纸坊沟流域刺槐林土壤有机质演变特点及其累积机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被覆盖和土地利用方式的变化影响到土壤碳含量。大量研究发现农地转化为林地后土壤碳贮量也随之发生变化。然而,森林生长序列中土壤碳的变化并不保持一致的增长趋势。森林生态系统中土壤有机碳的动态变化机制的研究颇显重要。
     研究通过对纸坊沟流域四种年限刺槐林的土壤有机质各组分的调查,在总结其特点的基础上,分别设置野外培养试验和室内培养试验,旨在探索造成有机质变化的影响因素。主要结论如下:
     (1)对1975年柠条林N75、1974年耕地H74和1978年刺槐林C78土壤剖面有机碳、全N、土壤机械组成、碳酸钙、容重、pH值等指标进行分析,发现各样地土壤有机碳的积累与<0.02mm粒径的土壤颗粒有较高的相关;土壤剖面各指标在不同深度存在异常变化,<0.002mm粘粒物质大幅度增加,表现出古土壤层的特征;1m深度有机碳储量C78>N75>H74,但差异主要表现在30cm深度以上土层,特征层的存在可能导致H74剖面16.684g/m3的有机碳评价误差,以及C78剖面36.926g/m2的误差。
     (2)分析了类似立地条件下10年、25年、31年、35年四个刺槐林和一个对照农地土壤有机碳SOC各组分的变化。三深度平均SOC含量、活性有机碳AOC含量、水溶性有机碳DOC含量随刺槐林年限增加而增加;与农地相比,所有刺槐林样地AOC/SOC、惰性有机碳ROC/SOC呈高值表现,惰性有机碳LOC/SOC值较低,DOC/水溶性有机氮DON较低而280nm的UV吸收值较高;随退耕年限的增加,25年刺槐林表现出一个以深度分异为代表的退耕特殊阶段。在刺槐林生长过程中,(i)AOC和缓性有机碳ROC都出现累积趋势,刺槐林有助于土壤碳的储存;(ii)土壤碳的累积过程中有组分差异表现,DOC,DOC/DON以及UV吸收值出现与SOC不同的变化;(iii)各深度AOC及SOC并未表现出一致的增长趋势,有深度分异。刺槐林生长发育过程中SOC的积累有组分和深度的差异,其相关机理需进一步研究。
     (3)对1975年柠条林N75、1974年农地H74和1978年刺槐林C78在100cm深度土壤剖面有机碳、全N、土壤机械组成、碳酸钙进行差异度分析和线性相关性分析,发现退耕后两种林地SOC及全N含量虽然都有明显变化,但是C78的差异主要表现在0-20cm深度,而N75则主要表现在20-100cm。相关度分析表明,H74在20cm以下SOC、C/N值都与0.002-0.02mm粒径极显著相关,C78在40cm以下SOC含量与<0.002mm粒径含量显著相关,C/N值与<0.02mm粒径由0-100cm的负相关,变为正相关。结果证明柠条林和刺槐林对SOC和全N的影响存在深度的差异,分别表现在深层和浅层。农地和刺槐林土壤深层SOC与细颗粒土壤显著相关,性质稳定。
     (4)对C78样地均匀添加枯落物碎屑的土壤培养坑分3月、7月和11月进行一年期的培养和观测,发现SOC各组分有季节性变化,20cm和40cm深度在7月SOC,活性有机碳POC及总氮TN值最高,可溶性有机碳DOC和可溶性有机氮DON呈相反变化趋势;培养过程中各指标出现深度分异,与20cm不同,在60cm深度,SOC随培养过程而递减,POC及全氮递增,而DOC在7月出现高值。SOC在初始积累过程中先增后减,体现出自我调节。SOC各组分的深度分异,反映出培养坑60cm深度SOC来源出现多元化,枯落物腐解产物影响程度减弱。
     (5)采集安塞纸坊沟31年刺槐林土样及林下混合枯落物,通过碱液吸收法测定100%、20%和2%含水量条件下3深度土样20cm,40cm,60cm、去除DOC土样(仅100%含水量条件下)、三种处理枯落物混合土样(林下混合枯落物、刺槐枯落物和草本类枯落物)培养过程中CO_2的累计释放量。结果表明,100%和20%含水量条件下各深度土壤CO_2释放量为20cm>60cm>40cm;20cm土样去除DOC后CO_2释放量明显减少,40cm明显增加,60cm没有明显变化;混合枯落物土样在100%含水量条件下CO_2释放量最高;20%和2%含水量条件下刺槐枯落物CO_2释放量明显大于草类,而100%含水量条件下草类枯落物略大于刺槐枯落物。研究证明土壤含水量对SOC组分含量和枯落物种类不同的土壤层呼吸强度存在差异性影响,强降水对DOC的淋失可造成表层土壤呼吸的减弱。
     (6)设置野外培养坑,将混合枯落物的土样和未混合枯落物的土样用致密的尼龙布隔开,LDOM(难以自由迁移的那部分WEOM)的含量用两者同时培养后WEOM含量的差值来计算。野外培养两年并分段采样,在7月份,样坑表层被吸附的WEOC(LDOC)和WEOC比率较其他时段低,并随样坑深度增加,比率升高;UV280nm吸收值及LDON/WDON较高,LDOC/WDOC较低。7月20cm LDOC/LDON与WEOC/WEON相当,但3月和11月前者高于后者,说明7月份LDOC/LDON值与RDOC/RDON没有明显差异,但在其他时间前者呈高值表现。研究证明LDOM有季节性和深度分异,当比较WEOM和DOM的研究结果时,应当注意到这个问题。
Soils have the potential for C release or sequestration,can be affected by vegetationcover and land management. Many studies found the transformation of cultivated soil toforest ecosystem can change soil carbon sequestering. However, soil carbon stock change inforest chronosequence is likely to appear different results. Hence, accurate estimate on themechanism of SOC dynamics in forest chronosequences is necessary. The study investigatedthe variation patterns of organic matter of four selected Robinia pseudoacacia forests aged10,25,31,35years, and explore the rules. On basias of the rules, we made field and labortaryincubational experimentes to explore the effected factors. The main conclusions were showedas follows:
     (1)The study gives a anlysis on indexes such as SOC、Tatol nitrogen、particle size、CaCO3、CECand pH,etc,in the soil profile of Caragana Korshinskii Kom planted in1975、plowland since1974and Robinia pseudoacadia planted in1978. Soil organic carbonaccumulation in each site has a high correlation with the percent of <0.02mm diameter; somefactors in soil profiles exist unnormal changes in different depths, the <0.002mm clay matrialhas a substantial increase, represents the charactors of illuvial horizon; In the depth of100cm,it is C78>N75>H74on SOC content, however, the main difference was reflected in theupper30cm depth. The presence of ancient soil lead to16.684g/m3error on H74SOCassessment, as well as36.926g/m2Error on C78SOC assessment.
     (2)We investigated the variation patterns of organic carbon of four selected Robiniapseudoacacia forests aged10,25,31,35years, and a contrastive tillage site in similartopography condition. On average of20cm,40cm,60cm depth, SOC, active organic carbon(AOC), DOC gradually increase with the forest growth. Compared with tillage sites,AOC/SOC ratio, ROC (resistant organic carbon)/SOC ratio show a higher value, and LOC(slow organic carbon)/SOC ratio shows a lower value. DOC/DON is lower and UV absorptionat280nm shows a higher value in all forest sites. During forest restoration,25-year-oldRobinia pseudoacacia forest shows a special phase in four forest sites represented by depthdistribution. During forest restoration (i) not only AOC, but ROC take an accumulationprocess, Robinia pseudoacacia forest restoration contributes to SOC accumulation.(ii) DOC,DOC/DON, UV-absorbance appear changes but not obviously accordant to SOC, suggestingdifferent changes during SOC accumulation.(iii) SOC, AOC don’t show a persistent increase in each depth of soil profile and which indicate a depth distribution. Our study found SOChad compounds-distribution and depth-distribution, but the relative machisms need to beexplore.
     (3)Analyzed the quantity of SOC, total nitrogen, particle size, CaCO3for the diversityanalysis and the correlation ratio in100cm soil profiles respectly in Caragana KorshinskiiKom forest planted in1975(N75)、tillage since1974(H74) and Robinia pseudoacadia forestplanted in1978(N78). The results suggest that compared with tillage site, though SOC andtotal of nitrogen in two restored forest sites show obvious changes, the distinct diversity inC78appears mainly in the depth of0-20cm, and the same state appears at20-100cm for N75.At20-100cm in H74site, SOC, C/N show remarkable correlations with percent of0.002-0.02mm particle size. Below40cm in C78site, SOC are remarkable correlation with<0.002mm particle size, the correlation rate between C/N and <0.02mm changes from minusvalue for0-100cm depth to positive value for40-100cm. Our study indicate that after forestrestoration, changes of SOC and total of nitrogen mainly represent a obvious diversity at40cm and60cm soil layer for Caragana Korshinskii Kom forest, but diversity appearsat20cmfor Robinia pseudoacadia forest. SOC in deep soil layer of tillage and Robinia pseudoacadiaforest is closely adsorbed by fine particle size soil, with a steady quality.
     (4)We have observed the dynamics of SOC and it’s relative factors of three depths(20cm,40cm,60cm) incubation holes, which were backfilled soils mixed with litter rags inadvance, in C78Robinia pseudoacacia forest, and took samples in March, July and November,2010. The results represent reasonal changes, at20cm and40cm, SOC, POC, TN in July arehighest, but decrease in November, and reverse states represent for DOC. Different with thoseat20cm, SOC at60cm decreases gradually in the process of incubation and TN and POChave increase trend, DOC in July appears a high value. During C accumulation, SOCincreases but decrease later, represents self-modulation function. DOC has different sourcesfor deeper soil layer with those at20cm, SOC suggests complex sources at60cm, theproduction of litters decomposition have limited effect.
     (5)Took soil and mixed litter samples in31year old Robinia Pseudoacacia forest anddetermined the accumulative CO_2-release of soil samples and DOC-removal soil samples(100%water content only) at three soil layers (20cm,40cm,60cm), three controlledlitter-mixed soil samples (mixed by complex litters, included Robinia Pseudoacacia littersand herbage litters), in laboratory under the different soil moisture levels of100%,20%,2%water content respectively. The results showed that the CO_2-release levels in different depthswere suggested by20cm>60cm>40cm in controlled100%and20%water content; In the condition of100%water content, when DOC were removed, the accumulative CO_2-releasequantity of20cm soil samples decreased, but obviously increase for samples at40cm andhad no marked change at60cm; The accumulative CO_2-release of complex litter-mixed soilsamples had highest value in the condition of100%water content, those of simply RobiniaPseudoacacia litter-mixed samples was obvious higher than that of herbage litter-mixedsamples in20%and2%water content, but slightly lower in100%water content. Theasynchronous effect of water content levels is suggested on the respiratory intensity of the soillayers with different SOC compositions and litter kinds, heavy precipitation removes DOCfrom soil subsurface layers, can weaken the soil respiratory intensity.
     (6)In two-year incubation experiment, litter-mixture soil (outside bags) and nolitter-mixture soil (inside bags) were insulated by nylon cloth in incubation holes, changes inthe LDOM portion of the soil were then monitored by comparing the WEOM levels outsidethe bags with inside the bags., In July, the ratio of locked WEOC (LDOC) to WEOC outsidebags (LDOC/WEOC) was low in the topsoil, and increased gradually with depth while thelocked WEON (LDON) to WEON ratio outside bags (LDON/WEON) suggested no obviousrule. At20cm In July, LDOC/WEOC were lower and LDON/WEON were higher than thosein March and November, solutions of the soil samples had highest UV-absorbance at280nm,The LDOC:LDON ratio at20cm was comparable in July with, but higher in March andNovember than WEOC:WEON ratio of samples outside bags, which implied thatLDOC:LDON has little difference compared to that of RDOM in July, but represents highervalue at other times of the year. The study proves that LDOM has seasonal variability anddepth distribution, which brings a difficult to distinguish the difference between WEOM andDOM (RDOM).
引文
[1]Trettin, C.C., Jurgensen, M.F.. Carbon cycling in wetland forest soils. In:Kimble, J.M., Heath, L.S., Birdsey, R.A., Lal, R.(Eds.), The Potential of U.S.Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect[M]. CRC Press,Boca Raton,2003,FL, pp.311–331.
    [2]Perry, D.A.. Forest Ecosystems[M]. The John Hopkins University Press, Baltimore,MD,1994, pp.277–280.
    [3]Jones, J.A.. Environmental influences on soil chemistry in central semi-aridTanzania[J]. Soil Sci. Soc. Am. J.1989,53,1748–1758.
    [4]IPCC. Land Use, Land Use Change and Forestry. Special Report, Inter-GovernmentalPanel on Climate Change[R]. Cambridge University Press, Cambridge, UK,2000,pp.127–180.
    [5]Tans, P.P., Fung, I.V., Takahashi, T.. Observational constraints on the globalatmospheric CO2budget[J]. Science,1990,247,1431–1438.
    [6] Dixon, R.K., Brown, S., Houghton, R.A., Solomon, A.M., Trexler, M.C., Wisniewski,J.. Carbon pools and flux of global forest ecosystems[J]. Science,1994,263,185-191.
    [7]Hoover, C.M.. Soil carbon sequestration and forest management: challenges andopportunities. In: Kimble, J.M., Heath, L.S., Birdsey, R.A., Lal, R.(Eds.),The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate theGreenhouse Effect[R]. CRC Press, Boca Raton, FL,2003, pp.211–238.
    [8]Bush, J. K.. Soil nitrogen and carbon after twenty years of riparian forestdevelopment[J]. Soil Science Society of America Journal,2008,72,815-822.
    [9]Guo, L. B., Gifford, R. M.. Soil carbon stocks and land use change: a metaanalysis[J]. Glob. Change Biol.,2002,8,345-360.
    [10] Kiser, L.C., Kelly, J.M., Mays, P.A.. Changes in forest soil carbon and nitrogenafter a thirty-year interval[J]. Soil Science Society of America Journal,2009,73,647-653.
    [11] Zhou, G. Y., Zhou, C. Y., Liu, S. G. et al.. Belowground carbon balance andcarbon accumulation rate in the successional series of monsoon evergreenbroad-leaved forest[J]. Science in China Series D: Earth Sciences,2006,49,311–321.
    [12] Wang, Y. F., Fu, B. J., Lü, Y. H., Song, C. J., Luan, Y.. Local-scale spatialvariability of soil organic carbon and its stock in the hilly area of the LoessPlateau, China[J]. Quatern Res.2010,73,70-76.
    [13]王忠林,薛智德.黄土高原刺槐林生长适宜生态区划[J].水土保持究,1994.1(3):43-47.
    [14]侯庆春,韩蕊莲,等.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持,1999(5).
    [15]张景群,苏印泉,徐喜明等。黄土高原人工刺槐林土壤有机碳动态监测研究[J]。西北林学院学报。2009,24(5):21-25.
    [17]Kiser, L.C., Kelly, J.M., Mays, P.A.. Changes in forest soil carbon and nitrogenafter a thirty-year interval[J]. Soil Science Society of America Journal,2009,73,647-653.
    [18]Bush, J. K.. Soil nitrogen and carbon after twenty years of riparian forestdevelopment[J]. Soil Science Society of America Journal,2008,72,815-822.
    [19]Zhou, G. Y., Zhou, C. Y., Liu, S. G. et al.. Belowground carbon balance andcarbon accumulation rate in the successional series of monsoon evergreenbroad-leaved forest[J]. Science in China Series D: Earth Sciences,2006,49,311–321.
    [20]陈庆强,沈承德,易惟熙。土壤碳循环研究进展[J]。1998,3,16:555-564.
    [21]李学斌,马林,陈林等。草地枯落物分解研究进展及展望[J]。生态环境学报。2010,1999:2260-2264.
    [22]韩学勇;赵凤霞;李文友.森林凋落物研究综述[J].生态学进展,1989,6(2):82-89.
    [23]Scholes, M.C., Powlson. D.. Input control of organic matter dynamics[J].Geoderma,1997,79,25-47.
    [24]Berg, B.. Litter decomposition and organic matter turnover in northern forestsoils[J]. Forest Ecology and Management,2000,133,13-22.
    [25]Gleixner,G.,Czimczik,C.J.,Kramer,C.,et al..Plant compounds and their turnoverand stability assoil organi cmatter. In: Schulze, E.-D.,Heimann, M., Harrison,S., Holland, E., Lloyd,J. L., Prentice,C., Schimel, D.(Eds.), GlobalBiogeochemical Cycles in the Climate System[R]. Academic Press, San Diego, USA,2001pp.201-215.
    [26]Kaiser K., Guggenberger G., Haumaier L., et al., Seasonal variations in thechemical composition of dissolved organic matter in organic forest layerleachates of old-growth Scots pin and European beech stands in northeasternBavaria, Germany[J]. Biogeochem,2001,55:103-143.
    [27]Ellert B H, Gregorich E G. Management induced changes in the actively cyclingfractions of soil organic matter. In: McfeeW W, Kelly J M. eds. Carbon Formsand Functions in Forest Soils[R]. Wisconsin, Madison, USA: Soil Science Societyof America, Inc.,1995:119-138
    [28]Kaiser K., Guggenberger G.. The role of DOM sorption to mineral surfaces inthe preservation of organic matter in soils[J]. Org. Gerchem2000,31711-725.
    [29]Kalbitz K, Solinger S, Park J-H, Michalzik B, Matzner E. Controls on the dynamicsof dissolved organic matter in soils: A review[J]. Soil Sci.2000,165:728–736
    [30]Kalbitz K&Knappe S. Influence of soil properties on the release of dissolvedorganic matter (DOM) from the topsoil[J]. J. Plant Nutr. Soil Sci.1997,160:475–483
    [31]Christ MJ&David MB. Temperature and moisture effects on the production ofdissolved organic carbon in a spodosol[J]. Soil Biol. Biochem.1996b,28:1191–1199
    [32]Guggenberger, G., Kaiser K.. Dissolved organic matter in soil: Challenging theparadigm of sorptive preservation[J]. Geoderma2002,113:293-310.
    [33]Kalbitz K., Schmerwitz J., Schwesig D., et al.. Biodegradation of soil-deriveddissolved organic matter as related to its properties[J]. Geoderma2003,113,273-304.
    [34]Sachse A., De Beer D., Gieske A., Amann R.. Characerization of dissolved organiccarbon (DOC) in a dystrophic lake and an adjacent fen[J]. Biogeochem,2001,54:279-296.
    [35]Merckx R., Brans K., Smolders E.. Decompositon of dissolced organic carbon aftersoil drying and rewetting as an indicator of metal toxicity in soils[J]. SoilBiol. Biochem.2001,235-240.
    [36]Trumbore, S.E.. Age of soil organic matter and soil respiration: radiocarbonconstraints on belowground C dynamics[J]. Ecological Applications,2000,10,399–411.
    [37]Schimel, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S., Painter,T.H., Parton, W.J., Townsend, A.R.. Climatic, edaphic, and biotic controls overstorage and turnover of carbon in soils[J]. Global Biogeochemical Cycles,1994,8,279–293.
    [38]Batjes, N.H.. Total carbon and nitrogen in the soils of the world[J]. EuropeanJournal of Soil Science,1996,47,151–163.
    [39]VanDelft,B.,deWaal,R.,Kemmers,R.,Mekkink,P.,Sevink,J..Field guide humusforms,description and classification of humus forms forecologicalapplications[M]. Technical Report. Alterra, Research In statute for the GreenEnvironment,2006.
    [40]Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., Rump el, C. Stabilityof organic carbon in deep soil layers controlled by fresh carbon supply[J].Nature,2007,450,277–310.
    [42]Salome, C., Nunan, N., Pouteau, V., Lerch, T.Z., Chenu, C.. Carbon dynamicsin topsoil and in subsoil may be controlled by different regulatory mechanisms[J].Global Change Biology,2010,16,416–426.
    [43]Batjes NH. Total carbon and nitrogen in the soils of the world[J]. EuropeanJournal of Soil Science,1996,47,151–163.
    [44]Fierer N, Allen AS, Schimel JP, Holden PA. Controls on microbial CO2production:a comparison of surface and subsurface soil horizons[J]. Global Change Biology,2003,9,1322–1332.
    [45]Iversen, C.M.. Digging deeper: fine-root responses to rising atmospheric CO2concentration in forest edecosystems[J]. New Phytologist,2010,186,346–357.
    [46]Knorr, W., Prentice, I.C., House, J.I., Holland, E.A.. Long-term sensitivityof soil carbon turnover to warming[J]. Nature,2005,433,298–301.
    [47]Davidson, E.A.,Savage,K.E.,Trumbore,S.E.,Borken,W..Vertical partitioning ofCO2production with in a temperate forest soil[J].Global Change Biology,2006,12,944–956.
    [48]Nunan N, Wu K, Young IM, Crawford JW, Ritz K. In situspatial patterns of soilbacterial populations, mapped at multiplescales, in an arable soil[J]. MicrobialEcology,2002,44,296–305.
    [49]De Leeuw, J.W., Versteegh, G.J.M., van Bergen, P.F.. Biomacromolecules of algaeand plants and their fossil analogues[J]. Plant Ecol,2006,182,20–233.
    [50]Doerr, S.H., Llewellyn, C.T., Douglas, P., Morley, C.P., Mainwaring, K.A.,Haskins, C., Johnsey, L., Ritsema, C.J., Stagnitti, F., Allinson, G., Ferreira,A.J.D., Keizer, J.J., Ziogas, A.K., Diamantis, J.. Extraction of compoundsassociated with water repellency in sandy soils of different origin[J]. Aust.J. Soil Res.2005,43,225–237.
    [51]Six, J., Conant, R.T., Paul, E.A., Paustian, K.. Stabilization mechanisms ofsoil organic matter: Implications for C-saturation of soils[J]. Plant Soil,2002,241,155–176.
    [52]Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S.. Analysis of factorscontrolling soil organic matter levels in Great Plain grasslands[J]. Soil Sci.Soc. Am. J.,1987,51,1173–1179.
    [53]Lorenz, K., Lal, R.. The depth distribution of soil organic carbon in relationto land use and management and the potential of carbon sequestration in subsoilhorizons[J]. Adv. Agron.2005,88,35–66.
    [54]王俊明,张兴昌.退耕草地演替过程中的碳储量变化[J].草业学报,2009,18(1):1-8.
    [55]戴全厚,刘国彬,薛萐等.侵蚀环境人工刺槐林土壤水稳性团聚体演变及其养分效应[J].水土保持通报,2008,28(4):56-60.
    [56]常庆瑞,安韶山,刘京.1999.黄土高原恢复植被防止土地退化研究[J].土壤侵蚀与水土保持学报,5(4):6-9.
    [57]郭胜利,马玉红,车升国等.黄土区人工与天然植被对凋落物量和土壤有机碳变化的影响[J].林业科学,2009,45(10):14-19
    [58]何瑾,段义字.退耕还林还草区坝地土壤理化性状分布特征分析[J].水土保持学报,2008,22(6):104-108
    [59]刘兆云,章明奎.侵蚀—沉积连续地形中土壤碳库的空间分异[J].水土保持通报,2009,29(3):61-66
    [60]唐克丽,贺秀斌.黄土高原全新世黄土-古土壤演替及气候演变的再研讨[J].第四纪研究2004,24(2):129-141
    [61]赵景波,郝玉芬,岳应利.陕西洛川地区全新世中期土壤与气候变化[J].第四纪研究.2006,26(6):969-976.
    [62]齐雁冰,黄标,顾志权等.长江三角洲典型区农田土壤碳氮比值的演变趋势及其环境意义[J].矿物岩石地球化学通报,2008,27(1):50-57
    [63]李晓东,魏龙,张永超等.土地利用方式对陇中黄土高原土壤理化性状的影响[J].草业学报[J],2009,18(4):103-111
    [64]王发刚,王启基,王文颖,景增春.土壤有机碳研究进展[J].草业科学,2008,25(2):48-55.
    [65]王洪杰,李宪文,史学正,等.不同土地利用方式下土壤养分的分布及其与土壤颗粒组成关系[J].水土保持学报,2003,17(2):44~50
    [66]毕银丽,王百群,等.黄土丘陵区坝地系统土壤养分特征及其与侵蚀环境的关系[J].水土保持学报,1997(4):37-43.
    [67] Lal, R.. Soil carbon sequestration impacts on global climate change and foodsecurity[J]. Science,2004,304,1623-1627.
    [68] Post, W. M., Kwon, K. C.. Soil carbon sequestration and land-use change:processes and potential[J]. Glob. Change Biol,2000,6,317-327.
    [69] Wang, Y. F., Fu, B. J., lv, Y. H., et al.. Effects of vegetation restorationon soil organic carbon sequestration at multiple scales in semi-arid LoessPlateau, China[J]. Catena,2011,85,58-66.
    [70] McDowell, W. H., Likens, G. E.. Origin, composition, and flux of dissolvedorganic carbon in the Hubbard Brook Valley[J]. Ecological Monographs,1988,58,177-195.
    [71] Qualls, R. G., Haines, B. L., Swank, W. T.. Fluxes of dissolved organicnutrients and humic substances in a deciduous forest[J]. Ecology,1991,72,254-266.
    [72] Michalzik, B., Kalbitz, K., Park, J. H., Solinger, S., Matzner, E.. Fluxesand concentrations of dissolved organic carbon and nitrogen-a synthesis fortemperate forests[J]. Biogeochemistry,2001,52,173-205.
    [73] Fu, X.L., Shao, M. A., Wei, X. R.,et al.. Soil organic carbon and total nitrogenas affected by vegetation types in Northern Loess Plateau of China[J]. Geoderma,2010,155,31-35.
    [74] Schlesinger, W.H.. Biogeochemistry: An Analysis of Global Change[M]. AcademicPress, San Diego, California, USA,1997,588pp.
    [75] Huang, Y. H., Li, Y. L., Xiao, Y., et al.. Controls of litter quality on thecarbon sink in soils through partitioning the products of decomposing litterin a forest succession series in South China[J]. Forest ecology and management,2011,261,1170-1177.
    [76] Nguyen, C.. Rhizodeposition of organic C by plants: mechanisms and controls[J].Agronomie,2003,23,375-396.
    [77] Warembourg, F. R., Roumet, C., Lafont, F.. Differences in rhizospherecarbon-partitioning among plant species of different families[J]. Plant and Soil,2003,256,347-357.
    [78] Rasse, D. P., Mulder, J., Moni, C., Chenu, C.. Carbon turnover kinetics withdepth in a French loamy soil[J]. Soil Science Society of America Journal,2006,70,2097-2105.
    [79] Vesterdal, L., Ritter, E., Gundersen, P. Change in soil organic carbonfollowing afforestation of former arable land. Forest Ecology Management,2002,169,137-147.
    [80] Axel, D., Jens, S., Annette, F.. Impact of tropical land-use change on soilorganic carbon stocks-a meta-analysis[J]. Global Change Biology,2011,17,1658-670.
    [81] Paul, E. A., D., Harris, H. P., Collins, U. S., and Robertson, G. P.. Evolutionof CO2and soil carbon dynamics in biologically managed, rowcropagroecosystems[J]. Applied Soil Ecology,1999,11,53-65.
    [82] Kazumi, K., Yosuke, M., Kenji, T., et al.. A study of the carbon dynamics ofJapanese grassland and forest using14C and13C Nuclear Instruments and Methodsin Physics Research[J]. B,2011,268,1106-1109
    [88] Ma, Y. H., Guo, S. L., Yang, Y. L., et al.. Influence of Vegetation Types onSoil Organic C at Yangou Catchment in the Loess Hilly-gully Region[J]. Journalof natural resources (in Chinese),2007,22(1),97-106
    [89] Zsolnay, A.. Dissolved humus in soil waters. In: Piccola. A.(Ed.). HumicSubstances in Terrestrial Ecosystems[M]. Elsevier. Amsterdam,1996, pp,171-223.
    [90] Matthias Mvller, Christine Alewell, Frank Hagedorn.Effective retention oflitter-derived dissolved organic carbon in organic layers[J]. Soil Biology andBiochemistry,2009,41,1066-1074.
    [91] Froberg, M., Kleja, D.B., Bergkvist, B., Tipping, E.&Mulder, J.. Dissolvedorganic carbon leaching from a coniferous forest floor—a field manipulationexperiment[J]. Biogeochemistry,2005,75,271–287.
    [92] Traina, S. J., Novak, J., Smeck, N. E.. An ultraviolet absorbance method ofestimation the percent aromatic carbon content of humic acids[J]. Journal ofEnvironmental Quality,1990,19,151-153.
    [93] Chin, Y. P., Alken, G., OLoughlin, E.. Molecular weight, polydispersity, andspectroscopic properties of aquatic humic substances[J]. Environmental Scienceand Technology,1994,28,1853-1858.
    [94] Brian, D. S., Robert, B. H., Thomas, A. T., et al. Changes in dissolved organicmatter with depth suggest the potential for postharvest organic matter retentionto increase subsurface soil carbon pools[J]. Forest Ecology and Management,2009,258,2347-352
    [95] Elizabeth, B., Paul, W. H., John, F., David, L. J.. Fast turnover of lowmolecular weight components of the dissolved organic carbon pool of temperategrassland field soils[J]. Soil Biology and Biochemistry,2007,39,827-835.
    [96] Zhang, C.S., McGrath, D.,. Geostatistical and GIS analyses on soil organiccarbon concentrations in grassland of southeastern Ireland from two differentperiods[J]. Geoderma,2004,119:261-275.
    [97] Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbonand its relation to climate and vegetation[J]. Ecological Applications,2000,10(2):423-436.
    [98]赵勇,吴明作,樊巍等.太行山针,阔叶森林凋落物分解及养分归还比较[J].自然资源学报,2009,24(9):1616-1625.
    [99]张景群,苏印泉,康永祥等.黄土高原刺槐人工林幼林生态系统碳吸存[J].应用生态学报,2009年12月,20(12):2911-2916.
    [100]常庆瑞,安韶山,刘京.1999.黄土高原恢复植被防止土地退化研究[J].土壤侵蚀与水土保持学报,5(4):6-9.
    [101]牛西午,张强,杨治平,等.2003.柠条人工林对晋西北土壤理化性质变化的影响研究[J].西北植物学报,23(4):628-632.
    [102] Amiotti N M, Sanchez L F, Peinemann N.2000. The impact of single trees onproperties of loess-derived grassland soils in Agentina[J]. Ecology,81(12):3283-3290.
    [103]张普,刘卫国.黄土高原中部黄土沉积有机质记录特征及C/N指示意义[J].海洋地质与第四纪地质.2008年12月,28(6):119-125.
    [104]李凤民等.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004,15(4):717-723.
    [105]安韶山,黄懿梅.黄土丘陵区柠条林改善土壤作用的研究[J].林业科学,2006,42(1):70-75.
    [106]张飞,陈云明,王耀凤等.黄土丘陵半干旱区柠条林对土壤物理性质及有机质的影响[J].2010,17(3),水土保持研究,105-110.
    [107]方精云.全球生态学:气候变化与生态响应[M].北京:高等教育出版社,2000.
    [108] Mikhailova E A, Bryant R B, DeGloria S D, et al. Modelling soil organic matterdynamics after conversion of native grassland to long-term continuous fallowusing the Century model[J]. Ecol Modelling,2000,132(3):247-257
    [109] Paustian. Management controls on soil carbon [A]. In Soil organic Matterin Temperate Agroecosystems[C]. Eds. E A Paul, K Paustian, E T Elliott and CV Cole, CRC Press, Boca Raton, FL,1997, pp15-49.
    [110] Kalbitz K, GeyerW, Geyer S. Spectroscopic properties of dissolved humicsubstancesa reflection of land use history in a fen area[J]. Biogeochemistry,1999,(7):219—238.
    [111] Goertz H M. Technology development in coated fertilizers[M]. Work shop oncontrolled release fertilizer. Israel: Haifa Technion,1993:158-164.
    [112] Hooker, T D, Compton, J E, Forest ecosystem carbon and nitrogen accumulationduring the first century after agricultural abandonment[J]. EcologicalApplications,2003,13:299–313.
    [113] Zhou G Y, Liu S G, Li Z A, et al.. Old-growth forests can accumulate carbonin soils[J]. Science,2006b,314:14-17.
    [114] Don, A, Rebmann, C, Kolle, O, et al.. Impact of afforestation-associatedmanagement changes on the carbon balance of grassland[J]. Global Change Biology,2009,15:1990–2002.
    [115] Chunhao Xu, Laodong Guo, Fugen Dou, et al.. Potential DOC production fromsize-fractionated Arctic tundra soils[J]. Cold Regions Science and Technology,2009(55):141-150.
    [116] Lundquist E J, Jackson L E, Scow K M. Wet-dry cycles affect dissolved organiccarbon in two California agricultural soils[J]. Soil Biol Biochem,1999(31):1031-1038.
    [117] Tipping, E, Woof, C. Humic substances in acid soils: modeling their releaseto the soil solution in terms of humic charge[J]. Journal of Soil Science,1990(41):573-586.
    [118] Yu-Hui Huang, Yue-Lin Li, Yin Xiao, et al., Controls of litter quality onthe carbon sink in soils through partitioning the products of decomposing litterin a forest succession series in South China[J], Forest Ecology and Management,2011,261:1170-1177.
    [119] Kalbitz, K, Kaiser, K. Contribution of dissolved organic matter to carbonstorage in forest mineral soils[J]. Journal of Plant Nutrition and Soil Science,2008(171):52–60.
    [120]邓东周,范志平,王红等.土壤水分对土壤呼吸的影响[J].林业科学研究,2009,2(5):722-727.
    [121]张丽华,陈亚宁,李卫红等.准噶尔盆地两种荒漠群落土壤呼吸速率对人工降水的响应[J].生态学报,2009,29(6):2819-2827.
    [122]常宗强,冯起,司建华等.土壤水热条件对祁连山荒漠草原土壤CO2通量的影响[J].干旱区地理,2007,30(6):812-820.
    [123] Yang Y S, Chen G S, Dong B, et a l. Responses of soil respiration to soilmonoculture plantations inubtropical rewetting in a natural forest and twoChina[J]. Acta Ecologica Sinica,2004,24(5):953-958.
    [124] Borken W, Davidson E A, Savage K, et al. Drying and wetting effects on carbondioxide release from organic horizons[J]. Soil Sci Soc Am J,2003,67:1888-1896.
    [125]杨文峰,郭大梅.陕西省强降水日数变化特征[J].干旱区研究.2011,28(5):866-871.
    [126]杨庆鹏,徐明,刘洪升等.土壤呼吸温度敏感性的影响因素和不确定性[J].生态学报,2011,31(8):2301-2311.
    [127] Sayer E J. Using experimental manipulation to assess the roles of leaf litterin the functioning of forest ecosystems[J]. Biological Reviews,2006,81(1):1-31.
    [128]陈全胜,李凌浩,韩兴国等.水分对土壤呼吸的影响及机理[J].生态学报,2003,23:972-978.
    [129] Collins, H. P., Elliott, E. T., Pustian, K., et al.,2000. Soil carbon poolsand fluxes in long-term corn belt agroecosystems[J]. Soil Biology andBiochemistry32:157-168.
    [130]杨丽霞,潘剑君,苑韶峰.森林土壤有机碳库组分定量化研究[J].土壤通报,2006,37(2):241-244.
    [131] Ellert B H, Gregorich E G. Management induced changes in the actively cyclingfractions of soil organic matter[M]. In: Mcfee W W, Kelly J M. eds. Carbon Formsand Functions in Forest Soils. Wisconsin, Madison, USA: Soil Science Societyof America, Inc,1995.119-138。
    [132] Cook B D, Allan D L.1992a. Dissolved organic carbon in old field soils:Compositional changes during the biodegradation of soil organic matter[J]. SoilBiol Biochem,24:595-600
    [133] Zsolnay, A.. Dissolved organic matter: artefacts, definitions, andfunctions[J]. Geoderma,2003,113,187–209.
    [134] Troyer, E.D., Amery, F., Moorleghem, C.V., Smolders, E.&Merchx, R.. Tracingthe source and fate of dissolved orgaic matter in soil after incorporation ofa13C labeled residue: A batch incubation study[J]. Soil Biology&Biochemistry,2011,43,513-519
    [135] Gregorich, E.G., Liang, B.C., Drury, C.F., Mackenzie, A.F.&McGill, W.B..Elucidation of the source and turnover of water soluble and microbial biomasscarbon in agricultural soils. Soil Biology&Biochemistry,2000,32,581-587.
    [136] Jones, D.L., Hughes, L.T., Murphy, D.V.&Healey, J.R.. Dissolved organiccarbon and nitrogen dynamics in temperate coniferous forest plantations[J].European Journal of soil science,2008,59,1038–1048.
    [137] Luo, C. Y., Xu, G. P., Wang, Y. F., Wang, S.P., Lin, X.W., Hu, Y.G., Zhang,Z.H., Chang, X.F., Duan, J.C., Su, A.L.&Zhao, X.Q.. Effects of grazing andexperimental warming on DOC concentrations in the soil solution on theQinghai-Tibet plateau[J]. Soil Biology&Biochemistry.(2009),41,2493–2500
    [138] Schmidt, I.K., Tietema, A., Williams, D., Gundersen, P., Beier, C., Emmett,B.A.&Estiarte, M.. Soil solution chemistry and element fluxes in three Europeanheathlands and their responses towarming and drought[J]. Ecosystems,2004,7,638–649.
    [139] Zhao, X.Q.&Zhou, X.M.. Ecological basis of alpine meadow ecosystemmanagement in Tibet: Haibei alpine meadow ecosystem research station[J]. Ambio,1999,28,642–647.
    [140] Herbert, B.E.&Bertsch, P.M.. Characterization of dissolved and colloidalorganic matter in soil solution: a review. In: McFee, W.W., Kelly, J.M.(Eds.),Carbon Forms and Functions in Forest Soils[J]. Soil Science Society of America,Madison, WI,1995, pp.63–88.
    [141] Martin, H. C.. Dissolved and water-extractable organic matter in soils: areview on the influence of land use and management practices[J]. Geoderma,2003,113,357-380.
    [142] Karsten, K.. Properties of organic matter in soil solution in a German fenarea as dependent on lang use and depth[J]. Geoderma,2001,104,203-214.
    [143] Zsolnay, A, Baigar, E, Jimenez, M., Steinweg, B.&Saccomandi, F..Differentiatingwith fluorescence spectroscopy the sources of dissolved organicmatter in soils subjected to drying[J]. Chemosphere,1999,38(1),45-50.
    [144] Hagedorn, F., Vanhees, P.A.W., Handa, I.T.&Hattenschwiler, S.. Elevatedatmospheric CO2fuels leaching of old dissolved organic matter at the alpine treeline[J]. Global Biogeochemical Cycles,2008,22, GB2004, doi:10.1029/2007GB003026.
    [145] Kaiser, K.&Zech, W.. Rate of dissolved organic matter release and sorptionin forest soils[J]. Soil science,1998,163(9),714-725.
    [146] Guggenberger, G.&Kaiser, K.. Dissolved organic matter in soil: challengingthe paradigm of sorptive preservation[J]. Geoderma,2003,113,293–310.
    [147] Huang, W.Z.&Schoenau, J.J.. Fluxes of water-soluble nitrogen and phosphorousin the forest floor and surface mineral soil of a boreal aspen stand[J]. Geoderma,1998,81,251-264.
    [148] Kaiser, K, Guggenberger, G, Haumaier, L.,&Zech, W.. Dissolved organic mattersorption on subsoils and minerals studied by C-13-NMR and DRIFT spectroscopy.European Journal of soil science,1997,48,301-310.
    [149] Mark, F., Paul, W. H., John, F., Richard, D.B.&Davey, L.J.. Seasonalvariation in soluble soil carbon and nitrogen across a grassland productivitygradient[J]. Soil Biology&Biochemistry,2011,43,835-844.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700