基于POM的浪流耦合模式的建立及其在大洋和近海的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋中温度的垂直结构大体可以分为三层:上混合层、温跃层和底层弱垂直温度梯度层。对于海洋环流模式来说,无论对于大尺度全球气候模拟还是小尺度的近海模拟,准确地再现上层海洋的垂直混合过程和模拟上混合层是很重要的。目前广泛应用Mellor和Yamada(M-Y)湍流混合模型在层化较强的流体(如夏季上层海洋)中对湍流混合系数计算效果不佳。模拟得到的夏季海洋表层温度(SST)偏高、上混合层偏浅且温跃层强度偏低是采用M-Y湍流混合模型的海洋环流数值模式所面临的普遍问题。
     袁业立于1979年指出,造成表层海水混合的主要因素有三种:(1) 由非稳定层化造成的自由浮力对流;(2) 流动的剪切不稳定性;(3) 海浪的搅拌。在层化较强的上层海洋中,海浪的搅拌的作用可以超过前两种的作用的总合。M-Y湍流混合模型可以较好地描述和表达前两种机制造成的混合,但不包括海浪的搅拌造成的混合,这是采用M-Y湍流混合模型的海洋环流模式所模拟的夏季海洋上混合层偏浅的根本原因。如何准确地描述海浪引起的垂直涡动扩散系数并应用到实际的三维海洋模式中是一项具有挑战性的工作。
     本文在袁业立和乔方利等提出的波浪运动混合的理论框架的基础上,基于MASNUM~1(前身为LAGFD-WAM)海浪波数谱数值模式和POM(普林斯顿海洋模式)环流模式建立了MASNUM浪-流耦合模式。耦合的方法是首先利用MASNUM海浪波数谱数值模式来计算波浪的方向谱,再利用袁业立、乔方利提出的理论计算浪致混合Bv和海浪对海流的动量转移项,并将其引入到环流模式中。
     本文首先将MASNUM浪-流耦合模式应用到准全球大洋,所模拟的海浪有效波高同Topex/Poseidon高度计观测结果符合较好。由海浪模式得到的浪致混合Bv和由M-Y湍流模型得到垂向混合系数Kh相比,在夏季的中高纬度海区的上层,Bv比Kh要大;在低纬度热带海区上层Bv小于Kh。将浪-流耦合模式和采用M-Y湍流模型的原始POM模式模拟得到的夏季上层温度结构同Levitus资料比较表明:浪-流耦合模式的结果明显比原始POM的结果和Levitus资料相吻合,浪-流耦合模式模拟得到的夏季上混合层厚度比原始POM要深,和Levitus资料
The vertical temperature structures of the ocean generally can be divided into three layers: the surface mixed layer, the thermocline and the layer with weak vertical temperature gradient. An accurate representation of the upper ocean mixing processes and thus the oceanic surface mixed layer (ML) is important for ocean circulation models, whether they are aimed at small-scale coastal simulations or for large-scale global climate simulations. The widely used Mellor-Yamada turbulence closure scheme often underestimates the vertical mixing in the upper ocean with strong stratification, and thus the sea surface temperatures (SST) is overestimated, ML is too shallow and the seasonal thermocline is underestimated, especially during the summer.Yuan Yeli (1979) suggested that there are three mechanisms responsible for the water mixing in the upper ocean: (1) the free buoyancy convection developed with unsteady stratification, (2) the turbulence mixing caused by shear of unsteady velocity field; (3) the wave stirring. In the upper ocean with strong stratification and weak flow shear mixing induced by wave stirring is often larger the former two mechanisms. The M-Y turbulence scheme can describe the mixing induced by the former two mechanisms well, but the wave-induced mixing is not included in it. That is the main reason why the surface mixing layer simulated by the circulation model using M-Y turbulence closure model is too shallow in summer. How to parameterize the wave-induced mixing and apply it into the three-dimensional ocean circulation model is a challenging job.Base on the theory of wave-induced mixing put forward by Yuan Yeli and Qiao Fangli this paper established the MASNUM wave-circulation coupled model, which incorporated the MASNUM wave model and the Princeton Ocean Model (POM). The
    coupling method is that first calculate the wave-number spectrum then compute the wave-induced mixing Bv and put it into the circulation model.The paper firstly applied the MASNUM wave-circulation coupled model into the quasi-global ocean. The simulated significant wave height agrees the Topex/Poseidon altimeter observation well. In the summer upper ocean in the middle and high latitude the wave-induced mixing Bv is larger than the vertical mixing derived from the M-Y turbulence closure model while in the low latitude Bv is smaller than Kh. Comparing the simulated summer upper ocean temperature structure by the wave-circulation coupled model and the original POM with the Levitus data, it suggests there is obvious difference between the result of the original POM and the the Levitus data and the result of the coupled model agrees the Levitus data well. The mixed layer depth in the coupled model result is much deeper than the result of the original POM and it fit the Levitus data well. This suggests that the wave-induced mixing play the key role in forming the summer surface mixed layer in the middle latitude, it is also significant to the upper mixed layer in the tropical area.On the other hand the Yellow Sea Cold Water Mass (YSCWM) as a unique ocean phenomena attracts the interests of many oceanographers, but controversy remains on the bottom layer circulation and the vertical circulation of the YSCWM. Based on the MASNUM wave-circulation coupled model the paper established the MASNUM wave-tide-circulation coupled model by introducing periodical the tidal current in the open boundary. The model is applied to study the circulation pattern of the summer Yellow Sea. The simulated tide, temperature and salinity agree the observation well, the simulated current filed is also confirmed by observation. A comprehensive three-dimensional circulation structure of the Yellow Sea in summer is put forward based in the model result and the observation data:(1) In the surface layer (0-4m), driven by wind the prevailing current direction is northeastward.(2) The upper layer (4-40m) is dominated by a basin scale anti-clockwise (cyclonic) gyre, diagnostic analysis of the momentum balances and sensitive study shows the cyclonic circulation in the upper layers is mainly a
    quasi-geotropic flow along tidal-induced temperature front, it is also strengthened by the Eulerian residual tidal currents. The stream function of the YS shows the net circulation of the YS is anti-clockwise (cyclonic). (3) In the bottom layer (below 40m) the water diverges from the YS trough towards seashore and the divergence velocity is strong along the temperature front area. The baroclinic pressure gradient force due to the strong tidal induced temperature front in the bottom layer drives the water to diverge. There also exists a weak southward current. Tidal residual current and the northward wind transport in the surface layer may contribute to the formation southward flow in the bottom layer.On the vertical circulation structure, the vertical circulation structures vary along different sections. The upwelling is front-scale instead of basin-scale. The upwelling exists along the bottom slope. The upwelling of the vertical circulation is mainly induced by two mechanisms: the baroclinic pressure gradient force due to the tidal induced temperature front and compensation upwelling of the Ekman transportation. A circulation cell is found in the lower layer of the front near the Korean coast with upwelling along the coastal side of the front and downwelling along the offshore side of the front.The MASNUM wave-circulation coupled model established in this paper successfully solve the problem of the surface mixing layer simulated by the circulation model using M-Y turbulence closure model is too shallow in summer. It is important for ocean circulation models, whether they are aimed at small-scale coastal simulations or for large-scale global climate simulations. The MASNUM wave-tide-circulation coupled model established in this paper also enhanced the ability of the original POM in simulating the circulation in the coastal areas.
引文
[0] 陈长胜,海洋生态系统动力学与模型。北京:高等教育出版社,2003,404页
    [1] 陈国珍等,渤海、黄海、东海海洋图集(水文部分)。北京:海洋出版社,1992,524页。
    [2] 陈则实,黄海海流概况。海洋研究,1979,(3):1-40。
    [3] 方国洪等,黄海的潮能消耗。海洋与湖沼,1979,10(3)
    [4] 方国洪、魏泽勋等,中国近海域际水、热、盐输运:全球变网格结果,中国科学,2002,32(12).969~977
    [5] 冯士笮,浅海环流物理及数值模拟。《物理海洋数值计算》(冯士笮,孙文心主编),科学与工程计算丛书,河南郑州:河南科技出版社,1992,543-610。
    [6] 管秉贤:黄海冷水团的水温变化以及环流特征的初步分析。海洋与湖沼,19635(4):225-284。
    [7] 郭炳火,黄海物理海洋学的主要特征。黄渤海海洋,1993,11(3):7-18。
    [8] 郭炳火等,中国近海及邻近海域海洋环境。北京:海洋出版社,2004,32-101页
    [9] 赫崇本等:黄海冷水团的形成及其性质的初步探讨。海洋与湖沼,1959,2(1):11-15。
    [10] 乔方利,马建,夏长水,杨永增,袁业立:波浪和潮流混合对黄东海夏季温度垂直结构的影响研究。自然科学进展,2004,14(12):1434-1441.
    [11] 苏纪兰,黄大吉,黄海冷水团的环流结构。海洋与湖沼增刊,1995,26(5):1-7。
    [12] 孙湘平,中国海区域海洋状况。内部讲义,2003,369页。
    [13] 汤毓祥,东海和南黄海潮余流的数值模拟。1990,黑潮调查研究论文选(1),33-34
    [14] 汤毓祥等,南黄海环流的若干特征。海洋学报,2000,20(1):1-16
    [15] 袁业立,黄海冷水团环流。海洋与湖沼,1979,10(3):187-199。
    [16] 袁业立等:LAGFD-WAM海浪数值模式Ⅰ.基本物理模型。海洋学报,1992a,14(5):1-7。
    [17] 袁业立等:LAGFD-WAM海浪数值模式Ⅱ.区域性特征线嵌入格式及其应用。海洋学报,1992b,14(6):12-24。
    [18] 袁业立等:黄海冷水团环流结构及生成机制研究Ⅰ.0阶解及冷水团的环流结构。中国科学,1993,23(1):93-103。
    [19] 袁业立等:近海环流数值模式的建立,部分Ⅰ.海波的搅拌和波流相互作用。水动力学研究与进展(A辑),1999,14(4B):1-8。
    [20] 万振文,乔方利,袁业立,渤、黄、东海三维潮波运动数值模拟。海洋与湖沼,1998,29(6):611-616
    [21] 赵保仁:黄海潮生陆架锋的分布。黄渤海海洋,1987a,5(2):16-23。
    [22] 赵保仁:南黄海西部的陆架锋及冷水团锋区环流结构的初步研究。海洋与湖沼,1987b18(3):217-226。
    [23] 赵保仁,北黄海冷水团的环流结构探讨——潮混合锋对环流结构的影响。海洋与湖沼,1996,
    [24] 朱建荣等,黄海、东海夏季环流的数值模拟。海洋学报,2002,24(增刊):123-132。27(4):429-435。
    [25] Beardsley, R. C., R. Limebumer. K. Kim, and J. Candela, Lagrangian flow observations in the East China, Yellow and Japan Seas, La Mer, 1992, 30, 297-314.
    [26] Chen, C., and R. C. Beardsley. A numerical study of stratified tidal rectification over finite-amplitude banks, I, Symmetric banks, J. Phys. Oceanogr., 1995, 25, 2090-2110.
    [27] Chen, C., R. C. Beardsley, and R. Limebumer. A numerical study of stratified tidal rectification over finite-amplitude banks, Ⅱ, Georges banks, J. Phys. Oceanogr., 1995, 25, 2111-2128.
    [28] Chen, C., Q. Xu, R. C. Beardsley, and P. J. S. Franks. Model study of the cross-frontal water exchange on Georges Bank: A three-dimensional Lagrangian experiment, J. Geophys. Res., 2003, 108(C5), 3142, doi: 10.1029/2000JC000390.
    [29] Craig, P. D. and M. L. Banner. Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr., 1994, 24, 2546-2559.
    [30] da Silva, A. M., C. C. Young, and S. Levitus. Atlas of Surface Marine Data 1994, Volume 3, Anomalies of Heat and Momentum Fluxes. NOAA Atlas NESDIS 8. U.S. Department of Commerce, NOAA, NESDIS, 1994a, 411 pp.
    [31] da Silva, A. M., C. C. Young and S. Levitus. Atlas of Surface Marine Data 1994, Volume 4, Anomalies of Fresh Water Fluxes. NOAA Atlas NESDIS 9. U.S. Department of Commerce, NOAA, NESDIS, 1994b, 308 pp.
    [32] Ezer T. On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor-Yamada turbulence scheme. J. Geophys. Res., 2000:105(C7): 16843-16855.
    [33] Ezer T. and George L. Mellor. Simulation of the Atlantic Ocean with a free surface sigma coordinate ocean model [J], J. Geophys. Res., 1997, 102, 15647~15657.
    [34] Fang G., Tide and tidal charts for the marginal Seas adjacent to China, Chin. J. oceanology and limnology, 1986,4(1), 337-345.
    [35] Fang, G., Y. Wang, Z. Wei, B. H. Choi, X. Wang, and J. Wang, Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry, J. Geophys. Res., 2004,109, C11006, doi:10.1029/2004JC002484.
    [36]Feng Ming, Hu Dunxin and Li Yongxiang, A theoretical for the thermohaline circulation in the southern Yellow Sea. Chin. J. Oceanol. Limnol., 1992, 10(4):289~300.
    [37]Fujio, S. et al. World ocean circulation diagnostically derived from hydrographic and wind stress fields 1. The velocity field, J. Geophys. Res., 1992, 97, 11163-11176.
    [38]Fujio, S. et al. World ocean circulation diagnostically derived from hydrographic and wind stress fields 2. The water movement [J], J. Geophys. Res., 1992, 97, 14439-14452.
    [39]Gary, E., A. Bennett, and M. Foreman. TOPEX/Poseidon tides estimated using a global inverse model, J. Geophys. Res., 1994, 99, 24,821 - 24, 852.
    [40]GUO X. et al, A triply nested ocean model for simulating the Kuroshio — Roles of Horizontal resolution and JEBAR [J], J. Phys. Oceanogr., 2003, 33, 146-169
    [41]Kagimoto,T, and T. Yamagata. Seasonal transport variations of the Kuroshio: An OGCM simulation. [J], J. Phys. Ocean., 1997,27, 403-418.
    [42]Kantha, L. H. and C. A. Clayson. An improved mixed layer model for geophysical applications. J. Geophys. Res., 1994,99: 25235-25266.
    [43]Lee, S.-H. and R. C. Beardsley. Influence of stratification on residual tidal currents in the Yellow Sea, J. Geophys. Res., 1999,104, 15679-15701.
    [44]Lee, H. J., K.T. Jung, M.G.G. Foreman, and J.Y. Chung. A three dimensional mixed finite-difference Galerkin function model for the oceanic circulation in the Yellow Sea and East China Sea. Cont. Shelf Res., 2000, 20, 863-895
    [45]Lee, H. J., K.T. Jung, M. G. G. Foreman, and J. Y. Chung. A three dimensional mixed finite- difference Galerkin function model for the oceanic circulation in the Yellow Sea and East China Sea in the presence of M_2 tide. Cont. Shelf Res., 2002, 22, 67-91.
    [46]Levitus, S.. Climatological Atlas of the World Ocean. NOAA Prof. Paper No. 13, 1982,U. S. Govt. Printing Office, 173 pp. plus 17 microfiche.
    [47]Lin K., Y. Tang, and B. Guo. An analysis on observational surface and upper layer current in the Yellow Sea and the East China Sea, J. Korea society of oceanography, 2002, 57(3), 187-195.
    [48]Liu Guimei et al., Numerical study on the velocity structure around tidal fronts in the Yellow
     Sea. Advances in atmospheric sciences, 2003, 20(3): 453-460.
    [49] Martin, P. J., Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res., 1985, 90, 581-597.
    [50] Mellor, G. L. and T. Yamada. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. and Space Phys., 1982, 20, 851-875.
    [51] Mellor, G. L., T. Ezer, and L. Y. Oey. On the pressure gradient conundrum of sigma-cordinate ocean models, J. atmos. Oceanic Technol., 1994, 11, 1120-1129.
    [52] Mellor, G. L. User's guide for a three-dimensional, primitive equation, numerical ocean model [M]. Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, 1992,35 pp [Available from Princeton University, Princeton, NJ 08544].
    [53] Mellor G., The three-dimensional current and wave equations. J. Phys. Oceanogr, 2003, 33, 1978-1989.
    [54] Price J F, Weller R A, Pinkel R. Diurnal cycling: Observation and models of the upper ocean response to diurnal heating, cooling and wind mixing. J Geophys Res., 1986, 91:5411-5427.
    [55] Qiao, F., S. Chen, C. Li, W. Zhao, and Z. Pan. The study of wind, wave, current extreme parameters and climatic characters of the South China Sea., 1999, Journal of Marine Technology
    [56] Qiao, F., J. Ma, Y. Yang, and Y. Yuan. Simulation of the Temperature and Salinity Along 36°N in the Yellow Sea with a Wave-Current Coupled Model, J. Korea society of oceanography, 2004,39(1), 35-45
    [57] Qiao, F., Y. Yuan, Y. Yang, Q. Zheng, C. Xia, and J. Ma. Wave induced mixing in the upper ocean: Distribution and application to a global ocean circulation model, Geophys. Res. Lett., 2004, 31, L11303, doi:10.1029/2004GL019824.
    [58] Takahashi, S. and T. Yanagi. A numerical study on the formation of circulations in the Yellow Sea during Summer, La Mer, 1995,33, 135-147
    [59] Xia, C, F. Qiao, M. Zhang, Y. Yang, and Y. Yuan. Simulation of double cold cores of the 35°N section in the Yellow Sea with a wave-tide-circulation coupled model, Chinese J. Oceanology andLimnology, 2004, 22(3), 292-298.
    [61]Xu D., Y. Yuan and Y. Liu. The baroclinic circulation structure of Yellow Sea Cold Water Mass, Science in China (series D), 2002, 46(2), 117-126.
    [62] Yanagi, T. and S. Takahashi . Seasonal variation of the circulations in the East China Sea and the Yellow Sea, J. Oceano., 1993,49, 503-520.
    [63]Yu, W., F. Qiao, Y. Yuan, and Z. Pan. Numerical modeling of wind and waves for Typhoon Betty (8710). Acta Ocenologica Sinica, 1997, 7(5(4), 459-473.
    [64]Wei, Z., B.-H. Choi and G. Fang. Water,heat and salt transports from diagnostic world ocean and north Pacific circulation models [J]. La Mer, , 2000,38(4), 211-218.
    [65]Wyrtki, K. and Koblinsky B. Mean water and current structure during the Hawaii to Tahiti shuttle experiment, [J], J. Phys. Ocean., 1984,14,242-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700