二氧化碳捕获与封存技术应用项目风险评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳捕获与封存(简称CCS)是一项新兴的CO2减排方式,它的规模化应用能在确保化石能源正常使用的同时急剧降低大气中CO2含量,因此CCS技术被认为在缓解全球气候变化的技术组合中将占据举足轻重的地位。考虑到严峻的CO2减排任务以及以煤炭为主的能源结构,我国有必要积极发展CCS技术。然而,现阶段CCS技术的发展在全球都处于初期示范阶段,规模化CCS技术应用项目的发展可能面临许多风险。本研究以CCS技术应用项目为研究对象,旨在对我国发展CCS技术应用项目的风险进行识别和评价,并提出相应的风险应对策略。围绕上述问题主要开展了以下几方面工作。
     首先,探究了CCS技术应用项目风险评价的理论分析框架。基于传统风险理论、项目管理理论以及CCS技术应用项目的特征,界定了CCS技术应用项目风险的概念,剖析了风险的形成与特征,构建了基于技术-社会系统视角的CCS技术应用项目风险评价框架,以此作为本论文的研究基础。
     第二,引入行动者网络理论工具,结合文献分析对CCS技术应用项目进行了风险识别,识别出来自技术、健康安全环境、社会接受、市场、能源资源、政策法规等6个领域22项风险因素。在此基础上,通过构建工作-风险矩阵确定了风险因素作用于项目的工作环节,并进一步对识别出的各项风险因素进行了深入分析。
     第三,应用网络分析法与模糊综合评价法对CCS技术应用项目实施风险评价。通过风险评价得到风险因素的权重值,其中,投资风险、国内政策风险以及社会接受风险的权重位列前三,而地下资源破坏风险与技术人员水平风险的权重排在最后。风险评价的结果还显示CCS技术应用项目的风险综合隶属度为3.7702,说明项目风险属于中等偏高水平,应该重视项目发展过程的风险问题,积极采取应对措施。
     第四,以神华CCS示范项目为例进行风险评价案例研究。在详细分析神华CCS示范项目风险因素特征的基础上进行风险模糊综合评价,结果显示,神华CCS示范项目的综合风险水平远远低于一般CCS技术应用项目,反映了该案例项目在规模、选址以及技术选择方面的特征。
     第五,在风险识别和风险评价的基础上提出了持续改进的CCS项目风险应对模式,并从宏观层面就各项风险因素提出风险应对措施。
Carbon capture and storage (CCS) is one of the most promising CO2emission reduction options, the scaled application of which is able to radically reduce the content of CO2in the atmosphere while keep the normal use of fossil fuels. Based on this, CCS is regarded to play an important role in technology portfolio for climate change mitigation. Given that China is facing severe challenge on CO2reduction and will rely on coal as its main energy in the future, it is necessary for China to develop CCS technology. However, the development of CCS worldwide is on the early stage so that it may suffer serious risks for China to develop scaled CCS project. This research is about the development of scaled CCS project in China with the aim of identifying and evaluating risks as well as making corresponding risk treatment measures. Main research contents of this dissertation are summarized as follows.
     Firstly, an analysis framework for CCS project risk assessment is constructed. Based on traditional risk theory and project management principles, the definition of CCS project risk is defined, characteristics and formation of CCS project risk are explored, and a social-technical system based CCS project risk assessment framework is constructed.
     Secondly, risk factors of CCS project are identified with the application of literature review and actor network theory analysis method. The results show that CCS project development in China may encounter risks from aspects of technology, HSE (health, safety and environment), market, energy and resources, as well as policy and regulations. After that, the corresponding work units which risk factors may work on are identified by constructing work-risk metric. Risk factors are further analyzed with regard to their characteristics.
     Thirdly, risk assessment is processed by applying methods of analytic network process and fuzzy comprehensive evaluation. The results show that among all the22risk assessment indices, weights of investment risk, national policy risk and public acceptance risk list top three, while weights of underground resources destruction risk and technician skill risk come in last. Besides, the comprehensive value of CCS project risk is3.7702which mean a medium to high risk level. Given these results, risks of CCS project development should be taken seriously and efficient precaution should be made.
     Fourthly, case study of risk assessment is conducted on China's first demonstration CCS project. Risks of this case project are analysed particularly and risk fuzzy comprehensive evaluation is conducted. Results show that comprehensive risk level of case project is much lower than that of regular CCS project which reflects the case project's characteristics in project scale, site selection and technologies applied.
     Finally, in order to cope with CCS project risks, a continuously improving risk treatment mode as well as risk preventing and reducing measures are proposed.
引文
[1]Intergovernmental Panel on Climate Change. Climate change 2007:mitigation of climate change[R]. Cambridge University Press,Cambridge,2007.
    [2]Working Group Ⅲ of the IPCC. IPCC special report on carbon dioxide capture and storage[R]. Cambridge University Press, Cambridge,2005.
    [3]国际能源署著.北京理工大学能源与环境政策研究中心译.二氧化碳捕集与封存——碳减排的关键选择[M].北京:中国环境科学出版社,2010.
    [4]宣亚雷.基于信息可视化的CCS技术前沿研究[C].科学学年会会议论文,辽宁大连,2012.
    [5]HOLLOWAY S, VAN DER STRAATEN R. The Joule lI project the underground disposal or carbon dioxidc[J]. Energy Conversion and Management,1995,36(6-9):519-522.
    [6]SIIRILA E R, NAVARRE-SITCHLER A K, MAXWELL R M, et al. A quantitative methodology to assess the risks to human health from CO2 leakage into groundwater[J]. Advances in Water Resources,2012, (36):146-164.
    [7]PATIL R H, COLLS J J, STEVEN M D. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems[J]. Energy,2010,35(12):4587-4591.
    [8]BACHU S. CO2 storage in geological media:Role, means, status and barriers to deployment[J]. Progress in Energy and Combustion Science,2008,34(2):254-273.
    [9]MAZZOLDI A, HILL T, COLLS J J. CFD and Gaussian atmospheric dispersion models:a comparison for leak from carbon dioxide transportation and storage facilities[J]. Atmospheric Environment,2008,42(34):8046-8054.
    [10]TANAKA A, SAKAMOTO Y, KOMAI T. Development of risk assessment tool for CO2 geological storage[J]. Energy Procedia,2011, (4):4178-4184.
    [11]BAER P. An issue of scenarios:Carbon sequestration as investment and the distribution of risk-an editorial comment introduction[J]. Climatic Change, 2003,59 (3):283-291.
    [12]TRABUCCHI C, DONLAN M, WADES. A multi-disciplinary framework to monetize financial consequences arising from CCS projects and motivate effective financial responsibility[J]. International Journal of Greenhouse Gas Control,2010,4(2): 388-395.
    [13]CONDOR J, UNATRAKARN D, WILSON M, et al. A comparative analysis of risk assessment methodologies for the geologic storage of carbon dioxide[J]. Energy Procedia,2011, (4):4036-43.
    [14]OLDENBURG C M, NICOT J-P, BRYANT S L. Case studies of the application of the Certification Framework to two geologic carbon sequestration sites[J]. Energy Procedia,2009,1(1):63-70.
    [15]SOLLIE 0 K, BERNSTONE C, CARPENTER M E, et al. An early phase risk and uncertainty assessment method for COz geological storage sites[J]. Energy Procedia,2011, (4): 4132-4139.
    [16]BOUC 0, AUDIGANE P, BELLENFANT G, et al. Determining safety criteria for CO2 geological storage[J]. Energy Procedia,2009,1(1):2439-2446.
    [17]STENHOUSE M, ARTHUR R, ZHOU W. Assessing environmental impacts from geological CO2 storage [J]. Energy Procedia,2009,1(1):1895-1902.
    [18]KOORNNEEF J, SPRUIJT M, MOLAG M, et al. Quantitative risk assessment of CO2 transport by pipelines--a review of uncertainties and their impacts [J]. Journal of Hazardous Materials,2010,177(1-3):12-27.
    [19]STENHOUSE M J, GALE J, ZHOU W. Current status of risk assessment and regulatory frameworks for geological CO2 storage [J]. Energy Procedia,2009,1 (1):2455-2462.
    [20]MAUL P R, METCALFE R, PEARCE J, et al. Performance assessments for the geological storage of carbon dioxide:Learning from the radioactive waste disposal experience[J]. International Journal of Greenhouse Gas Control,2007,1 (4): 444-455.
    [21]GERSTENBERGER M, NICOL A, STENHOUSE M, et al. Modularised logic tree risk assessment method for carbon capture and storage projects[J]. Energy Procedia, 2009,1(1):2495-2502.
    [22]LOIZZO M, BRESSERS P, BENEDICTUS T, et al. Assessing CO2 interaction with cement and steel over a two-year injection period:current state and future risks for the MovECBM project in Poland[J]. Energy Procedia,2009,1(1):3579-3586.
    [23]KOPP A, BINNING P J, JOHANNSEN K, et al. A contribution to risk analysis for leakage through abandoned wells in geological CO2 storage[J]. Advances in Water Resources, 2010,33(8):867-879.
    [24]OLADYSHKIN S, CLASS H, HELMIG R, et al. A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations[J]. Advances in Water Resources,2011,34(11):1508-1518.
    [25]ROHMER J, BOUC O. A response surface methodology to address uncertainties in cap rock failure assessment for CO2 geological storage in deep aquifers[J]. International Journal of Greenhouse Gas Control,2010,4(2):198-208.
    [26]GUPTA A K, BRYANT S L. Analytical correlations for risk parameters involved in CO2 storage[J]. Energy Procedia,2011, (4):3849-3856.
    [27]SMITH J, DURUCAN S, KORRK A, et al. Carbon dioxide storage risk assessment:analysis of caprock fracture network connectivity[J]. International Journal of Greenhouse Gas Control,2011,2(2):226-240.
    [28]GRIMSTAD A-A, GEORGESCU S, LINDEBERG E, et al. Modelling and Simulation of Mechanisms for Leakage of CO2 from Geological Storage[J]. Energy Procedia,2009, 1(1):2511-2518.
    [29]BELLENFANT G, GUYONNET D, DUBOIS D, et al. Uncertainty theories applied to the analysis of CO2 plume extension during geological storage[J]. Energy Procedia, 2009,1(1):2447-2-154.
    [30]GUEN Y L, HUOT M, LOIZZO M, et al. Well integrity risk assessment of Ketzin injection well (ktzi-201) over a prolonged sequestration period[J]. Energy Procedia, 2011,4(1):4076-4083.
    [31]CELIA M A, NORDBOTTEN J M, BACIIU S, et al. Risk of leakage versus depth of injection in geological storage[J]. Energy Procedia,2009,1(1):2573-2580.
    [32]European Communities. Implementation of directive 2009/3I/EC on the geological storage of carbon dioxide. Guidance document 1:C02 storage life cycle risk management framework. European communities,2011.
    [33]London Protocol. Risk assessment and management framework for CO2 sequestration in sub-seabed geological structures. LC/SG-CO2 1/7. Annex 3,2006.
    [34]London Protocol. Specific guidelines for assessment of CO2 streams for disposal into sub-seabed geological formations.2007.
    [35]Ospar Convention. Guidelines for risk assessment and management of storage of carbon dioxide streams in geological formations.2007.
    [36]Environmental Protection Agency. Federal requirements under the underground injection control (UIC) program for carbon dioxide (CO2) geologic sequestration (GS) wells, proposed rule. United States,2008.
    [37]Alberta Environment. Specified gas emitters regulation. Quantification protocol for enhanced oil recovery. Alberta,2007.
    [38]Alberta Environment. Quanti fication protocol for acid gas injection. Alberta,2008.
    [39]Environment Protect ion and Heritage Council(EPHC). Environmental guidelines for carbon dioxide capture and geological storage. Australia,2009.
    [40]Victoria Greenhouse Gas Geological Sequestration Act.2008.
    [41]Queensland Greenhouse Gas Storage Act.2009.
    [42]LI J, GIBBINS J, COCKERILL T, et al. An assessment of the potential for retrofitting existing coal-fired power plants in China[J]. Energy Procedia,2011,4(1): 1805-1811.
    [43]DAPENG L, WEIWEI W. Barriers and incentives of CCS deployment in China:Results from semi-structured interviews[J]. Energy Policy,2009,37(6):2421-2432.
    [44]XI L, DAVID R, KARSTEN N. Current legal and institutional frameworks for investing in lower carbon electricity in China[R]. EPRG Working Paper EPRG0828. Cambridge Working Paper in Economics 0862.2008.
    [45]ZHAOFENG X, DONGJIE Z, FORBES S, et al. Guidelines for safe and effective carbon capture and storage in China[J]. Energy Procedia,2011,4(1):5966-5973.
    [46]REINER D, LIANG X. Opportunities and hurdles in applying CCS Technologies in China--With a focus on industrial stakeholders[J]. Energy Procedia,2009,1(1): 4827-4834.
    [47]LIANG X, REINER D, LI J. Perceptions of opinion leaders towards CCS demonstration projects in China[J]. Applied Energy,2011,88(5):1873-1885.
    [48]Bellona CCS Web. http://bellona.org/ccs/technology/capture.html.
    [49]肖钢,马丽,Wentao X.还碳于地球——碳捕获与风险[M].北京:高等教育出版社,2011:40.
    [50]CO2CRC Web. http://www.co2crc.com.au/aboutccs/cap_adsorption.html.
    [51]SEMERE S. Security of CO2 storage in Norway[R]. The Bellona Foundation,2007.
    [52]PRESTONA C, WHITTAKERA S, ROSTRONB B, et al. IEA GHG Weyburn-Midale CO2 monitoring and storage project-moving forward with the final phase[J]. Energy Procedia, 2009,1:1743-1750.
    [53]FRED R, IAIN W, CLIVE B, et al. Monitoring geological storage the In Salah Gas CO2 storage project[J]. Greenhouse Gas Control Technologies 7,2005,2(1): 1353-1359.
    [54]MIT CC&ST. Carbon Capture and Sequestration Project Database[EB/OL]. [2013,3,28]. http://sequestration.mit.edu/tools/projects/index.html.
    [55][美]哈罗德·科兹纳著.杨爱华等译.项目管理:计划、进度和控制的系统方法[M].北京:电子工业出版社,2010:641.
    [56]范道津,陈伟珂.风险管理理论与工具[M].天津:天津大学出版社,2009:89-95.
    [57]赵立祥,刘婷婷.海因里希事故因果连锁理论模型及其应用[J].经济论坛,2009,(9):94-95.
    [58]孙斌.危险源理论研究进展[J].中国煤炭,2007,33(2):63-65.
    [59]EDELGARD G. Professional and public acceptance for carbon capture and storage activities[R]. Report in the framework of the Dynamis project, Karlsruhe,2009.
    [60]张卓.项目管理(第二版)[M].北京:科学出版社,2009:260.
    [61]孙启贵.社会一技术系统的构成及其演化[J].技术经济与管理研究,2010(6):13-17.
    [62]盛国荣.技术与社会之间关系的SST解读——兼评“技术的社会形成”理论[J].科学管理研究,2007,25(5):39-42.
    [63][法]布鲁诺·拉图尔著,刘文旋,郑开译.科学在行动[M].北京:东方出版社,2005:178-182.
    [64]Callon M. Same elements of a sociology of translation:domcstication of the scallops and the fishermen of St Brieuc Bay [A]. Law J. Power, Action and Belief: A New Sociology of Knowledge[C]. London, Routledge and Kegan Paul,1986,196-233.
    [65]张学义,倪伟杰.行动者网络理论视域下的物联网技术[J].自然辨证法研究,2011,27(6):30-35.
    [66]詹爱岚,李峰.基于行动者网络理论的通信标准化战略研究——以TD-SCDMA标准为实证[J].科学学研究,2011,29(1):56-62.
    [67]孙启贵,郑泉.科学网络中的行动者及其影响因素——以人类胚胎干细胞研究为例[J].科学学研究,2010,28(6):822-827.
    [68]洪进,余文涛,赵定涛,余文祥.我国转基因作物技术风险三维分析及其治理研究[J].科学学研究,2011,29(10):1480-1484.
    [69]王祖和.项目质量管理[M].北京:机械工业出版社,2009:58.
    [70]CURRY T, REINER D, DE FIGUEIREDO M, et al. A survey of public attitudes towards energy & environment in Great Britain[R]. Publication No. LFEE 2005-001 WP. MIT Laboratory for Energy and the Environment, Cambridge, MA.2005.
    [71]TOKUSHTGE K, AHIMOTO K, TOMODA T. Public perceptions on the acceptance of geological storage of carbon dioxide and information influencing the acceptance[J]. International Journal of Greenhouse Gas Control,2007,1(1): 101-12.
    [72]孙宏才,田平,王莲芬.网络层次分析法与决策科学[M].北京:国防工业出版社,2011:148.
    [73]邵强,林向义.基于ANP的国际石油工程项目风险评价研究[J].科技进步与对策,2010,27(11):127-130.
    [74]孙淑侠.多层次模糊综合风险评价模型在水利工程中的应用[J].水电能源科学,2008,26(2):88-90.
    [75]邹乐乐,金菊良,周玉良.基于遗传模糊层次分析法的水库诱发地震综合风险评价指标体系筛选模型[J].地震地质,2010,32(4):628-635.
    [76]李春玲,高伟,李艳丽.基于灰色模糊优选模型的科技型中小企业人力资本投资风险评价[J].科学学与科学技术管理,2009,(6):188-191.
    [77]高兴强,何伟军,柴晓娜.云南风电开发项目的风险分析[J].云南大学学报(自然科学版),2012,34(S2):438-442.
    [78]孙宾,曾勇红,孙利.改进模糊综合评判在火电项门投资风险分析中的应用[J].武汉大学学报(工学版),2010,43(2):194-197.
    [79]曾鸣,陈英杰,胡献忠等.基于多层次模糊综合评价法的我国智能电网风险评价[J].华东电力,2011,39(4):535-538.
    [80]金国锋,黄智勇,王煊军.液体推进剂公路运输泄漏风险的模糊综合评价[J].安全与环境学报,2008,8(3):158-161.
    [81]张继明,舒歌平.神华煤直接液化示范工程最新进展[J].中国煤炭,2010,36(8):11-14.http://www.shenhuagroup.com.cn/xwzx/jtxw/2012/06/287685.shtml
    [82]神华集团有限责任公司网页.http://ww.shenhuagroup.com.cn/xwzx/jtxw/2012/06/287685.shtml
    [83]刘玉秀,刘睿.我国首个二氧化碳捕获与封存全流程项目工程启动(组图)[EB/OL].[2010,8,30].http://www.shendong.com.cn/sdhtml/gongsixinwen/shendongxinwen/shendongyaowen/ 2010/0830/3775.html.
    [84]煤制油化工公司.煤制油CCS示范项目注入量突破6万吨[EB/OL]. [2012,12,31]. http://www.shenhuagroup.com.cn/xwzx/xsjgdt/2012/12/395416.shtml.
    [85]赖臻,刘军.中国启动二氧化碳捕获与封存全流程项目[EB/OL]. [2010,8,27]. http://news.xinhuanet.com/politics/2010-08/27/c_12492740.htm.
    [86]仲平,彭斯震,张九天等.发达国家碳捕集、利用与封存技术及其启示[J].中国人口·资源与环境,2012,22(4):25-28.
    [87]刘健.低温甲醇洗与深冷回收甲烷相结合工艺的研究[D].大连:大连理工大学,2008.
    [88]伍晓林,赵玲侠,马挺等.大庆油田聚驱后油藏内源微生物激活剂的筛选和效果评价[J].南开大学学报(自然科学版),2012,45(4):105-111.
    [89]张新民,冯如森,宋新旺等.胜利油区海上油田二元复合驱体系性能评价[J].油气地质与采收率,2011,18(5):48-50.
    [90]娄毅,杨胜来,章星等.低渗透油藏二氧化碳混相驱超前注气实验研究——以吉林油田黑79区块为例[J].油气地质与采收率,2012,19(5):78-80.
    [91]PEARCE J M, LI M, REN S, et al. CO2 storage capacity estimates for selected regions of China-results from the China-UK Near Zero Emissions Coal (NZEC) Initiative [J]. Energy Procedia,2011,4(1):6037-6044.
    [92]中国石油大学研究院.中欧"COACH AUTUMN SCHOOL ON CCS IN CHINA" 在我校成功举行 [EB/EL]. [2009.10.16] http://www.cup.edu.cn/eor/news/67239.htm.
    [93]李鹏春.中-澳二氧化碳地质封存与技术暑期培训班在三亚举行[OB-EL].[2011.09.02]http://www.scsio.ac.cn/xwzx/kydt/201109/t20110902_3331250.html.
    [94]王宁,孙世军.环境影响评价[M].北京:北京大学出版社,2013:19.
    [95]毛战坡,王雨春.环境影响评价与管理实务大全[M].北京:中国水利水电出版社,2008:431-433.
    [96]FLYNN W, BURNS C, MERTZ K, et al. Trust as a determinant of opposition to a high-level radioactive waste repository:analysis of a structural model[J]. Risk Analysis,1992,(12):417-429.
    [97]MIDDEN C, HUIJTS N. The role of trust in the affective evaluation of novel risks: the case of C02 storage[J]. Risk Analysis,2009,29(5):743-751.
    [98]气候组织.CCS在中国:现状、挑战和机遇[R].国际非政府组织“气候组织”研究报告,2010.
    [99]徐大伟,王子彦,谢彩霞.工业共生体的企业链接关系的分析比较——以丹麦卡伦堡工业共生体为例[J].工业技术经济,2005,24(1):63-66.
    [100]王晓苏.英国首个CCS发电厂有望开建[N].中国能源报,2010,3,22(8).
    [101]TOM K, IAN H, TIM D. Legal and regulatory developments associated with carbon dioxide capture and storage:a global update[J]. Energy Procedia,2009,1(1): 4395-4402.
    [102]BROCKETT S. The EU enabling legal framework for carbon capture and geological storage[J]. Energy Procedia,2009,1(1):4433-4441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700