瞬变电磁技术在矿井超前地质探测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国矿井水文地质条件大多比较复杂,是矿井特别是煤矿井水害多发的国家,透水所造成的直接经济损失一直排在各类矿井灾害的首位,其给国家和人民带来的经济损失和人身伤亡都极为惨重。为了解决矿井和隧道的透水漏水现象有必要在矿井迎头(掌子面)进行超前地质探测,预测含水地质体的位置及规模,以便使矿井工作更好、更合理的开展,减少不必要的损失。
     瞬变电磁技术(Transient Electromagnetic Method,简称TEM)是近年发展较快并得到广泛应用的一种勘探方法。由于其观测的是二次场,可在近区观测,对低阻含水体反应灵敏,而且体积效应小、纵横向分辨率高,施工也很方便、快捷,所以效率很高。鉴于矿井TEM的上述各种优点,它在矿井超前地质预报中有着很高的使用价值,也被认为是矿井超前地质预报中最有前景的一种地球物理勘探方法。由于TEM的定向性(方向性)好,它可以应用于到井下全方位的探测(既可用于矿井巷道掘进面迎头前方,也可以用于矿井巷道的左右侧帮以及矿井巷道的顶板与底板的探测),另外瞬变电磁技术具有探测距离一般比较大、分辨率也比较高等一系列突出的优点,所以开展矿井TEM的各项研究很有必要。
     野外采集的TEM数据受到各种噪声和干扰的影响,噪声的存在对信号处理的后续工作造成了不利的影响,且这些噪声信号将掩盖有用信号,因此在对信号处理前必须先对实测TEM数据进行去噪处理,以便消除噪声信号,有效地提取信号中的有用信息,然后才能更好的利用瞬变电磁数据成图以及解释地质状况。
     由于矿井TEM是全空间的,而且全空间TEM的运用也不同于半空间的情况,因此有必要对全空间情况进行单独研究,确定全空间下瞬变电磁技术时间-深度转换的理论模型,更好的确定异常体的位置极其规模,从而为矿井的生产提供合理的有参考性的意见,用来指导矿井的生产工作。
     本课题主要由野外获得的TEM数据,对全空间TEM场的分布规律和典型导水构造TEM响应特征进行分析,经数字滤波、剔除干扰因素等一系列数学手段,利用全空间视电阻率计算公式及时深转换模型进行反演,得到探测前方围岩的物性信息,确定异常体及围岩的视电阻率值,然后绘制视电阻率等值线图及三维异常图等,通过绘制的图件圈定异常体及可能的低阻异常带,来指导井下工作。
Hydro-geological conditions in Mines in China which has lots of water-disastersof mine especially coal mine are mostly complex. And the direct economic lossescaused by the flooding have been ranked at the top of the various mine disasters,which have brought economic loss and personal injury to the country and thepeople extremely heavy. In order to solve the flooding and water leakage of mines andtunnels, it is necessary to probe ahead of the mine head (working face) to predict thelocation and size of geological bodies which contain water, which make mine workbetter and more reasonable and reduce unnecessary losses.
     Transient Electromagnetic Method (TEM) is a prospecting method which hasdeveloped rapidly and been widely used in recent years. The method which isresponsive to the low resistivity, observes the secondary field in the near zone. Whatis more its volume effect is small with high vertical and horizontal resolution and it isconvenient, fast, high efficiency. As a result of this it has great value in the minegeological exploration and is considered as one of the most promising geophysicalexploration methods in the mine geological exploration. Because of its good directionit is can be used to probe in the hole mine of every direction. And it is essential tocarry out mine transient electromagnetic method as its outstanding advantages of alarge detection range and high resolution.
     It is affected by the all kinds of noise when we collected the data of the transientelectromagnetic field. It is the noise that has an adverse impact on the follow-upsignal processing and masks useful signal. Therefore, removing noise must be done tomeasured transient electromagnetic data before the signal processing, so as toeliminate the noise signal and extract the useful information in the signal. Then, it canbe well used to draw diagram and explain the geological conditions.
     Mine transient electromagnetic technology has the character of full space whichis different from half space. So it is important to research the full space individual todetermine the theoretical model of time-depth conversion of full space. Through thetheoretical model, it can locate the abnormal body. Due to this, it provides thereasonable reference for guiding the work of the mine.
     This subject analyzes the regular patterns of the distribution of the transientelectromagnetic field in full space and the transient electromagnetic response of thetypical aquifer structure by the transient electromagnetic data from the field. Then, a series of mathematical means such as digital filtering, excluding confounding factorsand so on has to be done. At last, we got the material information of the surroundingrocks and the apparent resistivity values of the geological bodies and surroundingrocks by formula of apparent resistivity and two-dimensional inversion of time-depthconversion model. Only then the apparent resistivity contour map andthree-dimensional anomaly map by which we delineate abnormal bodies and lowresistivity anomaly zone to guide underground drilling can be drawn.
引文
Balasubramaniam Shanker et al. Analysis of transient electromagnetic scattering from closedsurfaces using a combined field integral equation.IEEE Trans.2000,Vol.48:1064-1074.
    YU Jing-cun,LIU Zhi-xin,TANG Jin-yun. Research on Full Space Transient ElectromagnetismTechnique for Detecting Aqueous Structures in Coal Mines[J]. Journal of china university ofmining and technology,2007,17(1):58-62.
    Morrison H F, Phillips R J,O’bien D P. Quantitative interpretation of transient electromagneticfields over a layered half-space[J]. Geophysical Prospecting,1969, Vol.17:82-101.
    Raiche A P and Spies B R. Coincident loop transient electromagnetic master curves forinterpretation of two-layer earth[J]. Geophysics,1981,Vol.46:53-64.
    San Filipo W A, Eaton P A and Hohmann G W.The transient EM response conductivehalf-space[C].54th Annual International SEG Meeting,1984,64-67.
    Leppin M. Electromagnetic modeling of3-D sources over2-D inhomogenetices in the timedomain[J].Geophysics,1992,Vol.57:994-1003.
    M J White et al. Development of a multigrid FDTD code for three-dimensional applications. IEEETrans.1997,Vol.45:1512-1517.
    Balasubramaniam Shanker et al. Analysis of transient electromagnetic scattering from closedsurfaces using a combined field integral equation. IEEE Trans.2000,Vol.48:1064-1074.
    F L Teixeira and W C Chew. Finite-Difference computation of transient electromagnetic waves forcylindrical Geometries in complex media. IEEE Trans.2000,Vol.38:1530-1543.
    Rob F and Peter M. Modified Lanczos algorithm for the computation of transient electromagneticwavefields. IEEE Trans.1997,Vol.45:2139-2149.
    Newman G A and Hohmann G W. Time-domain EM response of a three-dimensional body in alayered earth[C].54th Annual International SEG Meeting,1986,67-69.
    Raiche A P et al. The joint use of coincient loop transient EM and schlunmberger sounding torelove layered structures[J]. Geophysics,1985,Vol.50:1618-1627.
    mith R S, Balchz S J. Robust estimation of the band-limited inductive limit response from impulseresponse TEM measurements taken during the transmitter switch-off and the transmitteroff-time[J].GeoPhysies,2001,65(2):476一481.
    Raiche A P and Spies B R. Coincident loop transient electromagnetic master curves forinterpretation of two-layer earth. Geophysics,1981, Vol.46.
    MitsuhataYJ.2-D electromagnetic modeling by finite-element method with a dipole source andtopography.Geophysics,2000,65:465-475.
    于景邨,矿井瞬变电磁法理论与应用技术研究,徐州,中国矿业大学,1999.
    杨阳,党瑞荣,井中瞬变电磁法理论研究,石油仪器,第23卷第3期,2009年.
    王启军,林向东,矿井瞬变电磁法超前探测研究,吉林地质,第2期,2009年6月.
    蒋帮远,瞬变电磁法勘探[M],北京,地质出版社,1998年.
    牛之琏,时间域电磁法原理[M],长沙,中南工业大学出版社,1992年.
    满在山,王档良,矿井瞬变电磁法在新驿煤矿探水中的应用,煤炭科学技术,2009年4月.
    王扬州,于景邨,瞬变电磁法矿井超前探测,工程地球物理学报,2009年2月.
    李貅.瞬变电磁测深的理论与应用[M].西安:陕西科学技术出版社,2002.
    张纪勋,范志平.瞬变电磁技术在巷道超前探测中的应用.中国煤田地质.2006年6月第18卷第3期.
    杨振威,李贤庆,凌标灿等.瞬变电磁法在探测工作面顶板赋水性中的应用.中国煤炭地质,2010年1月第22卷1期.
    杨海燕,邓居智,矿井瞬变电磁法全空间视电阻率解释方法研究,地球物理学报,2010年3月.
    郭纯,刘白宙,白登海.地下全空间瞬变电磁技术在煤矿巷道掘进头的连续跟踪超前探测,地震地质,第28卷第3期,2006年9月.
    朴化荣.电磁测深法原理[M].北京:地质出版社,1991.
    米萨克N.纳比吉安主编,赵经祥等译.电磁法(第一卷理论)[M].北京:地质出版社,1992.
    殷长春,李吉松.任意角度瞬变电磁测深正演问题计算方法[J].物探与化探,1994,18(4):297-303.
    殷长春,刘斌.瞬变电磁法三维问题正演及激电效应特征研究[J].地球物理学报,1994,37(增Ⅰ):486-492.
    谭捍东,余钦范,John Booker等.大地电磁法三维交错采样有限差分数值模拟[J].地球物理学报,2003,46(5):705-711.
    罗延钟,张胜业等.时间域航空电磁法一维正演研究[J].地球物理学报,2003,46(5):719-724.
    王华军,罗延钟.中心回线瞬变电磁法2.5维有限单元算法[J].地球物理学报,2003,46(6):855-862.
    严良俊,徐世浙,陈小斌等.线源二维瞬变电磁场的正演计算新方法[J].煤田地质与勘探,2004,32(5):58-61.
    闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析[J].地球物理学报,2002,45(2):275-284.
    熊彬,罗延钟,强建科.瞬变电磁2.5维反演中灵敏度矩阵计算方法(I)[J].地球物理学进展,2004,19(3):616-620.
    严良俊,徐世浙等.中心回线瞬变电磁测深法快速电阻率成像方法及应用[J].煤田地质与勘探,2002,30(6):58-60.
    徐凯军,李桐林.时域瞬变场电磁场有限差分法[J].世界地质,2004,23(3):301-305.
    翁爱华,陆冬华.利用连分式定义瞬变电磁法全区视电阻率研究[J].煤田地质与勘探,2003,31(3):56-59.
    于景邨,刘志新,汤金云.用瞬变电磁法探查综放工作面顶板水体的研究[J].中国矿业大学学报,2007,36(4):542-546.
    岳建华,甘会春,矿井瞬变电磁法及其应用,中国地球物理学会年会论文,南京师范大学出版社,2003.
    闫述,石显新,井下全空间瞬变电磁法FDTD计算中薄层和细导线的模拟,煤田地质与勘探,2004,32.
    白登海,何兆海等,地下全空间瞬变电磁法及在煤矿水害预防中的应用,第六届中国国际地球电磁学学术研讨会,北京,2003.
    郭纯,李文军等,瞬变电磁技术在巷道掘进头连续追踪超前探测的效果,能源技术与管理.2006.2.
    毕德显.电磁场理论[M].北京:电子工业出版社,1985.
    陈乐寿,王光锷.构造电法勘探[M].武汉:中国地质大学出版社,1991.
    蒋邦远.实用近区磁源瞬变电磁法勘探[M].北京:地质出版社,1998.
    李金铭等.地电场与电法勘探[M].北京:地质出版社,2005.
    李貅,宋建平,马宇,武军杰.基于小波分析的TEM信号提取.煤田地质与勘探,2005年4月第33卷第2期.
    李志聃.煤田电法勘探[M].徐州:中国矿业大学出版社,1990.
    方广藻,李予国,李貅.瞬变电磁测深法原理[M].西安:西北工业大学出版社,1993.DZ/T01087—1997,地面瞬变电磁法技术规程[S].
    邓晓红.定回线源瞬变电磁三维异常特征反演[D].北京:中国地质大学,2006.
    刘继东.地面大回线源在地下形成的瞬变电磁场的反演研究[J].物探化探计算技术,1998,20(2):116~119.
    方文藻等.瞬变电磁测深法原理[M].西北工业大学出版社,1992.
    段铮.瞬变电磁法在隧道超前地质预报中的应用及解释分析[D].[学位论文].成都理工大学,2008.
    李全,于景邨.采掘工作面顶板富水性矿井瞬变电磁探查技术研究.能源技术与管理.2005年第3期.
    雷达.瞬变电磁法数据提取纯异常方法技术,物探与化探,2004年8月.
    林长佑.瞬变电磁晚期场资料的一维反演[J].西北地震学报,1994.
    卢健.瞬变电磁矩形线框一维正演及电池型号去噪研究[D].大连:大连理工大学,2004.
    史明娟,罗延钟.瞬变电磁法二、三维正演理论的发展[J].国外地质勘探技术,1996.
    牛之琏.瞬变电磁测深曲线微分参数解释方法[J].中南矿冶学院学报,1992.
    牛之琏.一维层状大地的瞬变测深正演计算[J].煤田地质与勘探,1991.
    于景邨.矿井瞬变电磁法勘探[M].中国矿业大学出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700