柴达木盆地红柳泉地区岩性油藏成藏规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红柳泉地区位于柴达木盆地西部南区,经过近60年的勘探开发,已进入高成熟勘探阶段,岩性油藏一直是其主要的勘探目标。论文以高分辨率层序地层学理论和方法为指导,以隐蔽油气藏勘探理论为基础,综合利用地震、钻井、测井和分析化验等资料,开展了以三级层序格架及其相应体系域为研究单元、以沉积相和沉积体系为主要内容的研究工作,建立了红柳泉地区下干柴沟组下段高分辨率等时地层格架,阐明了砂体的类型及其展布规律,并构建了相应的沉积充填模式。在此基础上,系统分析了油气成藏条件,明确了油气成藏主控因素,阐明了油气分布及富集规律,建立了岩性油藏运聚成藏模式,指出了岩性油藏有利的勘探方向和目标。
     红柳泉地区下干柴沟组下段主要位于T4、T5同相轴之间,为长期基准面持续上升背景下的一个三级层序的部分沉积,可划分为6个中期基准面旋回,其中MSC1~MSC4由低位域组成,MSC5~MSC6由湖进域组成,初次湖泛面位于MSC5中期旋回中下部。论文以三级层序为单元,建立了研究区的高分辨率层序地层格架,分析了层序格架内地层的发育特征。
     研究结果表明,下干柴沟组下段为辫状河三角洲-滨浅湖沉积,主要发育辫状河道、水下辫状河道、河口坝/远砂坝、水下辫状河道间、浅湖砂坝等砂砾岩体,受构造背景、基准面持续上升、物源、阿拉尔分支水系的多重控制,砂砾岩体主要呈北东方向展布,且自下而上发育强度依次减弱。砂体的展布受层序格架和沉积相带的双重控制。
     红柳泉地区具备形成岩性油藏的良好条件。油源主要来自于红狮凹陷下干柴沟组烃源岩,紧邻油源区,具良好的油源供给条件;储层砂体主要为辫状河道和水下辫状河道砂体,属低孔低渗储层,储集性能较差;下干柴沟组上段沉积的厚层泥岩为其提供了良好的区域盖层,沉积微相变化引起的砂岩上倾尖灭及物性、岩性的变化形成侧向封堵层,可形成各种岩性圈闭;砂体在MSC1中期旋回具良好的连通性,尤其是靠近红柳泉断层和七个泉断层附近的砂体,且单层厚度≥0.3m、孔隙度≥2%、渗透率>0.0210~(-3)um~2的泥质粉砂岩、粉砂岩、砂岩、细砂岩可成为油气运移的有效输导体;断层现今具良好的封闭性,能够对油气起封堵作用,而在地史时期,断层具良好的垂向输导性,可作为油气运移的通道;不整合对油气的运聚作用十分有限。因此,红柳泉地区主要发育了3种油气输导体系,即从七个泉断层到红地107井区的输导体系、从红柳泉断层到红参2井区的输导体系以及红30井区的复合输导体系,其主要的输导体系空间配置关系为砂体-断裂型。
     通过对典型岩性油藏的精细解剖,系统分析了红柳泉地区油气分布规律、成藏主控因素等。认为红柳泉地区以发育岩性油藏为主,包括砂岩上倾尖灭岩性油藏、物性封闭岩性油藏、受断层影响的砂岩透镜体油藏3种类型;平面上,油气主要分布在红24井以南、红104井以北、红21井以西、红22井以东围限的研究区中部,集中分布于红地107井区和红参2井区;垂向上,油气主要分布在Ⅱ油组和Ⅲ油组。构造和沉积作用通过控制砂体的展布、富集及形态来控制岩性圈闭的形成;沉积微相控制砂体的物性特征,是岩性油藏成藏的基础;断层是否输导油气是岩性圈闭能否成藏的关键。简言之,构造与沉积的有机结合是油气成藏的前提和基础、输导体系的有效性是油气成藏的关键。结合油源特征、圈闭类型、输导体系等研究成果,建立了5种岩性油藏运聚成藏模式,即断鼻翼部单斜自源直排砂岩透镜体圈闭成藏模式、断鼻翼部单斜它源砂岩上倾尖灭圈闭成藏模式、断鼻翼部单斜它源断层输导物性圈闭成藏模式、断鼻翼部单斜它源断层输导砂岩透镜体圈闭成藏模式以及断鼻轴部它源构造-岩性圈闭成藏模式。在此基础上,对岩性圈闭有利区带进行了潜力评价,指出了有利勘探方向和目标。
The history of hydrocarbon exploration and development in Hongliuquan of Qaidambasin, a over-mature exploration area in the Southwestern Qaidam Basin, has been nearly60years, so lithologic reservoir has been the significant target in its recently strategicplanning. According to advanced theory and methodology of high resolution sequencestratigraphy and subtle reservoir exploration, integrated with seismic, drilling, logging andanalytical data, this study established an isochronous framework of high resolutionsequence stratigraphy in the lower member of lower Ganchaigou formation inHongliuquan, elaborated the types and distribution of sand bodies, and formulated itssedimentary models. All of these researches concentrated on sedimentary facies andsystems and viewed the level3of sequence and its related system tracts as a basic analysisunit. And then we analyzed the conditions and dominated factors for hydrocarbonaccumulation, clarified the regulations of petroleum distribution and enrichment,established hydrocarbon migration/accumulation model, and pointed out the potential playsfor lithologic reservoir exploration.
     The lower member of the lower Ganchaigou formation in Hongliuquan, restrictedbetween T4and T5lineups, is sedimentation of level3of sequence. It can be divided intosix mid-term base-level cycles. MSC1~MSC4are LSTs and MSC5~MSC6are LTSTs.The first flood surface of lacustrine lies in the lower part of MSC5. Viewing the level3ofsequence as basic unit, this study established a local frame of high resolution sequencestratigraphy and analyzed the stratigraphy characteristics.
     The results indicate that the lower member of lower Ganchaigou formation depositedin the braided delta-lacustrine environment. Sandy conglomeratic bodies are common inenvironments of braided rivers, submarine braided rivers, mouth bar/distal bar, submarinebraided interchannel and shallow lacustrine sand bar. Under the multi-controlling oftectonic background, continued rising of base level, sediment source and Alaer branchingrivers, the major trending of sandy conglomeratic bodies is NE. The percentage of sandand conglomerate in rocks decreases from the lower to the upper of the formation. Thedistribution of sand bodies is characterized with stratabound in vertical profile andfacies-controlling in plane for the dual function of sequence frame and sedimentary facies.
     Hongliuquan area has excellent conditions for forming lithologic reservoirs (1) thelower Ganchaigou formation in Hongshi depression, closed to Hongliuquan, developshydrocarbon source rocks;(2) the reservoir sand bodies of braided rovers and submarinebraided rivers have low porosity and permeability;(3) the thick mudstone of the upper member of lower Ganchaigou formation is ideal cap rock as well as the updip pinch-out ofsandstone and the variations of physical property and lithology create excellent side seal,which indicate very good conditions for forming lithologic traps;(4) the connectivity ofsand bodies in MSC1is pretty high, especially sand bodies around Hongliuquan fault andQigequan fault as well as argillaceous siltstone, siltstone and sandstone with more than0.3m of thickness,2%of porosity and0.0210~(-3)um~2of permeability can form a validhydrocarbon migration network;(5) faults migrated hydrocarbons in the accumulationperiod and sealed hydrocarbons today while unconformity play limited role in hydrocarbonmigration and accumulation. Consequently, there are three types of migration networks inHongliuquan area (1) the first network between Qigequan fault and Hongdi107well area;(2) the second network among Hongliuquan fault and Hongcan2well area, and (3) thecompound migration network in Hong30well area. The preferential spatial relation ofmigration network is the type of sand-fault.
     Based on detailed characterization of typical Lithologic reservoirs this studysummarized the distribution regulation and controlling factors of hydrocarbonaccumulation in Hongliuquan. The results show that lithologic reservoirs are preferential inthis area. It includes three types: updip pinch-out of sandstone reservoir, physical propertysealing reservoir and fault-related sand lens reservoirs. In the plane, oil and gas distributein the central of area and enrich between Hongdi107well area and Hongcan2well area.In the vertical profile, hydrocarbons are enriched in the Ⅱ and Ⅲ reservoir groups.Tectonic and sedimentation dominated the formation of lithologic traps by controlling thedistribution and geometry of sand bodies. Sedimentary microfacies controlled the porosityand permeability of sandstone, which is the foundation for the accumulation of lithologicreservoirs. The conduit role of fault is also significant for hydrocarbon accumulation. In aword, the integration of tectonic and sedimentation is the premise and foundation while thevalidity of migration networks is key part for hydrocarbon accumulation. In considerationof oil source, trap types and migration networks, we summarized five models ofhydrocarbon migration and accumulation in this area (1) monocline self-source and directmigration model for sand lens reservoirs in fault-nose alarpart;(2) monocline distal sourcemigration model for updip pinch-out sandstone reservoirs in fault-nose alarpart;(3)monocline distal source and fault migration model for low porosity and permeabilityreservoirs in fault-nose alarpart;(4) monocline distal source and fault migration model forsand lens reservoirs in fault-nose alarpart and (5) distal source migration and accumulationmode for structural-lithologic reservoirs in central fault nose. Finally, we evaluated thepotential of Lithologic reservoirs in preferential areas and pointed out the prior play andtarget for further hydrocarbon exploration.
引文
[1] Underhill J. R.. Successful application of sequence stratigraphy in subtle reservoirprediction, Advances in reservoir technology:1997, Edinburgh.
    [2] Jia Chengzao, Chi Yingliu. Resource potential and exploration techniques ofstratigraphic and subtle[J]. Petroleum Science,2004, l(2):1-12.
    [3]陈志勇,张道伟,赵东升.柴达木盆地西部南区第三系岩性油藏勘探与实践[J].中国石油勘探,2006,(6):17-21.
    [4]曹正林,孙秀建,张小军,等.柴达木盆地西南区岩性油气藏勘探方法与技术[J].天然气地球科学,2010,21(2):224-229.
    [5]吴因业,江波,郭彬程,等.岩性油气藏勘探的沉积体系域表征技术—以柴达木盆地为例[J].新疆石油地质,2004,25(4):358-361.
    [6]石亚军,陈迎宾,李延丽,等.关于柴达木盆地跃进地区岩性油气藏勘探的建议[J].天然气地球科学,2006,17(5):659-662.
    [7]陈海清,杨波,寿建峰,等.沉积物源的综合识别与岩性圈闭的确定—以柴达木盆地七个泉地区为例[J].石油地球物理勘探,2007,42(3):283-289.
    [8]窦齐丰,彭仕宓,黄述旺,等.柴达木盆地红柳泉油田储层沉积相研究—针对下干柴沟组下段油藏上砂组层段[J].西安石油学院学报(自然科学版),2003,l8(1):4-7.
    [9]路琳琳,纪友亮,刘云田,等.柴达木盆地红柳泉—跃东地区新近系下油砂山组沉积体系展布特征及控制因素[J].古地理学报,2008, l0(2):139-149.
    [10]张道伟,张顺存,史基安.红柳泉—跃进地区下干柴沟组下段(E31)Ⅰ和Ⅱ砂层组的储层特征及其影响因素浅析[J].天然气地球科学,2010,21(1):26-32.
    [11] Railsback R. R.. East Taft:Subtle stap—implications for exploration in supermatureprovince. O. G. J.1988.
    [12]李丕龙,陈冬霞,庞雄奇.岩性油气藏成因机理研究现状及展望[J].油气地质与采收率,2002,9(5):1-3.
    [13] A. I. Levorsen. Big geology for big needs[J]. AAPG Bulletin,1964,48(2):141-156.
    [14] A. I. Levorsen. The obscure and subtle trap[J]. AAPG Bulletin,1966,50:2058-2067.
    [15]李丕龙,张善文,宋国奇,等.断陷盆地隐蔽油气藏形成机制一以渤海湾盆地济阳坳陷为例[J].石油实验地质,2004,26(1):3-10.
    [16]胡见义,徐树宝,刘淑兰,等.非构造油气藏[M].北京:石油工业出版社,1986:81-83.
    [17]翟光明主编.北京石油地质会议论文集.北京:石油工业出版社,1985:10-98.
    [18]张文昭.中国陆相大油田[M].北京:石油工业出版社,1997:39-127.
    [19]张厚福,方朝亮,高先志,等.石油地质学[M].北京:石油工业出版社,1999:228-271.
    [20]孙志道.油气藏流体类型判别方法[J].石油勘探与开发,1996,23(1):69-75.
    [21]李丕龙,张善文,曲寿利,等.陆相断陷盆地油气地质与勘探[M].北京:石油工业出版社,2003:10-98.
    [22]潘元林,张善文,肖焕钦,等.济阳断陷盆地隐蔽油气藏勘探[M].北京:石油工业出版社,2003:75-79.
    [23]张小莉,查明.惠民凹陷临邑洼陷岩性油藏控制因素分析[J].沉积学报,2006,24(2):289-293.
    [24]李明诚.石油与天然气运移(第三版)[M].北京:石油工业出版社,2004:50-64.
    [25]邹才能,贾承造,赵文智,等.松辽盆地南部岩性—地层油气藏成藏动力和分布规律[J].石油勘探与开发,2005,32(4):125-130.
    [26]曾溅辉,郑和荣,王宁.东营凹陷岩性油气藏成藏动力学特征[J].石油与天然气地质,1998,19(4):326-329.
    [27]高春文,罗群.生储盖组合划分新方案[J].石油勘探与开发,2002,29(6):29-31.
    [28]林景晔,门广田,黄薇.砂岩透镜体岩性油气藏成藏机理与成藏模式探讨[J].大庆石油地质与开发,2004,23(2):5-7.
    [29]姜振学,陈冬霞,庞雄奇,等.围岩条件对岩性油藏成藏的控制作用[C].隐蔽油气藏形成机理与勘探实践,2004:63-69.
    [30]杨占龙,陈启林,郭精义.胜北洼陷岩性油气藏成藏条件特殊性分析[J].天然气地球科学,2005,16(2):181-189.
    [31]刘震,赵阳,杜金虎,等.陆相断陷盆地岩性油气藏形成与分布的“多元控油-主元成藏”特征[J].地质科学,2006,41(4):612-635.
    [32] Margara K. Reevalution of montmorillontile dehydration as cause of abnormalpressure and hydrocarbon migration[J]. AAPG Bulletin,1975,59(5):292-302.
    [33] Berg R. R.. Capillary pressures in stratigraphic traps[J]. AAPG Bulletin,1975,59(5):936-956.
    [34]庞雄奇,陈冬霞,李丕龙,等.砂岩透镜体成藏门限及控油气作用机理[J].石油学报,2003,24(3):38-41.
    [35]王捷,关德范.油气生成运移聚集模型研究[M].北京:石油工业出版社,1999:194-199.
    [36] Stainforth J. G.. Primary migration of hydrocarbons by diffusion through organicmatter networks, and its effect on oil and gas generation. Org. Geochem,1990,16(1):1-3.
    [37]陈荷立.油气运移研究的有效途径[J].石油与天然气地质,1995,16(2):126-130.
    [38]查明.压实流盆地油气运移动力学模型与数值模拟—以东营凹陷为例[J].沉积学报,1997,15(4):86-90.
    [39]查明,陈中红,张年富,等.准噶尔盆地陆梁地区水化学特征与油气运聚[J].地质科学,2003,38(4):413-424.
    [40]邱楠生,万晓龙,金之钧,等.渗透率级差对透镜状砂体成藏的控制模式[J].石油勘探与开发,2003,30(3):48-52.
    [41]田世澄.论成藏动力学系统[J].勘探家,1996,1(2):20-25.
    [42]田世澄,陈永进,张兴国,等.论成藏动力系统中的流体动力学机制[J].地学前缘,2001,8(4):329-335.
    [43]宋书君,刘建民,王宁.东营凹陷岩性油藏成藏机制研究[J].石油勘探与开发,2003,30(1):47-48.
    [44]隋风贵,罗佳强,曹建军.应用排烃强度预测深陷砂砾岩扇体的含油性[J].石油实验地质,2004,26(1):47-52.
    [45]王新洲,宋一涛,王学军,等.石油成因与物理模拟—方法、机理及应用[M].东营:石油大学出版社,1996:50-100.
    [46]陈章明,张云峰,韩有信,等.凸透镜砂体聚油模拟实验及其机理分析[J].石油实验地质,1998,20(2):166-170.
    [47]张云峰,付广,于建成.砂岩透镜体油藏聚油机理及成藏模式[J].断块油气田,2000,7(2):12-14.
    [48]曾溅辉,金之钧.油气二次运移和聚集物理模拟[M].北京:石油工业出版社,2002:207-210.
    [49]姜振学,陈冬霞,苗胜,等.济阳坳陷透镜状砂岩成藏模拟实验[J].石油与天然气地质,2003,24(3):223-227.
    [50]曾溅辉,王捷.油气运移机理及模拟实验[M].北京:石油工业出版社,2002:161-203.
    [51]陈冬霞,庞雄奇,姜振学,等.砂岩透镜体成藏门限物理模拟实验[J].科学技术与工程,2004,4(6):458-461.
    [52]陈冬霞,庞雄奇,姜振学,等.利用核磁共振物理模拟实验研究岩性油气藏成藏机理[J].地质学报,2006,80(3):432-438.
    [53]王永卓,董春晖,姜振学,等.围岩含油饱和度控制岩性油藏成藏的物理模拟[J].石油勘探与开发,2006,33(3):330-334.
    [54]曾溅辉,张善文,邱楠生,等.济阳坳陷砂岩透镜体油气藏充满度大小及其主控因素[J].地球科学—中国地质大学学报,2002,27(6):729-732.
    [55]万晓龙,邱楠生,石硕,等.东营凹陷超压体系中的岩性油气藏充满度机理[J].吉林大学学报(地球科学版),2004,34(3):372-376.
    [56]隋风贵.浊积砂体油气成藏主控因素的定量研究[J].石油学报,2005,26(1):55-59.
    [57]卓勤功,银燕,向立宏,等.东营凹陷岩性圈闭含油性定量预测[J].油气地质与采收率,2006,13(1):51-54.
    [58]王宁,陈宝宁,翟剑飞.岩性油气藏形成的成藏指数征[J].石油勘探与开发,2000,27(6):4-5.
    [59]王宁,翟剑飞,陈宝宁,等.效排烃压力及其在东营凹陷油气勘探中的应用[J].石油大学学报(自然科学版),2000,24(4):58-60.
    [60]陈冬霞,庞雄奇,翁庆萍,等.岩性油藏三元成因模式及初步应用[J].石油与天然气地质,2003,24(3):38-41.
    [61]陈冬霞,庞雄奇,翁庆萍,等.岩性油藏三元成因机制及其在东营凹陷的初步应用[M].北京:石油工业出版社,2004:104-112.
    [62]赵澄林,张善文,袁静,等.胜利油区沉积储层与油气[M].北京:石油工业出版社,1999:79-99.
    [63]付广,张云峰,杜春国.松辽盆地北部岩性油藏形成机制及主控因素[J].石油勘探与开发,2002,29(2):22-24.
    [64]李凤杰,王多云,郑希民,等.陕甘宁盆地陇东地区长3油组坳陷湖盆岩性油藏成藏模式[J].西安石油大学学报(自然科学版),2004,19(3):1-4.
    [65]祝厚勤,庞雄奇,林世国,等.东营凹陷岩性油藏主控因素及成藏模式[J].沉积与特提斯地质,2006,26(1):74-80.
    [66]姜振学,陈冬霞,邱桂强,等.应用层次分析法研究透镜状砂体成藏主控因素[J].石油勘探与开发,2003,30(3):44-47.
    [67]万晓龙,邱楠生,张善文.东营凹陷岩性油气藏动态成藏过程[J].石油与天然气地质,2004,25(4):448-451.
    [68]李丕龙,庞雄奇,陈冬霞,等.济阳坳陷砂岩透镜体油藏成因机理与模式[J].中国科学(D辑),2004,34(增刊Ⅰ):143-151.
    [69]易士威.断陷盆地岩性地层油藏分布特征[J].石油学报,2005,26(1):38-41.
    [70]张俊,庞雄奇,姜振学,等.东营凹陷砂岩透镜体油气成藏机理及有利区预测[J].地球科学—中国地质大学学报,2006,31(2):250-255.
    [71]窦齐丰,黄述旺,王韶华.红柳泉岩性油藏低渗透储集层分类评价[J].石油勘探与开发,2002,29(1):87-89.
    [72]王改卫,纪友亮,张敏,等.红柳泉-跃东地区中新统上干柴沟组沉积相分析[J].内蒙古石油化工,2007,(12):342-345.
    [73]杨波,陈海清,王光华,等.柴达木盆地柴西南区岩性圈闭形成及有利勘探区带划分[J].石油地球物理勘探,2006,41(增刊):42-46.
    [74]马达德,王少依,寿建峰,等.柴达木盆地西南区古近系及新近系砂岩储层[J].古地理学报,2005,7(4):519-528.
    [75]顾家裕,邓宏文,朱筱敏.层序地层学及其在油气勘探开发中的应用论文集(C).北京:石油工业出版社,1997:98-107.
    [76]纪友亮,张世奇.陆相断陷湖盆层序地层学[M].北京:石油工业出版社,1996:14-79.
    [77]朱筱敏.层序地层学原理及其应用[M].北京:石油工业出版社,1998:10-86.
    [78]吴崇筠,薛叔浩.中国含油气盆地沉积学[M].北京:石油工业出版社,1992:7-108.
    [79]杨红君.琼东南盆地油气输导体系类型及运聚成藏模式[J].中国海上油气,2008,20(2):87-91.
    [80]陈欢庆,朱筱敏,张琴,等.输导体系研究进展[J].地质论评,2009,55(2):269-275.
    [81]卢学军,刘华,王建瑞,等.渤海湾盆地霸县凹陷输导体系与新近系油气运聚特征[J].石油实验地质,2010,32(3):258-261.
    [82]沈朴,张善文,林会喜,等.油气输导体系研究综述[J].油气地质与采收率,2010,17(4):4-8.
    [83]王永诗,郝雪峰.济阳断陷湖盆输导体系研究与实践[J].成都理工大学学报(自然科学版),2007,34(4):394-400.
    [84]卓勤功,宁方兴,荣娜.断陷盆地输导体系类型及控藏机制[J].地质论评,2005,51(4):416-422.
    [85]高长海,查明,曲江秀,等.柴达木盆地东部不整合结构的地球物理响应及油气地质意义[J].石油学报,2007,28(6):32-36.
    [86]高长海,查明.不整合运移通道类型及输导油气特征[J].地质学报,2008,82(8):1113-1120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700