Tetrapods [J].Palaeontology,1992,35:571-584.
    [295] Twitchett R J. Paleoenvironments and faunal recovery after the end-Permian massextinction [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,1999,154:27-37.
    [296] Woods A D, Bottjer D J, Mutti M, and et al. Lower Triassic large sea-floor carbonatecements: Their origin and a mechanism for the prolonged biotic recovery from theend-Permian mass extinction [J]. Geology,1999,27:645-648.
    [297] Lehrmann D J, Yang W, Wei J Y, and et al. Lower Triassic peritidal cyclic limestone: anexample of anachronistic carbonate facies from the Great Bank of Guizhou, NanpanjiangBasin, Guizhou province, South China [J]. Palaeogeography, Palaeoclimatology,Palaeoecology,2001,173:103-123.
    [298] Yang W and Lehrmann D J. Milankovitch climatic signals in Lower Triassic (Olenekianperitidal carbonate successions, Nanpanjiang Basin, South China [J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2003,201:283-306.
    [299] Li S Y, Tong J N, Liu K Y, and et al. The Lower Triassic cyclic deposition in Chaohu,Anhui Province, China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2007,252:188-199.
    [300] Guo G, Tong J N, Zhang S H, and et al. Cyclostratigraphy of the Induan (Early Triassic)in West Pingdingshan Section, Chaohu, Anhui Province [J]. Science in China Series D: EarthSciences,2008,51(1):22-29.
    [301] Kent D V and Olsen P E. Magnetic polarity stratigraphy and paleolatitude of theTriassic-Jurassic Blomidon Formation in the Fundy basin (Canada): implications for EarlyMesozoic tropical climate gradients [J]. Earth and Planetary Science Letters,2000,179:311-324.
    [302] Preto N, Hinnov L A, Hardie L A, and et al. Middle Triassic orbital signature recordedin the shallow-marine Latemar carbonate buildup (Dolomites, Italy)[J]. Geology,2001,29:1123-1126.
    [303] Tong J N and Yin H F. The marine Triassic sequence stratigraphy of Lower Yangtze [J].Science in China Series D: Earth Sciences,1998,41(3):255-261.
    [304] Yin H F and Tong J N. Late Permian-Middle Triassic Sea Level Changes of YangtzePlatform [J]. Journal of China University of Geosciences,1996,71(1):101-104.
    [305] Zhang K X, Tong J N, Yin H F, and et al. Sequence Stratigraphy of the Permian-TriassicBoundary Section of Changxing, Zhejiang, Southern China [J]. ACTA GEOLOGICA SINICA,1997,71(1):90-105.
    [306]童金南,殷鸿福.浙江长兴煤山剖面Griesbachian期旋回地层研究[J].地层学杂志,1999,23(2):130-135.
    [307] Tong J N. A study on the Griesbachian cyclostratigraphy of meishan Section,Changxing, Zhejiang Province: Symposium of the international conference on stratigraphyand tectonic evolution of southeast Asia and the South Pacific [A]. Bangkok, Thailand,1997,158-163.
    [308] Fischer A G. The Loffer cyclothems of the Alpine Triassic [J]. Geological Survey ofKansas Bulletin,1964,169,107-149.
    [309] Goldhammer P K, Duma P A, Hardie LA. High frequency glacio-eustatic sea-leveloscillations with Milankovitch characteristics recorded in Middle Triassic platform carbonatesin Northern Italy [J]. American Journal of Science,1987,287:853-892.
    [310] Read J F and Goldhammer R K. Use of Fischer plots to define third-order sea-levelcurves in Ordovician peritidal cyclic carbonates, Appalachians [J]. Geology,1988,16:895-899.
    [311] Osleger D A and Read J F. Relation of eustasy to stacking patterns of meter-scalecarbonate cycles, Late Cambrian, USA [J]. Journal of Sedfimentary Petrology,1991,61:1225-1252.
    [312] Sadler PM, Osleger D A, and Montanez I P. On the labeling, length and objective basisof Fischer plots [J]. Journal of Sedimentary Petrology,1993,63:360-368.
    [313] Read J F, Koerschner W F, Osleger D A, and et al. Field and modeling studies ofCambrian carbonate cycles, Virginia Appalachians-reply [J]. Journal of SedimentaryPetrology,1991,61:647-652.
    [314] Soreghan G S. Stratigraphic responses to geologic processes: Late Pennsylvanianeustasy and tectonics in the Pedregosa and Orogrande basins, Ancestral Rocky Mountains [J].Geological Society of America Bulletin,1994,106:1195-1211.
    [315] Day P I. The Fischer diagram in the depth domain: a tool for sequence stratigraphy [J].Journal of Sedimentary Research,1997,67:982-984.
    [316] Goldhammer R K, Dunn P A, Hardie L A. Depositional cycles, composite sea-levelchanges, cycle stacking patterns, and the hierarchy of stratigraphic forcing: Examples fromAlpine Triassic platform carbonates [J]. Geological Society of America Bulletin,1990,102:535-562.
    [317] Martin-Chivelet J, Osleger D A, Monta ez I P. Modified Fischer plots as graphical toolsfor evaluating thickness patterns in stratigraphic successions [J]. Journal of GeoscienceEducation,2000,48:179-183.
    [318]胡受权,陈国能. Fischer图解及其沉积响应的计算机模拟-以泌阳断陷下第三系核三上段为例[J].石油与天然气地质,1999,20(1):70-74.
    [319]翟永红.用Fischer图解研究山西临汾中奥陶世马家沟组旋回层序[J].岩石矿物学杂志,1999,18(2):128-133.
    [320]梅冥相,马永生.雾迷山旋回层的费希尔图解及其在定义前寒武纪三级海平面变化中的应用[J].地球学报,2001,22(5):429-436.
    [321] Grotzinger J P. Cyclicity and palaeoenvironmental dynamics, Rocknest platform,northwest Canada [J]. Geological Society of America Bulletin,1986,97:1208-1231.
    [322] Boss S K and Rasmussen K A. Misuse of Fischer plots as sea-level curves [J]. Geology,1995,23:221-224.
    [323] Pekar S and Miller K G. New Jersey Oligocene “Icehouse” sequence (ODP Leg150X)correlated with global δ18O and Exxon eustatic records [J]. Geology,1996,24(6):567-570.
    [324] Stoll H M and Schrag D P. High-resolution stable isotope records from the UpperCretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet?[J]. TheGeological Society of America Bulletin,2000,112(2):308-319.
    [325] Rose J. Quaternary climates: a perspective for global warming [J]. Proceedings of theGeologist’s Association,2010,121:334-341.
    [326] Paillard D. Climate and the orbitral parameters of the Earth [J]. Comptes RendusGeoscience,2010,342:273-285.
    [327] Sen A K, Filippelli G M, Flores J. An application of wavelet analysis topaleoproductivity records from the Southern Ocean [J]. Computers&Geosciences,2009,35:1445-1450.
    [328] Proistosescu C, Huybers P, Maloof A C. To tune or not to tune: detecting orbitalvariability in Oligo-Miocene climate records [J]. Earth and Planetary Science Letters,2012,325-326:100-107.
    [329] Ikeda M, Tada R, Sakuma H. Astronomical cycle origin of bedded chert: A middleTriassic chert sequence, Inuyama, Japan [J]. Earth and Planetary Science Letters,2010,297:369-378.
    [330] Lee S Y, Poulsen C J. Obliquity and precessional forcing of continental snow fall andmelt: implications for orbital forcing of Pleistocene ice ages [J]. Quaternary Science Reviews,2009,28:2663-2674.
    [331] Tyszka J. Foraminiferal response to seasonality modulated by orbital cycles in theCretaceous mid-latitudes: The Albian record from the Lower Saxony Basin [J].Palaeogeography, Palaeoclimatology, Palaeoecology,2009,276:148-159.
    [332] Rodriguez-Tovar F J, Lowemark L, Pardo-lguzquiza E. Zoophycos cyclicity during thelast425ka in the northeastern South China Sea: Evidence for monsoon fluctuation at theMilankovitch scale [J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,305:256-263.
    [333] van der Laan E, Hilgen F J, Lourens L J, and et al. Astronomical forcing of NorthwestAfrican climate and glacial history during the late Messinian (6.5-5.5Ma)[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2012,313-314:107-126.
    [334] Whiteside J H, Olsen P E, Eglinton T I, and et al. Pangean great lake paleoecology onthe cusp of the end-Triassic extinction [J]. Palaeogeography, Palaeoclimatology,Palaeoecology,2011,301:1-17.
    [335] Brett C E, Baird G C, Bartholomew A J, and et al. Sequence stratigraphy and a revisedsea-level curve for the Middle Devonian of eastern North America [J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2011,304:21-53.
    [336] Miller K G, Kominz M A, Browning J V, and et al. The Phanerozoic record of globalsea-level change [J]. Science,2005,310:1293-1298.
    [337] Mitchum R M Jr, Vail P R, Thompson S. Seismic stratigraphy and global changes of sealevel, part2: The depositional sequence as a basic unit for stratigraphic analysis [A]. In:Seismic Stratigraphy-Applications to Hydrocarbon Exploration (C.E.Payton, ed.)[R]. AAPGMemoir,1977,26:53-62.
    [338] Mitchum R M Jr, Vail P R, Thompson S. Seismic stratigraphy and global changes of sealevel, part4: Global cycles of relative changes of sea level [A]. In: SeismicStratigraphy-Applications to Hydrocarbon Exploration (C.E.Payton, ed.)[R]. AAPG Memoir,1977,26:53-62.
    [339] Vail P R, Audemard F, Bowman S A, and et al. The stratigraphic sifnatures of tectonics,eustasy and sedimentology-an overview [A]. In: Cycles and Events in Stratigraphy (EinseleG et al, eds)[M]. Berlin: Springer,1991, pp.617-659.
    [340] Plint A G, Eyles N, Eyles C H, and et al. Control of sea level change [A]. In: Faciesmodels-Response to sea level change (Walker R G and James N P, eds)[M]. Alberta:Geological Association of Canada,1992, pp.15-25.
    [341] Read J F. Overview of carbonate platform sequences, cycle stratigraphy and reservoirsin greenhouse and icehouse worlds [R]. The Society of Sedimentary Geology Short Course,1995,35:1-102.
    [342] Cloetingh S. Intraplate stresses: a tectonic cause for third-order cycles in apparent sealevel?[A]. In: Sea-level changes: an integrated approach (Wilgus C K et al, eds)[C]. Spec.Publ. Soc. Econ. Paleont. Miner, Tulsa,1988,42:19-29.
    [343] Miall A D. Principles of sedimentary basin analysis,2ndedition [M]. Berlin: Springer,1990.
    [344] Miller K G and Mountain G S. Drilling and dating New Jersey Oligocene-MioceneSequences: Ice Volume, Global Sea level and Exxon Records [J]. Science,1996,271:1092-1095.
    [345] Boulila S, Galbrun B, Hinnov L A, and et al. Milankovitch and sub-Milankovitchforcing of the Oxfordian (Late Jurassic) Terres Noires Formation (SE France) and globalimplications [J]. Basin Research,2010,22:717-732.
    [346] Hardenbol J, Thierry J, Farley M B, and et al. Charts [A]. In: Mesozoic and Cenozoicsequence stratigraphy of European basins (Graciansky P C De et al, Eds)[M]. SpecialPublications of Society of Sedimentary Geology,1998,60.
    [347] Boulila S, Galbrun B, Miller K G, and et al. On the origin of Cenozoic and Mesozoicthird-order eustatic sequences [J]. Earth-Science Reviews,2011,109:94-112.
    [348] Komina M A, Beavan J, Bond J, and et al. Are ctclic sediments periodic? Gammaanalysis and spectral analysis of Newark Supergroup lacustrine strata [A]. In: Franseen E K,Watney W L, Kendall C G St C, and et al.(eds.). Sedimentary Modeling: ComputerSimulations and Methods for Improved parameter Definition [C]. Kansas Geological SurveyBulletin,1991,233:319-334.
    [349]荣建锋.柴达木盆地西部干柴沟地区上、下油砂山组高频沉积旋回及成因机制研究[D].成都:成都理工大学,2009.
    [350]王有功.断圈聚油机理及含油气性预测[D].大庆:东北石油大学,2011.
    [351]王斌.珠江口盆地番禺低隆起油气输导体系研究[D].武汉:中国地质大学,2007.
    [352]眭素文.松辽盆地旋回地层的地球物理替代性指标及分析方法研究[D].北京:中国地质大学,2009.
    [353]金新阳.最大熵谱法及其在随机信号处理中的应用[J].建筑科学,1989,5:24-27.
    [354]王志坤.高邮凹陷高频层序研究[D].东营:中国石油大学,2008.
    [355]赵淑红.时频分析方法及其在地震数据处理中的应用[D].西安:长安大学,2005.
    [356]童金南,殷鸿福.下扬子区海相三叠系层序地层研究[J].中国科学D辑,1997,27(5):407-411.
    [357]袁学旭.地层中米氏旋回识别研究-以华北晚古生界为例[D].青岛:山东科技大学,2010.
    [358]赵庆乐.磁化率在碳酸盐岩地层旋回分析中的应用[D].北京:中国地质大学(北京),2010.
    [359] Haq B U and Schutter S R. A Chronology of Paleozoic Sea-Level Changes [J]. Science,2008,322:64-68.
    [360] Strasser A, Hillgartner H, Hug H, and et al. Third order depositional sequencesreflecting Milankovitch cyclicity [J]. Terra Nova,2000,12(6):303-311.
    [361] Miller K G, Sugarman P J, Browning J V, and et al. Late Cretaceous chronology of large,rapid sea-level changes: glacioeustasy during greenhouse world [J]. Geology,2003,31:585-588.
    [362] Pillans B, Chappell J, Naish T R. A review of Milankovitch climatic beat: template forPlio-Pleistocene sea-level changes and sequence stratigraphy [J]. Sedimentary Geology,1998,122:5-21.
    [363] Deconto R M and Pollard D. Cretaceous ice sheets: a modeling perspective [A]. In:Bice K L (eds.) Workshop on Cretaceous Climate and Ocean Dynamics [C]. Florrisant,Colorado, July2002. Program, Abstracts, Field Guide,2002,17.
    [364]李占红.黄河口凹陷层序地层与旋回地层研究及烃源岩形成条件分析[D].武汉:中国地质大学,2007.
    [365] Klemme H D, Ulmishek G F. Effective petroleum source rocks of the world:stratigraphic distribution and controlling deposition factors [J]. AAPG Bulletin,1991,75(12):1809-1851.
    [366] Klemme H D. Petroleum systems of the world involving upper Jurassic source rocks
    [A]. In: Magoon L B, Dow W G (eds.). The Petroleum System From Source to Trap [C].AAPG Memoir,1994,60.
    [367] Van der Zwan C J. The impact of Milankovitch-scale climatic forcing on sedimentsupply [J]. Sedimentary Geology,2002,147:271-294.
    [368] Weltje G J, Meijer X D, de Boer P L. Stratigraphic inversion of siliciclastic basin fills: anote on the distinction between supply signals resulting from tectonic and climatic forcing [J].Basin Research,1998,10:129-153.
    [369] Versteegh G J M. Palaeoenvironmental changes in the Mediterranean and North Atlanticin relation to the onset of northern hemisphere glaciations (2.5Ma BP)-a palynologicalapproach [D]. Utretch: University of Utrecht,1995.
    [370] Van der Zwan C J, Brugman W A. Biosignals from the EA Field, Nigeria [A]. In: JonesR W, Simmons M D (Eds.), Biostratigraphy in production and development geology [C].Geological Society of London, Special Publications,1999,152:291-301.
    [371] Hooghiemstra H, Cleef A M. Pleistocene climatic change and environmental andgeneric dynamics in the North Andean montane forest and parano [A]. In: Churchil S P, et al(Eds.), Biodiversity and conservation of neotropical montane forest [C]. N.Y.Bot.Gard.,1995:35-49.
    [372] Perlmutter M A, Matthews M D. Global cyclostratigraphy-a model [A]. In: Cross TA(Eds.), Quantitative Dynamic Stratigraphy [C]. Prentice-Hall, New jersey,1989:233-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700