基于粘流阻力数值计算的肥大型船尾部线型优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肥大型船在当今运输船型中占有相当大的比例,开展肥大型船的线型研究具有重要的意义,本文的研究对象即为肥大型船的尾部线型。对普通单桨船,由于尾部线型对推进效率的影响比对阻力的影响大得多,尾部线型设计在关注阻力的同时,更多的是追求如何为螺旋桨设计提供一个良好的输入条件,进而提高推进效率。与U形尾及V形尾设计相比,设计优良的球尾可以使螺旋桨盘面处周向伴流分布较均匀,并可减小推力减额,从而既提高了推进效率,又可以减少螺旋桨激振力,改善尾部振动。但由于球尾的控制参数较多,尾部横剖线又有多种形状,球尾与横剖线可以有多种过渡组合,带球尾的尾部线型设计并不轻松。
     数值计算已成为船体线型优化必不可少的手段。对于粘性起主导作用的船舶尾流场,必须采用粘流计算,其中雷诺平均N-S方程方法(即RANS方法)最常见,通过构造适当的湍流模式,RANS方法已成功解决了大量工程实际问题。PARNASSOS即是一种以RANS方法为核心、主要求解船舶尾流及伴流场的粘流计算软件,其突出特点是在保证一定计算精度的前提下有着非常快的计算速度,并且可用于实船尺度下的计算。
     为了研究尾部线型对肥大型船尾部流场的影响,本文选取了两艘散货船、一艘油船作为母型船,系列变化其尾部线型,线型的调整既包括对尾部横剖线整体的调整,也包括对球尾及其外围线型的单独考虑,另外还研究了中纵剖线形状的影响。计算在结构吃水的对应航速下进行,对模型尺度和实船尺度都进行了计算。最后对计算结果从粘性阻力和伴流质量两方面进行了分析和总结,力求掌握减小肥大型船的粘性阻力和改善伴流场分布的线型优化方向,以指导工程实际,更好地为船舶总体设计服务。
Full-formed ship is the main ship form in today’s cargo carrier, and research on such ship’s lines is of great importance. This paper mainly deals with afterbody lines of full-formed ships. For usual single-screw ship, afterbody lines affect the propulsion efficiency much more than the viscous resistance, the design of ship stern is then to make a good starting point for propeller, thus improve the propulsion efficiency. Comparing with U- and V-shaped stern, the incorporation of stern bulb on full-formed ship could provide more uniform circumferential wake distribution at propeller disk, which on one hand reduces the propulsion deduction, increases the propulsion efficiency and on the other hand, stern vibration would be reduced by the decrease of propeller exciting force. But because of the complicated match of stern bulb with afterbody lines, it’s not an easy job concerning design of afterbody lines.
     Numerical calculation has been playing an important role in ship’s hydrodynamic optimization. For ship stern flows, viscous flow calculation has to be taken, in which solving the Reynolds-averaged Navier-Stokes equation (RANS method) is quite normal. By constructing proper turbulence model, RANS method has proved to be very successful in practical engineering applications. PARNASSOS is such a RANS code dedicated to predict the steady turbulence flow around ship hulls with very fast calculation speed and good precision. Full-scale calculation is PARNASSOS’another main characteristic.
     In this paper, two bulk carriers and one tanker are chosen as models for the calculation. Various transformations of afterbody lines including stern bulb, section lines and profile are generated. All calculations are done using PARNASSOS at scantling draught and its corresponding speed. Both model and full scale calculation are performed. Analysis is finally made with respect to both resistance and wake field quality. It hopes that this paper can provide some useful information on the hydrodynamic optimization of full-formed ship.
引文
[1]孟宪钦,迟云鹏,王少新,王言英.大方型系数船舶球尾线型的设计与性能[J].船舶工程, 1994, (3).
    [2]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社, 2007.
    [3]蔡荣泉.船舶计算流体力学的发展与应用[J].船舶, 2002, (4).
    [4]周连第.船舶与海洋工程计算流体力学的研究进展与应用[J].空气动力学学报, 1998, (1).
    [5]秦江涛.低速肥大型船粘性流数值模拟[D].武汉理工大学硕士学位论文, 2007.
    [6] J.L. Hess, A.M.O. Smith. Calculation of Nonlifting Potential Flow about Arbitrary Three Dimensional Bodies [J]. Journal of Ship Research, 1964.
    [7] Lasson L. (Ed.). SSPA-ITTC Workshop on Ship Boundary Layers [R]. SSPA Report 90, Gothenburg, 1981.
    [8] Lasson L., Patel V.C., dyne G. (Eds.). SSPA-CTH-IIHR Workshop on Viscous Flow [R]. Flowtech Research Report 2, Flowtec Int, Gothenburg, 1991.
    [9]王献孚,周树信等.计算船舶流体力学[M].上海:上海交通大学出版社, 1991.
    [10] Deng G.B., Queutey P., Visonneau M.. Navier-Stokes Computations of Ship Stern Flows: A Detailed Comparative Study of Turbulence model and Discretization Schemes [C]. 6th Symposium on Numerical Ship Hydrodynamics, Iowa City, 1993.
    [11] SVENNBERG S.U.. A test on turbulence models for steady flows around ships [A]. Proc. of Gothenburg 2000-A Workshop on Numerical Ship Hydrodynamics [C]. Chalmers University of Technology, Gothenburg, Sweden, 2000.
    [12] DENG G.B. and VISONNEAU M.. Comparison of explicit algebraic stress models and second order turbulence closures for steady flows around the KVLCC2 ship at model and full scales [A]. Proc. of Gothenburg 2000-A Workshop on Numerical Ship Hydrodynamics [C]. Chalmers University of Technology, Gothenburg, Sweden, 2000.
    [13] TAHARA Y. and HIMENO Y.. Applications of isotropic and anisotropic turbulence models to ship flow computation [J]. J. Kansai Soc. N.A., Japan, 1996, 225: 75-91.
    [14] Tzabiras G.D.. A numerical investigation of 2D steady free surface flows [J]. Int. Jnl.Numerical Methods in Fluids, Vol.25, pp. 567-598, 1997.
    [15] Van Brummelen E.H., Raven H.C. and Koren B.. Efficient numerical solution of steady free-surface Navier-Stokes flow [J]. Jnl. Computational Physics, Vol. 174, pp.120-137.
    [16] Auke van der Ploeg, Alban Leroyer, et al. Computation of Free-surface Viscous Flows at Model and Full Scale-a Comparision of Two Different Approaches [A]. 27th Symposium on Naval Hydrodynamic [C], Seoul, Korea, 5-10 October, 2008.
    [17] Hoyte C. Raven, Bram Starke. Efficient Methods to Compute Steady Ship Viscous Flow with Free Surface [A]. 24th Symposium on Naval Hydrodynamics [C], Fukuoka, JAPAN, 8-13 July, 2002.
    [18] J. Schweighofer, B. Regnstrom, A.R. Starke, G. Tzabiras. Viscous flow computations of two existing vessels at model and full scale ship Reynolds numbers-a study carried out within the European Union project EFFORT [A]. International Conference on Computational Methods in Marine Engineering [C], 2005.
    [19] Chen Yigen, Cai Rongquan, Shen Qixin. Calculations of viscous nonlinear free surface flows by solving both unsteady and steady uncompressible Navier-Stokes equations [A]. Proceedings of 3th ICHD [C], SEOUL, KOREA, 12-15 October, 1998.
    [20]蔡荣泉.采用Rankine源、RANSFS组合方法求解计及波影响的船舶粘性绕流问题[R]. 708研究所科研报告. 1999.
    [21] Cai Rongquan, et al. A Numerical Investigation of Free Surface Viscous Flow around the Ship by Combination of Rankine Source Method with RANSFS [J]. Journal of ship mechanics, 2000, 4(3).
    [22]张志荣,李百齐,赵峰.船舶粘性流动计算中湍流模式应用的比较[J].水动力学研究与进展A辑, Vol.19, No. 5, 2004(9).
    [23]黄少锋,张志荣,赵峰,李百齐.带自由面肥大船粘性绕流场的数值模拟[J].船舶力学, Vol.12, No.1, 2008, (2).
    [24]许晶,周连第,高秋新.标称伴流尺度效应的数值模拟[J].水动力学研究与进展A辑, 1998, 13(4).
    [25]张亮,李云波.流体力学[M].哈尔滨:哈尔滨工程大学出版社, 2006.
    [26]林建忠,阮晓东等.流体力学[M].北京:清华大学出版社, 2006.
    [27] Menter F R. Two equation eddy viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32: 1598-1605.
    [28] Menter F R. Eddy viscosity transport equations and their relation to the k ?εmodel [J]. J. of Fluids Eng., Vol. 119, 1997, pp. 876-884.
    [29] Bram Starke. A validation study of wake-field predictions at model and full scale Reynolds numbers [C]. Paper collections of MARIN, 2010.
    [30] Martin Hoekstra, et al. Viscous flow calculations for KVLCC2 and KCS models using the PARNASSOS code[A]. Gothenburg 2000-A workshop on numerical ship hydrodynamics [C]. Gothenburg, 2000.
    [31] Auke van der Ploeg, Martin HOEKSTRA. Multi-objective Optimization of a Tanker Afterbody using PARNASSOS [C]. Papers of VIRTUE project, Netherlands, 2008.
    [32]朱克勤,许春晓.粘性流体力学[M].北京:高等教育出版社, 2009.
    [33] Hoyte C. Raven, Auke van der Ploeg, Bram Starke. Computation of free-surface viscous flows at model and full scale by a steady iterative approach [A]. 25th Symposium on Naval Hydrodynamics [C]. St. Join’s, Newfoundland and Labrador, CANADA, 8-13 August, 2004.
    [34]陈懋章.粘性流体动力学基础[M].北京:高等教育出版社, 2002.
    [35] Martin HOEKSTRA. Numerical simulation of ship stern flows with a space-marching navier-stokes method [D]. Thesis, Technical University of Delft, October 1999.
    [36]次洪恩.基于势流阻力数值计算的肥大船型球首优化方法研究[D].中国舰船研究院硕士学位论文, 2009.
    [37] Bram Starke, Jaap Windt, Hoyte C. Raven. Validation of viscous flow and wake field predictions for ships at full scale [A]. 26th Symposium on Naval Hydrodynamics [C], Rome, ITALY, 17-22 September, 2006.
    [38] J.B. Verkuyl and H.C. Raven. Joint EFFORT for Validation of Full-Scale Viscous-Flow Predictions [J]. The Naval Architect, January, 2003.
    [39] Dacles-Mariani J., Zilliac G.G., Chow J.S. and Bradshaw P.. Numerical/experimental study of a wingtip vortex in the near field [J]. AIAA Journal, Vol. 33, pp. 1561-1568, 1995.
    [40]许维德.江海直达船船型的设计特点[J].华南理工大学学报, 1994, (3).
    [41] Henrik Andreasson. The quest for lower fuel costs-save by improving wake quality [J]. SSPA newsletter-HIGHLIGHTS, 2007, (3).
    [42]伍锐,季盛,沈浩,陈洋.船模伴流场修正对螺旋桨激振力预报的影响[J].上海船舶运输科学研究所学报, 2009, (12).
    [43]黄家彬.基于CFD的船后伴流随桨径变化的研究[D].上海船舶运输科学研究所硕士学位论文, 2010.
    [44] Friedrich Mewis. Selected results of wake measurements and calculations at HSVA [C]. HSVA papers, 2006, (9).
    [45] Uwe Hollenbach, Jurgen Friesch. Efficient Hull Forms-What can be gained? [C]. Paper collections of HSVA, 2010.
    [46] Uwe Hollenbach. Design and Optimisation of Tankers and Bulk Carriers from a Hydrodynamic Point of View [J]. HANSA International Maritime Journal, 2005.
    [47] Gert-Jan Zondervan, Bram Starke. Advances in full-scale wake-field predictions and the implications for the propeller design [C]. MARIN papers, 2009.
    [48]黄宏波等.船舶设计实用手册(总体分册)[M], 1997.
    [49] P.M. Hooijmans and R.v.d. Veeken. Suezmax tanker; Hull form optimization and model tests [R]. MARIN model test report, 2010.
    [50] P.M. Hooijmans and R. Kerkhof. Bulk carrier (206000 DWT); Hull form optimization and model tests [R]. MARIN model test report, 2010.
    [51] Wake survey results of 48000 DWT bulk carrier [R]. MARIN model test report, 2010.
    [52]杨佑宗,胡劲涛等.船舶线型设计与研究[J].上海造船, 2001, (2).
    [53]何友声.标称伴流分数平均法则之分析[J].中国造船第三十六期, 1958.
    [54]王国强,盛振邦.船舶推进[M].北京:国防工业出版社, 1985.
    [55]程斌.船舶设计教程[M].哈尔滨工程大学自印讲义, 2006.
    [56] John D. Anderson JR..计算流体力学入门[M].北京:清华大学出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700