基于SDOG的岩石圈板块多尺度数据组织与可视化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球表层岩石圈不仅是人类生活和生产活动的最主要场所,也是给人类带来主要灾难的活动领域,加强对岩石圈尤其是浅层岩石圈的三维结构研究具有重要意义。
     本文结合当前岩石圈三维结构的研究现状,如平面模式的平面和剖面图形式难以直观的表现原本复杂的三维岩石圈结构;三棱柱、广义三棱柱等欧式真三维地质建模和数据组织方法在表达大范围的岩石圈结构时存在变形、数据裂缝和度量不准确的问题;基于直接球面流形空间球面格网表达方式又存在维度不足的问题,而基于阴阳格网的三维球体表达模型也存在球面格网非正交,增加数值计算复杂度的问题。在充分了解已有岩石圈板块数据和球体退化八叉树格网(SDOG)多层次、多分辨率和动态扩展编码等特点的基础上,进行如下研究工作:
     1.岩石圈板块细节层次模型表设计与数据收集。结合当前已公开的岩石圈数据和SDOG格网可视化速度,设计多层次岩石圈模型表,并结合模型表收集数据。
     2.岩石圈板块数据预处理。基于SDOG格网剖分退化的特点,针对多源异构的岩石圈数据进行预处理,生成统一的经纬网格式。
     3.岩石圈板块预处理数据组织。设计预处理数据目录表,对生成的经纬网格式岩石圈数据进行组织,并存入关系型数据库。
     4.岩石圈板块建模及数据组织。预处理经纬网数据首先转换为设计的离散中间坐标系-NsSDOG数据,然后转换为SDOG格网码数据。基于SDOG格网实现岩石圈板块建模,并设计岩石圈实体表和码属关联表,方便实现任意板块的可视化。
     本文的创新之处:
     基于一种新的三维空间格网基础框架-SDOG格网,设计了岩石圈板块建模前和建模后的数据结构表,并在可视化效果中验证,按照作者设计的数据结构管理数据具有一定可行性,并且数据结构表具有可扩展性,只需在数据结构表中增加相应的属性字段即可。
Earth's surface lithosphere is not only the most important place of human life for production activities, but also is activity areas which bring a major disaster to human, and some natural disasters occur in the depth of 20km range of the shallow lithosphere, such as earthquakes, landslides, mudslides, tsunamis, typhoons, floods, volcanic eruptions. Human can only have a correct understanding of it, rational development and protect it to ultimately protect the man himself.
     In this paper, the current three-dimensional structure of the lithosphere research Status, such as plane and profile the performance of the original form is difficult to visually complex three-dimensional lithospheric structure; prism, triangular prism and other generalized three-dimensional and so on of European space true three-dimensional geological modeling and data organization method for expressing a wide range of rock deformation ring structure exists the data do not accurately measure cracks and problems; Manifold space based on the direct sphere of expression and the existence of space dimensions of the problem of inadequate, Yin and Yang grid-based representation model three-dimensional sphere there are also non-orthogonal spherical grid to increase the numerical complexity of the problem。
     The following research work carried out bases on in full knowledge of existing data of the sphere of lithospheric plate, multi-level, multi-resolution and dynamic expansion and other characteristics of Sphere degradation octree grid (SDOG).
     1. The lithosphere plate details hierarchical model table design and data collection. According to the current of lithosphere data of already publicly and SDOG grid visualization, design multi-level lithosphere model table, and collect data.
     2. Preprocessing of lithosphere plate data. Preprocessing of multi-source heterogeneous lithosphere data based on SDOG, and convert to longitude-latitude geographical format.
     3. Organization of pretreatment data. Design struction of data content, organization of longitude-latitude geographical data, and deposited in the relational database.
     4. The lithosphere plate modeling and data organization. Longitude-latitude geographical data convert to SDOG format and model lithosphere plate. Design entity content, coding-attribution content.
     Innovation points of this paper:
     Design the lithosphere plate data structure of before and after of modeling based on SDOG grid, have certain feasibility, and verified in visualization experiment, also have expansibility to add field.
引文
[1] Akira Kageyama, Tetsuya Sato. The“Yin-Yang Grid”: An Overset Grid in Spherical Geometry[J]. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2004, (5):1-15.
    [2] Artemieva, I.M.. Global 1°x 1°thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution[J]. Tectonophysics, 2006,(416):245-277.
    [3] Barto Lt. KeithP. Model GTOPO30 Data in ArcView GIS [J]. 2000.
    [4] Bassin, C., Laske, G. and Masters, G., The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU, 81, F897, 2000.
    [5] Chase, C. G., The n - plate problem of plate tectonics [J]. Geophys. J . R.astr. Soc. ,1972(29).
    [6] Chase, C. G., Plate kinematics. The Americas, East Africa, and the rest of the world. Earth planet . Sci. Lett., 1978, (37): 355-368.
    [7] Christopher Amante Barry W. Eakins. ETOPO1 1 ARC-MINUTE GLOBAL RELIEF MODEL: PROCEDURES, DATA SOURCES AND ANALYSIS [J]. NOAA Technical Memorandum NESDIS NGDC-24, pp. 1, 2009, 9.
    [8] Clinton P. Conrad, Carolina Lithgow-Bertelloni. Influence of continental roots and asthenosphere on plate-mantle coupling [J]. GEOPHYSICAL RESEARCH LETTERS, 2006, (33):1-4.
    [9] Cooper C.M., Lenardic A., Moresi L. The thermal structure of stable continental lithosphere within a dynamic mantle [J]. Earth Planet. Sci. Lett., 2004, (222):807-817
    [10] Demets C G, Gordon R G, Argus D , et al. Current plate motions [J] . Geophys J Int , 1990 , (101):425-478.
    [11] Dutton G. Modeling Locational Uncertainty via Hierarchical Tessellation[M]. In: Goodchild M. and Gopal S. (Eds.), Accuracy of Spatial Databases, Tayor and Francis, London, 1989, 125-140.
    [12] Dutton, G. Polyhedral hierarchical tessellations: The shape of GIS to come[J]. Geographical Information Systems , 1991,1(3): 49-55.
    [13] Kevin Sahr, Denis White. Discrete Global Grid Systems[J]. Computing Science and Statistics.1998
    [14] Le Pichon X. , Sea - floor spreading and continent drift[J]. J. Geophys. Res., 1968, (73): 3661-3697.
    [15] L P DAAC. Global 30 Arc-Second Elevation Data Set GTOPO30. Land Process Distribution Active Archive Center, 2004 ( http :/ / edcdaac. usgs. gov/ gtopo30. asp )
    [16] Minster, J. B. et al., Numerical modeling of instantaneous plate tectonics [J]. Geophys. J. R.astr. Soc., 1974, (36):541-576.
    [17] Minster, J. B. and T. H. Jordan. Present - day plate motions [J]. J .Geophys. Res., 1978, (83): 5331-5354.
    [18] Peter Bird. An updated digital model of plate boundaries [J]. Geochem. Geophys. Geosyst., 2003,4(3):1027-1077.
    [19] Sanford Ballard, James R. Hipp, Christopher J. Young. Efficient and Accurate Calculation of Ray Theory Seismic Travel Time through Variable Resolution 3D Earth Models[J]. Seismological Research Letters ,2009, 80 (6):990-1000.
    [20] WD Mooney, G Laske, TG Masters. CRUST 5.1: A global crustal model at 5°×5°[J]. J .Geophys. Res., 1998, (103): 727-747.
    [21]白建军,赵学胜,陈军.基于椭球面三角格网的数字高程建模[J].武汉大学学报:信息科学版,2005,30(5):504-508.
    [22]曹代勇,李青元,朱小弟,等.地质构造三维可视化模型探讨[J].地址与勘探,2001,37(4):60-62.
    [23]曹帅,张克亮,魏东平.全球板块运动及其对地球表面积变化的影响[J].地震,2009,29(4):14-22.
    [24]蔡学林,朱介寿,曹家敏,等.中国大陆及邻区岩石圈地壳三维结构与动力学型式[J].中国地质,2007,34(4):543-557. [25 ]蔡学林,曹家敏,朱介寿,等.龙门山岩石圈地壳三维结构及汶川大地震成因浅析[J].成都理工大学学报:自然科学版,2008,35(4):354-364.
    [26]崔马军,赵学胜.球面退化四叉树格网的剖分及变形分析[J].地理与地理信息科学,2007,23(6):23-25.
    [27]崔马军,赵学胜,孙乾,等.基于球面DQG的数字高程建模算法与可视化表达[J].地理与地理信息科学,2008,24(5):33-36.
    [28]程朋根,龚健雅,史文中,等.基于似三棱柱体的地质体三维建模与应用研究[J].武汉大学学报:信息科学版,2004,7(7):602-607.
    [29]丁国瑜主编,中国岩石圈动力学概论.北京:地震出版社,1991:142-153.
    [30]关丽,程承旗,吕雪锋.基于球面剖分格网的矢量数据组织模型研究[J].地理与地理信息科学,2009,25(3):23-27.
    [31]韩郁菁.欧洲岩石圈研究的一些新进展[J].武汉地质学院《地质科学情报》,1986,5(1):1-7.
    [32]金之均,殷进垠,谢方克,等.盆地岩石圈结构与油气成藏及分布[J].地质科学,2003,38(3):413-424.
    [33]李廷栋.中国岩石圈三维结构专项研究主要进展和成果[J].中国地质,2006a,33(4):689-699.
    [34]李廷栋.中国岩石圈构造单元[J].中国地质,2006b,33(4):700-710.
    [35]李廷栋.中国岩石圈的基本特征[J].地学前缘,2010,17(3):2-13.
    [36]李志林.地理空间数据处理的尺度理论[J].地理信息世界,2005,3(2):1-5.
    [37]刘凯,秦耀辰.论地理信息的尺度特性[J].地理与地理信息科学,2010,26(2):1-5.
    [38]刘雪亚,王荃.中国岩石圈古板块划分.见:马丽芳主编.中国地质图集.北京:地质出版社,2002:41-44.
    [39]齐安文,吴立新,李冰,等.一种新的三维地学空间构模仿法-类三棱柱法[J].煤炭学报,2002,27(2):158-163.
    [40]宋仲和,陈国英,安昌强,等.中国大陆及其海域地壳-上地幔三维速度结构[J].中国科学,B辑,1993,23(2):180-188.
    [41]孙文彬.基于QTM的全球影像数据组织与表达模型[D].中国矿业大学(北京),2007.
    [42]孙庆先,李茂堂,路京选,等.地理空间数据的尺度问题及其研究进展[J].地理与地理信息科学,2007,23(4):53-56.
    [43]史志宏,刘占坡,殷秀华.地壳厚度(重力反演).见:马杏垣主编.中国岩石圈动力学地图集.北京:中国地图出版社,1989:(12) .
    [44]滕吉文,曾融生,闫雅芬.东亚大陆及周边海域Moho界面深度分布和基本构造格局[J].中国科学,D辑,2002,32(2):89-100.
    [45]万元嵬,程承旗,宋树华.大数据量遥感影像快速显示剖分组织方法研究[J].地理与地理信息科学,2009,25(3):33-37.
    [46]吴立新,史文中,Christopher G.M. 3DGIS与3D的空间构模技术[J].地理与地理信息科学,2003a,19(1):5-11.
    [47]吴立新,殷倩,蔡振峰,等. QuaPA方法的改进与实验[J].地理与地理信息科学,2007,23(2):8-11.
    [48]吴立新,余接情.基于球体退化八叉树的全球三维格网与变形特征[J].地理与地理信息科学,2009,25(1):1-4.
    [49]武强,徐华.三维地质建模与可视化方法研究[J].中国科学,D辑,2004,34(1):54-60.
    [50]余接情.球体退化八叉树剖分与编码[D].北京:中国矿业大学(北京),2009a.
    [51]余接情,吴立新.球体退化八叉树网格编码与解码研究[J].地理与地理信息科学,2009b,25(1):5-9.
    [52]余接情,吴立新,訾国杰.流形空间下地壳板块的三维建模与可视化[C].中国地理信息系统协会理论与方法委员会2010年学术研讨会. 2010. 9,上海,中国.
    [53]余接情,吴立新,訾国杰.基于SDOG的岩石圈多尺度三维建模与可视化方法[J].中国科学,D辑(已投稿).
    [54]曾融生,孙为国,毛桐恩,等.中国大陆莫霍界面深度图[J].地震学报,1995,17(3):322-327.
    [55]张恒璟,孙付平,宋伟东.空间技术观测数据对全球七大板块运动参数的精化[J].测绘科学,2006,31(2):16-19.
    [56]张煜,白世伟.一种基于三棱柱体体元的三维地层建模方法及应用[J].中国图像图形学报, 2001,6(3):285-290.
    [57]郑学锋,沈钧毅,靳平,等.全球地壳结构数据的三维可视化建模与应用[J].计算机科学,2006,33(12):221-224.
    [58]朱介寿,曹家敏,李显贵,等.中国及其邻区地球三维结构初始模型的建立[J].地球物理学报,1997,40(5):628-648.
    [59]朱介寿,曹家敏,蔡学林,等.东亚及西太平洋边缘海高分辨率面波层析成像[J].地球物理学报,2002,45(5):646-664.
    [60]朱介寿,曹家敏,蔡学林,等.中国及邻近陆域海域地球内部三维结构及动力学研究[J].地球科学进展,2003,18(4):497-503.
    [61]朱介寿,蔡学林,曹家敏,等.中国及相邻区域岩石圈结构及动力学意义[J].中国地质,2006,33(4):793-803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700