常村井田瓦斯赋存构造控制特征与瓦斯预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓦斯是一种气体地质体,是地质作用的产物。现今煤层瓦斯的赋存状态、影响煤与瓦斯突出和瓦斯涌出量大小的地质条件,是含煤地层经受复杂地质演化作用的结果。因此研究构造演化及其对瓦斯赋存的控制作用具有十分重要的意义。
     本论文运用板块构造理论、瓦斯赋存构造逐级控制理论,借鉴前人的研究成果,分析了太行山形成的动力学背景及其形成过程;研究了沁水盆地地质演化史(构造演化史,山西组沉积埋藏、热演化、煤化-生烃史);研究了区域构造对矿区构造的控制作用、矿区构造演化及其对瓦斯赋存的影响;在此基础上,结合常村煤矿丰富的瓦斯地质资料,分析了井田构造分布特征、成因及其对瓦斯赋存的控制特征,划分瓦斯地质单元,预测各单元的瓦斯含量和瓦斯涌出量。研究认为潞安矿区在晋获断裂带和沁水坳陷核部的武乡-阳城坳褶带的控制下,由东向西,矿区构造变形由NE、NEE向的正断层演变为NNE、近SN向逆断层和宽缓的褶曲。矿区在构造演化过程中,经受多期次构造应力场的改造,由于应力场的转变,原来的NNE~NEE向的断裂反转为正断层,并形成一系列的地垒地堑构造,加之太行山快速隆起,此时NNE~NEE向断层成为主要的泄气通道,瓦斯得到大量的释放。而NNW向和近SN向断裂由于挤压、剪切活动较强,对瓦斯释放较少,在深部将会控制煤与瓦斯突出危险区的分布。
     井田东部,以NNE~NEE的断裂和阶梯式断块为主,控制了瓦斯的赋存;而井田西部则以近SN向的背斜、向斜和逆断层为主,控制了瓦斯的分布和煤与瓦斯突出的危险性。并以此把井田划分为6个瓦斯地质单元,合理确定了井田3#煤层瓦斯风化带下限,建立了各瓦斯地质单元瓦斯含量分布的数学模型,确定煤层上覆基岩厚度是整个井田瓦斯赋存的主控因素。在瓦斯含量预测的基础上,分析了井田内各瓦斯地质单元内的瓦斯涌出量。
     本研究为矿区矿井规划、通风设计、煤层气抽采利用和煤与瓦斯突出危险性预测提供参考。
Coal seam gas which is a geological gas, is the product of geological processes. The gas occurrence of today's coal seam and the geological conditions of gas outburst and gas emission are the results of complex geological evolution. Therefore ,it has great significance to do research on tectonic evolution and their effects on the control of gas occurrence.
     In this paper, the dynamics background of the Taihang mountains and its formation process were analyzed with the theories of the plate tectonics and the tectonic gradual control. The geological evolution histories of Qinshui Basin( the tectonic evolution, thermal evolution and hydrocarbon generation history of Shanxi Fm) were also analyzed. The regional controls the mining area in terms of tectonic structure. Accordingly, based on the large gas geological datas of Changcun coal mine, characteristics ,causes of minefield structural, and its control features on gas storage were studied. Gas geological units were defined in Changcun coalfield. Gas content and gas emission in each gas geological unit were forecasted finally. Conclusions were as followings: Under the control of the Jinhuo fault zone and the Wuxiang - Yangcheng fold belt in Qinshui depression axial region, the tectonic features varies from the NE, NEE normal faults in the east area to the NNE, nearly SN reverse faults and the folds in the west. In the process of the tectonic evolution, Lu’an tectonic structures underwent multi-stage transformation of tectonic stress field, as a result, the NNE ~ NEE fractures reversed to normal faults, forming a series of horsts and graben structures. Coupled with the rapid uplift of the Taihang mountains, the NNE ~ NEE faults became the main discouraged channels ,losing a lot of gas. However, because of the compression and the strong shear force, the NNW, nearly SN fractures released less gas, and controlled coal and gas outburst in the deep.
     In the east of Changcun coal field, the mian tectonic structures are the NNE ~ NEE faults and the ladder fault blocks, which controlled the gas occurrence; however, the nearly SN anticlines, synclines and reverse faults are the main tectonic structures,controling the distribution of gas and coal and gas outburst. Then, six gas geological units were defined, and lower bound of the 3# coalbed gas weathering zone were also defined. Combined with the measured gas content datas, the mathematical models of the gas content in every gas geological unit were established, determining the overlying rock thickness of coal seam is controlling factor of gas occurrence over the whole mine field. Gas content and gas emission in each gas geological unit were forecasted finally.
     May this study give scientific evidences to mining area and coal mine planing,, ventilation, coal bed methane extraction and utilization, coal and gas outburst prediction.
引文
[1]国家发展和改革委员会.煤炭工业发展“十一五”规划[R].2007.
    [2]国家发展改革委.能源发展“十一五”规划[R].2007.
    [3]国家煤矿安监局.事故查询[EB/OL]. [2011.1.20]. http://media.chinasafety.gov.cn:8090/iSystem/shigumain.jsp.
    [4]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社, 1999.
    [5]张子敏主编.瓦斯地质学[M].徐州:中国矿业大学出版社, 2009.
    [6]张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社, 2005.
    [7]宋世钊译A.Э彼特罗祥著.煤矿沼气涌出[Z].北京:煤炭工业出版社, 1980.
    [8] DAVID P, CREEDY. Geological controls on the Formation and distribution of Gas in.3ritish coalM easure strata,UK[J]. International of coal geology, 1988(10).
    [9] SHEPHERD J. Outbursts and geological structures in coal mines,Australia[J]. Int J Rock Mech M in Sci&Geomech, 1981,18(4):267.
    [10] BIBLER C, MARSHALL J, PILCHER. Status of worldwide coal mine methanee mission sanduse R C[J]. Int J Coal Geol, 1998(35):283-310.
    [11] K F, GAYER R. The impact of tectonic deformation upon coal seams' in the South Wales coalfield, UK[J]. Int J.Coal Geol, 1999,38:297-332.
    [12] HUOYINLI, OGAWA Y. Porestructure of sheared coals and related coalbed methane[J]. Environmental Geology, 2001,11(40):1455-1461.
    [13]焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社, 1990.
    [14]杨力生.煤矿瓦斯预测方法叙述[J].瓦斯地质, 1988(1-2):5-7.
    [15]杨力生.谈谈瓦斯地质研究成果和今后发展方向:瓦斯地质会议, 1995[C].煤炭工业出版社.
    [16]曹运兴,张玉贵,李凯奇,等.构造煤的动力变质作用及其演化规律[J].煤田地质与勘探, 1996,24(4):15-17.
    [17]张子敏,高建良,张瑞林,等.关于中国煤层瓦斯区域分布的几点认识[J].地质科技情报, 1999,18(4):67-70.
    [18]张子敏,林又玲,吕绍林.中国煤层瓦斯分布特征[M].北京:煤炭工业出版社, 1998.
    [19]李明潮,张五侪.中国主要煤田的浅层煤成气[M].科学出版社, 1990.
    [20]孙茂远,黄盛初等编.煤层气开发利用手册[M].北京:煤炭工业出版社, 1998.
    [21]霍永忠,张爱云.煤层气储层的显微孔裂隙成因分类及其应用[J].煤田地质与勘探, 1998(6):29-33.
    [22]吴世跃.煤层瓦斯扩散与渗流规律的初步探讨[J].山西矿业学院学报, 1994(3):259-263.
    [23]袁崇孚.构造煤和煤与瓦斯突出[J].煤炭科学技术, 1986(1):32-33.
    [24]张宏伟,段克信,张建国,等.矿井动力现象区域预测研究[J].煤炭学报, 1999(4):49-53.
    [25]王生全.煤与瓦斯突出预测中的煤体结构指标研究——以下峪口、桑树坪煤矿为例[J].西北地质, 1999(3):28-32.
    [26]郭德勇,韩德馨,王新义.煤与瓦斯突出的构造物理环境及其应用[J].北京科技大学学报, 2002(6):581-584.
    [27]彭立世.煤与瓦斯突出区域预测的认识基础[J].煤矿安全, 1996(2):35-37.
    [28]曹代勇,张杰林,关英斌,等.潞安矿区构造格局及构造演化[J].煤炭学报, 1995,20(2):174-179.
    [29]关英斌,李海梅.潞安矿区构造应力场的恢复与研究[J].河北煤炭建筑工程学院学报, 1996(3):44-49.
    [30]马永明.潞安—长治矿区地质构造形成机制探讨[J].中国煤田地质, 2005,17(1):4-6.
    [31]宋选民.潞安矿区构造裂隙分布特征的实测分析[J].矿山压力与顶板管理, 2002(3):101-103.
    [32]黄广林.潞安矿区煤储层特征及地质控制因素分析[J].中国煤层气, 2008(1):25-27.
    [33]煤炭科学研究总院重庆分院.潞安矿区3#煤层瓦斯赋存及涌出预测研究[R].2003.
    [34]曹代勇,吴国强,韩远方,等.潞安矿区屯留井田断裂构造研究[J].中国煤田地质, 1995,7(2):7-10.
    [35]马永明,李照红.屯留井田煤层气成藏条件分析[J].煤, 2004(2):8-10.
    [36]黄广林.潞安矿区高河井田构造特征[J].煤, 2007(3):47-49.
    [37]关英斌,李海梅.晋获断裂带中、新生代构造应力场研究[J].中国煤田地质, 1999(4):1-4.
    [38]李海梅,关英斌,王玉安.晋获断裂带古应力研究[J].河北煤炭建筑工程学院学报, 1995(4):44-48.
    [39]曹代勇,关英斌.晋-获断裂带分段模式研究[J].大地构造与成矿学, 1997,21(4):323-329.
    [40]曹代勇,钱光谟,关英斌,等.晋获断裂带发育对煤矿区构造的控制[J].中国矿业大学学报, 1998,27(1):7-10.
    [41]关英斌,李海梅.晋获断裂带的构造特征及成因机制[J].煤, 1999,8(6):10-13.
    [42]宋岩,张新民.煤层气成藏机制及经济开采理论基础[M].北京:科学出版社, 2005.
    [43]牛树银,陈路,许传诗.太行山区地壳演化及成矿规律[M].北京:地震出版社, 1994.
    [44]牛树银,许传诗,国连杰,等.太行山变质核杂岩的特征及成因探讨[J].河北地质学院学报, 1994,17(1):43-53.
    [45]邓晋福,魏文博.中国华北地区岩石圈三维结构及演化[M].北京:地质出版社, 2007.
    [46]任纪舜,陈廷愚,牛宝贵,等.中国东部构造岩浆演化及成矿规律(五)中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社, 1992.
    [47] MA X Y W D N. Cenozoic extensional tectonics in China[J]. Tectonophys, 1987,133:243-255.
    [48]刘焕杰,秦勇,桑树勋.山西南部煤层气地质[M].徐州:中国矿业大学出版社, 1998.
    [49]承金,汪新文,王小牛.山西沁水盆地热史演化特征[J].现代地质, 2009,23(6):1093-1099.
    [50]吴财芳,秦勇,傅雪海,等.煤层气成藏的宏观动力能条件及其地质演化过程—以山西沁水盆地为例[J].地学前缘, 2005,12(3):299-308.
    [51]秦勇,宋党育.山西南部煤化作用及其古地热系统-兼论煤化作用的控气地质机理[M].北京:地质出版社, 1998.
    [52]肖晖,任战利,崔军平.沁水盆地石炭—二叠系煤层气成藏期研究[J].中国地质, 2007(3):490-496.
    [53]叶建平等主编,中国煤田地质总局著.中国煤层气资源[M].徐州:中国矿业大学出版社, 1998.
    [54]白海波,缪协兴.潞安矿区奥陶系岩溶演化主控因素分析[J].采矿与安全工程学报, 2008,25(1):17-21.
    [55]李祥根.中国新构造运动概论[M].北京:地震出版社, 2003.
    [56]白海波,缪协兴,冯梅梅.潞安矿区新构造及其控水作用的研究[J].采矿与安全工程学报, 2006,23(4):383-388.
    [57]曹代勇,关英斌.晋-获断裂带分段模式研究[J].大地构造与成矿学, 1997(4):323-329.
    [58]杨起.中国煤变质作用[M].北京:煤炭工业出版社, 1996.
    [59]李明宅,杨陆武,胡爱梅,等.沁水盆地构造演化与煤层气的生成: 21世纪中国煤层气产业发展与展望研讨会, 2002[C].
    [60]王勃,巢海燕,郑贵强,等.高、低煤阶煤层气藏地质特征及控气作用差异性研究[J].地质学报, 2008,82(10):1396-1401.
    [61]刘芳珍.潞安矿区奥陶系岩溶发育规律及成因探讨[J].地下水, 1998,20(2):70-73.
    [62]程东.煤层气藏可采选区评价系统研究以沁水煤田南部为例[D].成都:成都理工大学,2001.
    [63]冀涛,杨德义.沁水盆地煤与煤层气地质条件[J].中国煤田地质, 2007,19(5):28-30.
    [64]河南省煤炭地质勘察研究院.常村煤矿生产矿井地质报告[R].2004.
    [65]崔洪庆,姚念岗.不渗透断层与瓦斯灾害防治[J].煤炭学报, 2010,35(9):1486-1489.
    [66]钱学溥.石膏喀斯特陷落柱的形成及其水文地质意义[J].中国岩溶, 1988,7(4):344-347.
    [67]王锐.论华北地区岩溶陷落柱的形成[J].水文地质工程地质, 1982(1):37-44.
    [68]徐卫国,赵桂荣.试论岩溶矿区地面塌陷的真空吸蚀作用[J].地质论评, 1981,27(2):175-180.
    [69]尹尚先.煤矿区突(涌)水系统分析模拟及应用[D].北京:中国矿业大学(北京), 2002.
    [70]张茂林,尹尚先.华北型煤田陷落柱形成过程研究[J].煤田地质与勘探, 2007,35(6):26-29.
    [71]史红霞.潞安矿区岩溶陷落柱相关因素分析[J].煤, 2004,13(4):52-53.
    [72]张壮路.常村煤矿N2-7陷落柱及其水源分析[J].西安科技学院学报, 2004,24(2):159-161.
    [73]曹运兴.瓦斯地质单元法预测瓦斯突出的认识基础与实践[J].煤炭学报, 1995:76-78.
    [74]曹运兴.瓦斯地质历史分析的基本思想与实践[J].焦作矿业学院学报, 1995(1):26-29.
    [75]杨陆武,彭立世,曹运兴.应用瓦斯地质单元法预测煤与瓦斯突出[J].中国地质灾害与防治学报, 1997(3):22-27.
    [76]徐学锋.地质构造对煤与瓦斯突出的影响研究[D].阜新:辽宁工程技术大学, 2003.
    [77] ZIMIN Z, YUGUI Z. Evolution of Geological Structure and its Control to Coal-gas Outburst in Pingdingshan Coal District: Proceeding of the 5th international symposium on mining science and technology, Xuzhou, 2004[C]. Science Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700