舰船燃气轮机发电模块仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着舰船综合电力系统成为未来舰船动力系统的发展方向,燃气轮机由于其独特的优势,是作为大功率发电模块原动机的理想选择。本文针对某型三轴燃气轮机用作燃气轮机发电模块原动机的运行特性以及其在负荷突变情况下的控制特性进行了仿真研究。
     本文是基于某型三轴燃气轮机作为全电力推进的原动机的基础展开的,采用模块化建模的方法建立了燃气轮机系统各主要部件的非线性模型,同时考虑了转子惯性和容积惯性,所建模型具有很好的通用性。在部件特性处理方面,利用神经网络拟合法来处理压气机和涡轮的部件特性曲线,经验证,具有很高精度。利用Matlab/Simulink仿真平台,分别搭建了燃气轮机发电模块各部件的仿真模型,将各部件仿真模型通过连接调试,搭建起燃气轮机发电模块仿真模型。参考某型燃气轮机运行特性的相关资料,分别对仿真模型中的燃气轮机的额定功率、燃气轮机发电模块的故障保护、高压压气机后放气、调速器设置、最小、最大燃油流量限制等参数进行了初步设定。
     依据燃气轮机发电模块负荷突变要求,制定适合燃气轮机发电模块的控制算法,分别设计了PID控制器和模糊PID控制器,并对燃气轮机发电模块负荷突减20%、负荷突减40%、负荷突减60%、全甩负荷以及负荷突增50%等5种情况进行了仿真研究。仿真研究结果表明,当燃气轮机发电模块负荷突变时,通过对参数的设置和设计的PID控制器、模糊PID控制器,能很好的使机组性能满足指标要求。并且通过仿真结果的比较得出当燃气轮机发电模块负荷突减40%、60%以及全甩负荷时,模糊PID控制算法能够更好的满足调节要求。
     本文对于某型三轴燃气轮机作发电模块原动机的仿真研究,可作为后续燃气轮机发电模式运行的参考。
With the ship integrated power system has become the future development direction of ship power system; gas turbine is the ideal choice for the power generation module prime mover because of its unique advantages. In this paper, simulating the operating characteristics and mutation load control characteristics of a certain type three-axis gas turbine as power generation module prime mover.
     The paper is based on a certain type of three-axis gas turbine electric propulsion as the original motivation of integrated electric propulsion, using modular modeling idea to establish the nonlinear model of gas turbine system major components, while taking into account the inertia of the rotor inertia and volume, the model has good versatility. Using neural networks to handle the compressor and turbine components characteristic curve, verified with high accuracy. Using Matlab/Simulink, this work established a gas turbine power generation module. Reference to gas turbine operating characteristics relevant information, respectively initially setting gas turbine rated power, gas turbine power generation module fault protection, high pressure compressor tail discharge air, the governor setting, PID control parameters, minimum, maximum fuel flow restrictions and other parameters of gas turbine power generation module.
     According to the mutation load requirements of gas turbine power generation module, Respectively designed PID control system and fuzzy PID control system,and simulating gas turbine power generation module load sudden decrease 20%; load sudden decrease 40%;load sudden decrease 60%; load sudden decrease 100% and load sudden decrease 50% .The simulation results show that when gas turbine power generation module mutation load, set down parameter and design PID control system and fuzzy control system can make it meet guide line. Through comparing simulation results,When load sudden decrease 40%,60% and 100%,fuzzy PID control system is better than PID control system.
     The simulation of gas turbines for power generation module of the original motivation can be used as references to the gas turbine power generation mode.
引文
[1]翁史烈等著.燃气轮机性能分析[M].上海:上海交通大学出版社,1987,(12).
    [2]郑炜,姚清荣.某试验船电力推进分系统设计[J].舰船工程研究,2002(4).
    [3]孙丰华,刘晓远,刘德宏.某型船用燃气轮机的仿真建模[J].航空发动机,2004(1).
    [4]余又红,张仁兴,孙丰瑞.基于Matlab/Simulink的燃气轮机数控仿真研究[J].海军工程大学学报,2003,(4).
    [5]刘华立.燃气轮机半物理实时仿真试验研究:[硕士学位论文].上海:上海交通大学.2001.
    [6]赵云利.船舶综合全电力推进系统的建模与计算机仿真研究:[硕士学位论文].哈尔滨:哈尔滨工程大学.2006.
    [7]王志涛.燃燃联合动力发电模块特性仿真研究:[硕士学位论文].哈尔滨:哈尔滨工程大学.2008.
    [8]孙丰华,刘晓远,刘德宏.某型船用燃气轮机的仿真建模[J].航空发动机,2004(1).
    [9]倪维斗.热动力系统建模与控制的若干问题[M].北京科学出版社, 1996.
    [10]张绍基.航空发动机燃油与控制系统的研究与展望[J].航空发动机,2003,(3).
    [11]李扬.船用发电燃气轮机的仿真研究:[硕士学位论文].哈尔滨:哈尔滨工程大学.2006.
    [12]王志涛.燃燃联合动力发电模块特性仿真研究:[硕士学位论文].哈尔滨:哈尔滨工程大学.2008.
    [13]王元龙.舰船燃气轮机发电模块控制策略研究[J].舰船科学技术,2010(8).
    [14]郭正榘.燃气轮机自动控制系统设计[M].北京:机械工业出版社,1981.
    [15]薛定宇.控制系统仿真与计算机辅助设计。机械工业出版社,2005.
    [16]苏明,张会生.一种燃气轮机模块化非线性仿真模型.热能动力工程.1998(13):436.
    [17]张会生,翁史烈.燃气轮机速度调节过程的仿真研究.计算机仿真.2002(19):79.
    [18]金焘.国外舰船电力推进技术发展概况[J].中国船舶重工集团公司第704所,2006.
    [19]朱斌,赵焕洲.聚焦外军舰船动力--迈向新世纪的高功率燃气轮机.国防科技,2004. 9,6-9.
    [20]杨涛,王志涛,李淑英.船用分轴燃气轮机的模块化建模与动态仿真[J].汽轮机技术,2008,(8).
    [21]李方熠.燃气轮机数字式燃油控制半物理仿真系统设计与研究: [硕士学位论文].上海:上海交通大学.2010.
    [22]芮江,由大伟.舰船综合电力推进技术的现状和发展趋势[J].舰船科学技术,2010,(4).
    [23]刘纯顺.船舶综合电力推进的发展及应用[J].中国水运,2009,(11).
    [24]史麟观.从LM2500+看简单燃气轮机的进展.舰船科学技术,2000.2,11-15.
    [25]薛银春,孙健国.燃气轮机控制技术综述[J].航空动力学报,2005,(12).
    [26]赵景峰,叶春,秦春申.燃气轮机及其控制系统的综合建模研究.华东电力.2005,33(4):13~16.
    [27]徐立新,强文义,王玉琛等.发电用重型燃气轮机的模糊自适应控制.哈尔滨工程大学学报.2005,26(2):156~160.
    [28]潘磊,林中达,杨瑜文.重型单轴燃气轮机的机理型灰箱建模方法的研究.燃气轮机技术.2003,16(4):39~43.
    [29]刘慧.燃气轮机燃油控制系统的动态特性研究:[硕士学位论文].上海,上海交通大学,2008.
    [30]哈尔滨船舶锅炉涡轮机研究所.燃油调节器工作原理说明[M].
    [31]张志涌.精通MATLAB6.5版.北京航空航天大学出版社,2003.
    [32]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社.2005:10,70.
    [33]刘金琨著.先进PID控制MATLAB仿真(第2版)[M].北京:电子工业出版社,2004,(9).
    [34]陈策,毕小平.利用神经网络模型实现压气机特性图的三维逼近[J].车用发动机.1999,3(6):43页.
    [35]袁曾任.人工神经元网络及其应用(M).北京:清华大学出版社,1992.
    [36]胡寿松.自动控制原理第四版(M).北京:科学出版社,2000.
    [37]王文义.船舶电站组建与调试(M).哈尔滨:哈尔滨工程大学出版社,2009.
    [38]臧述升,宋华芬,王永泓.三轴燃气轮机动态性能模块化仿真.计算机仿真.2001,18(5):83~85.
    [39] Integrated electric power for the US Navy I Cdr ML cecereⅢ/paper 16, Electric Propulsion, the effective solution,5~6 October 1995.
    [40] Dennis, R. A, Samuelsen, G. S, Williams, M. C, Holcombe, N. T, Layne, A. W, 2002,“The National Energy Technology Laboratory’s Hybrid Power Systems Program”, ASME Paper GT2002-30668, ASME Turbo Expo 2002, Amsterdam, Netherlands.
    [41] Roberts, R. A., Brouwer, J., Liese, E., Gemmen, R., 2005,“Development of Controls forDynamic Operation of Carbonate Fuel Cell-Gas Turbine Hybrid Systems”, ASME Paper GT2005-68774, ASME Turbo Expo, Reno, Nevada (USA).
    [42] Wadia, A.R., Wolf, D.P., Haaser, F.G. (2002).“Aerodynamic Design and Testing of an Axial Flow Compressor with Pressure Ratio of 23.3:1 for the LM2500+ Engine,”ASME Transactions, Journal of Turbo machinery, Volume 124, July 2002, pp 331-340.
    [43] Chellinietal.(2007).“Validation Test for PGT25+G4 Gas Turbine”, Compressor Tech Two, April 2007.
    [44] Walsh, J. (2007).“PGT25+G4 Commissioning Experience”, GE Energy’s 2007 Aero Users Conference.
    [45] James Larminie and Andrew Dicks. Fuel Cell Systems Explained. John Wiley and Sons, Inc., New York, NY, 2003.
    [46] Martis D, Rowe A, Pinquier M-L, Price B, Papa constantinou N, Edwards D, Perez P, Mhanna S, 2005,“Engine Performance Improvement by Controlling the Low Pressure Compressor Working Lines”, ASME Paper No.GT2005-68729.
    [47] Price B, Demers L, 2006,“Dynamic Control of a Gas Turbine Engine Compressor During Rapid Transients,”US Patent Application, filed Oct.13, 2006, No. pending.
    [48] Matthew G. Hoffman, Helen J. Kozuhowski, Leonard L. Overton, Jr. P.E.U.S. Navy shipboard fleet evaluation of the redundant independent mechanical start system and full authority digital control. Proceedings of ASME TURBOEXPO 2000:2000(5).
    [49] Capt. Massimo MAGGINI, Cdr. Michele GIULIANO.ITALIAN navy evaluation concerning the use of electronic fuel control and hydraulic starters for flat - GE LM2500 GAS TURBINE. Proceedings of ASME TURBO EXPO 2000:2000(5).
    [50] Electric-Drive Propulsion for U.S. Navy Ships [R]. CRS Report for Congress, 2000.
    [51] R. Kurz and K. Braun - Degradation in Gas turbine Systems - Paper 200-GT-345,ASME Turbo Expo 2000, Munich Germany, June 2000.
    [52] J. Gottlib and S. Weiler - Gas Quality: a looming problem for power producers. Combined Cycle Journal– Second quarter 2003.
    [53] J. Zachary and R. Narula Unconventional fuels for Combined Cycle Applications an attractive alternative Power Gen Asia 2004, Bangkok, Thailand, October 2004.
    [54]高国权,电站用柴油机调速系统,北京:人民交通出版社54-58.
    [55]吴宏鑫,沈少萍. PID控制的应用与理论依据[J].控制工程,2003,(1).
    [56]沈维道.工程热力学.北京:高等教育出版社,1983.
    [57]李琳,王志华.电力推进之优势[J].船电技术,2004,24(6): 6-8.
    [58]冯海峰,樊丁.某型航空涡轴发动机燃油调节器建模与仿真[J].计算机仿真,2007,(12).
    [59]黄彦彰.燃气轮机联合循环系统建模及其性能分析:[硕士学位论文].北京:华北电力大学.2005.
    [60]黄庆红.汽轮机与燃气轮机原理及应用.南京:东南大学出版社,2005:178~198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700