大鼠孤束核微注射5羟色胺系统药物对睡眠-觉醒的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:睡眠-觉醒是一种生物学的昼夜节律。孤束核是内脏传入神经核团,同时作为低位脑干的睡眠诱发区,与许多内脏疾病的睡眠问题有关,但是其产生的机制尚未完全理清。5-羟色胺是作用于睡眠-觉醒的重要单胺类神经递质。故本实验采用脑立体定位法在孤束核进行微注射5-羟色胺系统的药物,研究5-羟色胺在孤束核影响睡眠-觉醒时的作用通路,同时推测孤束核在睡眠中发挥的作用,为进一步的理解睡眠机制、治疗内脏疾病引起的睡眠问题提供理论依掘,为药物研发提供靶点。
     方法:1、实验动物:本实验选用体重为220~260g的健康成年雄性SD大鼠。2、动物手术:将大鼠固定于脑立体定位仪上,参照大鼠脑立体定位图谱,定位孤束核的位置,埋置导药管;同时在皮层放置2个电极记录脑电,颈下2个电极记录肌电。动物恢复5天,然后进行记录。
     3、脑电记录:采用日本光电脑电机对动物进行每天4h,连续4天的脑电图记录。
     4、病理切片:记录完毕,动物采用心脏灌注取脑,做石蜡切片进行HE染色完成组织定位鉴定;并对NS、5-HTP、MS三组动物做冰冻切片,进行免疫组化染色。
     5、统计方法:采用SPSS10.0统计软件分析,每组动物进行自身配对t检验。α=0.05,双侧t检验
     结果:1、各组自身配对检验:对照组(NS组)无统计学意义;5-HTP组、8-OH-DPAT组、H89组差别有统计学意义,均使觉醒减少,慢波睡眠增加,异相睡眠增加;MS组无显著的统计学意义,但是有明显的觉醒增加、睡眠减少的趋势;spiperone组、cAMP组差别有统计学意义,觉醒增加,慢波睡眠减少,异相睡眠减少。
     2、NS组、5-HTP组、MS组进行的孤束核5-HT_(IA)R染色示:与NS组相比,5-HTP组的5-HT_(IA)R上调,MS组的5-HT_(IA)R下调。
    
    闷成创卜花开究生学位论文
    3、NS组、5一HTP组、MS组进行的孤束核5一轻色胺能神经纤维染色示:与
    NS组相比,5一HTP组的5一轻色胺能神经纤维终末染色加强,MS组的5一轻色
    胺神经纤维终末染色减弱。
    4、NS组在中脑进行5一HTIAR的染色:5一HTIAR在中脑的分布广泛,尤其在
    中缝核、网状结构LDT用PT处。
    5、NS组、5一HTP组、MS组进行的中脑5一HT神经纤维染色示:与NS组相
    比,5一HTP组的5一HT能阳性细胞少,MS组的5一HT能阳性细胞多。
    结论:1、孤束核作为睡眠诱发区,5一轻色胺在慢波睡眠和异相睡眠时相发挥
    着重要的作用。
    2、5一HT在孤束核影响睡眠一觉醒时是通过作用5一HT,AR,祸联G订。蛋白,使
    cAMP生成减少,PKA磷酸化减少而发挥觉醒减少、睡眠增加的生物学效应。
    3、在孤束核处,5一轻色胺增多延长慢波睡眠:而在中脑处则是5一轻色胺减少
    引起慢波睡眠延长:这说明了在孤束核和中脑之间存在相互抑制的网络调节
    系统。
    4、作为异相睡眠发生的授时因子,孤束核通过低位脑千的上行抑制系统影响
    上行激动系统,产生异相睡眠。
    5、5一轻色胺在睡眠一觉醒中的作用主要通过突触后靶组织发挥。从异相睡眠
    看,胞外5一轻色胺含量与中缝背核的抑制是一致的,可能是通过脑桥被盖背
    外侧核/脑桥被盖网状核(LDT爪PT)的胆碱能细胞功能的去抑制而引起异相
    睡眠。
Objection: Sleep-wake cycle is a kind of biological rhythm. The nucleus of solitarius tractus (NST) is an important site for the intergration of visceral information and its modification by afferent neural systems. As for a sleep-inducing area of lower brain stem, it is related with sleep disturbance of visceral diseases, but these mechanisms are unclear. 5-hydroxytryptamine (serotonin, 5-HT) is an important kind of monoaminergic neurotransmitters. In the present study, a method of stereotaxic apparatus was employed to fix a guide cannula in the NST which was used as a way to microinject 5-HT 's related drugs. Then we can analyze electroencephalogram (EEG) to specify the signal transduction pathways through which 5-HT generate sleep in the NST. In addition, we furthered to understand that NST plays a role in the paradoxical sleep (PS), providing a foundation of emulating mechanism of sleep and treating some sleep disturbance involved visceral diseases and a new target point about developing a new medicine.
    Methods: 1. Subjects: Male Sprague Dawley rats (220-260 mg) were purchased from military medical institution at Beijing.
    2. Animal surgery: SD rats were operated under the acetylglycinamide-chloral diphosphate (AGAC) anesthesia for the implantation of chronically dwelling electrodes for recording the EEG and electromyogram (EMG) and received a fixed guide cannula in the NST, according to the atlas of Paxinos and Watson. Animals were allowed to refresh 5 days after surgery in the animal room before being placed in recording chambers for the duration of the experiment.
    3. Recording EEG and EMG: The EEG and EMG signals were collected using a NIHON KOHOEN (No7213) polygragh and subsequently analyzed according to the standard regulation. Animals were recorded 4 hours every day and continually
    
    
    lasted 4 days.
    4.Perfusion and fixation: after recording, the animals were killed under AGAC anesthesia by intra-aortic perfusion of a fixative solution (containing 4%paraformaldehyde) and their brains were taken out using paraffin buried and HE staining; another 3 groups animals samples were used to a freezing microtome and immunohistochemical staining.
    5. Statistical analysis: All the data were done by methods of pair t-test with SPSS10.0 statistical procedure. Significance level was chosen at 0.05 and all tests were two-sided.
    Results: 1. Using pair t-test, normal saline (NS) group is not significantly different as a control group; 5-hydroxytryptophan (5-HTP) group, 8-OH-DPAT, H89 are significantly different on the decline of wake, increase of SWS and PS ; methysergide (MS) group is not significantly different ; spiperone group and cAMP group are significantly different on the increase of wake and the decline of SWS and PS.
    2. 5-HT1A receptor (5-HT1AR) of immunohischemical data in the NST between NS group, 5-HTP group and MS group: Compared with NS group, there is uptake of 5-HT1AR in 5-HTP group and downtake of 5-HT]AR in MS group.
    3. 5-HTnergic neural fibers of immunohischemical data in the NST between NS group, 5-HTP group and MS group: Compared with NS group, there is strong stain of 5-HTnergic neural terminal fibers in 5-HTP group and light stain of 5-HTnergic neural terminal fibers in MS group.
    4. 5-HTiAR of immunohischemical data in the midbrain of NS group: there are widely distribution of 5-HT1AR immunoreactivity in the midbrain, especially in the raphe nuclei (RN), LDT/PPT of reticular formation.
    5. 5-HTnergic neural terminal fibers of immunohischemical data in the midbrain between NS group, 5-HTP group and MS group: compared with NS group, there
    
    are few numbers of 5-HT neuron in 5-HTP group and more in MS group. Conclusions: 1. As an inducing area, 5-HT in the NST plays an important role in the sleep-wake cycle.
    2. Sleep generation is mediated by 5-HT1AR-activated signal transduction pathway involving aGi/G0-like G-protein in 5-HT microinjecting NST on sleep-wake cycle, which is caused to decline wake time and increase sleep time.
    3. There is increase in SWS following the incre
引文
1 Krueger JM, Obal FJ, Kapas L, et al. Brain organization and sleep function. Brain Res,1995, 69(2):91
    2 Denoger M. Reversibility of parachlorophenylalanine induced imsomina by introhypothalamic micro-imijection of L-5hydroxytryptophan. Neuroscience, 1998,28:83-94
    3 Houdouin F. Effects induced by the electric release of 5-hydroxyindle compounds and sleep parameters in the rat. Brain Res, 1991,565:48-56
    4 Celada P, Puig MV, Casanovas JM,et al. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci. 2001 Dec 15;21 (24):9917-29
    5 Li JL, Kaneko T, Nomura S, et al. Association of serotonin-like immunoreactive axons with nociceptive projection neurons in the caudal spinal trigeminal nucleus of the rat. J Comp Neurol, 1997, 384:127-141
    6 党小荣,张文斌.大鼠脑干5-羟色胺能和儿茶酚胺能神经元向孤束核的投射-荧光金标记结合免疫荧光技术研究.神经解剖学杂志,1999,15:343-350
    7 管振龙,张文斌,李继硕.中脑导水管周围灰质、中缝背核、中缝大核和巨细胞网状核α部向孤束核的定位投射.神经解剖学杂志,1997,13:397-404
    8 Golanov EV, Reis DJ. Neurons of nucleus of the solitary tract synchronize the EEG and elevate cerebral blood flow via a novel medullary area. Brain Res. 2001 Feb 16;892(1): 1-12
    9 Chiara M Portas, Bjornbjorvatn, Rediun Ursin. Serotonin and sleep/wake cycle: special emphasis on microdialysis studies. Progress in Neurobiology, 2000,60:13-35
    10 朱长庚主编.神经解剖学.人民卫生出版社出版,2002年,第1版:27-38
    11 李继硕.初级传入中枢联系的形态学基础.上海:上海科技教育出版社.1997,85-135
    13 Pratt GD, Bowery NG. The 5-HT3 receptor ligand, [3H]BRL43694,binds to presynaptic sites in the nucleus tractus solitarii of the rat. Neuropharmacology, 1989,28(12):1367
    14 Steinbusch HWM. Distribution of serotonin-immunoreactivity in the central nervous
    
    system of the rat—Cell bodies and terminals. Neuroscience, 1981, 6(4):557
    15 陈良为,饶志仁,施际武.大鼠孤束核内5-羟色胺能纤维的来源—HRP逆行追踪与5-羟色胺免疫组织化学双标法研究.解剖学报,1994,25(3):257-261
    16 Wang Y, Ramage AG , Jordan D. In vivo effects of 5-hydroxytryptamine receptor activation on rat nulceus tractus solitarius neurones excited by vagal c-fibre affereNST. Neuropharmacology, 1997, 36 (4-5): 489-198
    17 Fay R, Kubin L. Pontomedullary distribution of 5-HT2A receptor-like protein in the rat. J Comp Neurol,2000,418 (3): 323-345
    18 杨军,包军,苏定冯.5-羟色胺与去甲肾上腺素对髓片孤束核单位放电的影响.中国药理学报,1992,13(1):42-44
    19 Feldman PD. Electrophysiological effects of serotonin in the solitary tract nucleus of the rat. Naunyn Schmiedebergs Arch Pharmacol, 1994,349 (5): 447-454
    20 刘世熠.睡眠的研究.科学,1991,43(1):32-37
    21 刘世熠.睡眠的研究若干现代理论问题.心理学报,1999,28(3):300-305
    22 Dugovic C. Role of serotonin in sleep mechanisms. Rev Neurol (Paris), 2001,157(11 Pt 2): S16-19
    23 谢启文主编.现代神经内分泌学,上海医科大学出版社,1999年:404-408
    24 Paxinos G, Watson C. The rat in Stereotaxic Corrdinates. New York: Academic press,1982
    25 Roth G.I, Walton P.L, Yarnamoto W.S. Area postrema: abrupt EEG sychromization following close intra-arterial perfusion with serotonin. Brain Res, 1970, 23:223-233
    26 Puizillout JJ. Nucleus tractus solitarius, serotonin and regulation of vigilance. Rev Electroencephalogr Neurophysiol Clin. 1986 Jul;16(2):95-106
    27 王亚云,武胜昔,李云庆.大鼠神经系统内5-HT_(2A)受体亚型的免疫组织化学定位,解剖学报,2003,34(1):1-5
    28 肖明,丁炯,左国平.辣根过氧化物酶示踪大鼠孤束核-臂旁核-中央杏仁核纤维投射的解剖观察.南京医科大学学报,2000,20(5):371-375
    
    
    29 吕国蔚主编.实验神经生物学,科学出版社出版,21世纪高等医学院校教材.
    30 Vayssettes-Courchay C, Bouysset F, Verbeuren TJ, et al. Evidence against the involvement of the nucleus tractus solitarii in the sympatholytic effect of 8-hydroxy-2-(di-n-propylamino)tetralin in the cat. Eur J Pharmacol, 1995, 285(3): 299-304
    31 Barnes NM, Sharp T. A review of central 5-HT receptor and their function. Neuropharmacol, 1999,38: 1083-1152
    32 Nosjean A, Hamon M, Darmon M. 5-HT2A receptors are expressed by catecholaminergic neurons in the rat nucllleus tractus solitarii. Neuroreport, 2002, 13(17): 2365-2369
    33 Nosjean A, Arluison Ⅲ, Laguzzi RF. Increase in paradoxical sleep after destruction of serotoninergic innervation in the nuleus tratus solitarius of the rat. Neuroscience,1987,23(2): 469-481
    34 Steinbuscb HWM. Distribution of serotonin-immunoreactivity in the central nervous system of the rat cell body terminals. Neuroscience, 1981, 6:557-618
    35 Maley B, Elde R. Immunohistochemical localization of putative neurotransmitters within the feline nucleus tractus solitarii. Neuroscience, 1982, 7:2469-2490
    36 Schaffar N, Kessler JP, Bosler O,et al. Central serotoninerger projections to the nucleus tractus solitarius. Evidence from a double labeling study in the rat. Neuroscience, 1988, 26:951-958
    37 Nosjean A, Compoint C, Buisseret-Delmas C,et al. Serotonergic projections from the nodose ganglia to the nucleus tractus solitarius: an immunohistochemical and double labeling study in the rat. Neurosci Lett. 1990 Jun 22;114(1):22-6
    38 A布劳德著[挪威].临床神经解剖学,科学出版社,1989年
    39 Gottesmann C. The neurophysiology of sleep and waking: intercerebral connections, functioning and ascending influences of the medulla oblongata. Prog Neurobiol, 1999, 59 (1):1-54
    40 Laguzzi R, Reis D J, Talman WT. Modulation of cardiovascular and electrocortical
    
    activity through serotonergic mechanisms in the nucleus solitarius of the rat. Brain Res, 1984,304(2): 321-328
    41 McRae-Degueurce A, Gandolfo G, Glin L,et al. Fetal serotoninergic transplants in the fourth ventricle of adult rodents reverse sleep disturbances induced by neonatal administration of 5,7-dihydroxytryptamine. Neurosci Lett. 1988 Jun 17;89(1): 108-13
    42 Ioffe S, Jansen AH, Chernick V. Fetal respiratory neuronal activity during REM and NREM sleep. J Appl Physiol. 1993.Jul;75(1):191-7
    43 Rhodes RH, Wightman HR. Nucleus of the tractus solitarius metastasis: relationship to respiratory arrest? Can J Neurol Sci. 2000 Nov;27(4):328-32.
    44 小川纪雄原著,冯剑波翻译,张均田校译.脑受体.北京医科大学中国协和医科大学联合出版社,1997,第1版
    45 Cespuglio R, Houdouin F, Oulerich M, et al. Axonal and somato-dendritic modalities of serotonin release: their involvement in sleep preparation, triggering and maintenance. J Sleep Res. 1992 Sep;1(3):150-156
    46 Cespuglio R, Burlet S, Faradji-Prevautel H. 5-Hydroxyindoles compounds and nitric oxide voltammetric detection in the rat brain: changes occurring throughout the sleep-wake cycle. J Neural Transm. 1998; 105(2-3):205-15
    47 Adell A, Celada P, Abellan MT, et al. Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Rev. 2002 Sep;39(2-3):154-80
    48 Sallanon M, Denoyer M, Kitahama K, et al. Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience. 1989;32(3):669-83
    49 许绍芬主编.神经生物学,第2版,上海医科大学出版社,1999.
    50 Monti JM, Jantos H. Effects of the 5-HT(IA) receptor ligands flesinoxan and WAY100635 given systemically or microinjected into the laterodorsal tegmentai nucleus on REM sleep in the rat. Behav Brain Res,2004,151 (1-2): 159-166
    51 Bjorvatn B, Ursin R. Changes in sleep and wakefulness following 5-HT1A ligands
    
    given systemically and locally in different brain regions. Rev Neurosci, 1998,9(4): 265-273
    52 Monti JM, Jantos H, Monti D, et al. Dorsal raphe nucleus administration of 5-HT1A receptor agonist and antaonist: Effent on rapid eye movement sleep in the rat. Sleep Res Online, 2000,3(1):29-34
    53 Sorensen E, Gronli J, Bjorvatn B, et al. Sleep and waking following microdialysis perfusion of the selective 5-HT1A receptor antagonist p-MPPI into the dorsal raphe nucleus in the freely moving rat. Brain Res, 2001,897{1-2}:122-130
    54 Hajos M, Hoffmann WE, Tetko IV, et al. Different tonic regulation of neuronal activity in the rat dorsal raphe and medial prefrontal cortex via 5-HT(IA) receptors. Neurosic Lett. 2001, 304(3):129-132
    55 韩济生主编.神经科学原理,第2版,北京医科大学出版社,1999
    56 姚泰主编.人体生理学,第3版,人民卫生出版社,2001
    57 Portas CM, Bjorvatn B, Fagerland S, et al. On-line detection of extracellular levels of sreotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycke in the freely moving rat. Neuroscience, 1998,83:807-814
    58 Park SP, Lopez-Rodriguez F, Wilson CL, et al. In vivo microdialysis measures of extracellular serotonin in the rat hippocampus during sleep-wakefulness. Brain Res,1999,833:291-296
    59 Gervasoni, Peyron C, Rampon C,et al. Role and origin of the GABAergic innervation of P R serotonergic neurons. J Neurosci, 2000, 20(11):4217-4225
    60 Denoyer M, Sallanon M, Kitahama K,et al. Reversibility of para-chlorophenylalanine-induced insomnia by intrahypothalamic microinjection of L-5-hydroxytryptophan. Neuroscience. 1989; 28(1):83-94
    61 Leonard CS, Llinas R. Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep:an in-vitro electrophysiologieal study Neuroscience, 59:309-330
    62 Chen JJ, Vasko MR, WU XP, et al. Multiple subtypes of serotonin receptors are expressed
    
    in rat sensory neurons in culture. J Pharmacol Exp Ther, 1998,287:1119-1127
    63 Romero L, Artigas F, Preferential prtentiation of the effects of serotonin uptake inhibition by 5-HT1A receptor antagonists in the dorsal raphe pathway: role of somatodendritic autoreceptor. J Neurochem, 1997, 68:2593-2603
    64 Nosjean A, Arluison M, Laguzzi RF. Increase in paradoxicla sleep after destruction of serotoninergic innervation in the nucleus tractus sotitarius of the rat. Neuroscience, 1987, 23(2):469-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700