孤束核内γ-氨基丁酸B受体对大鼠血压的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孤束核是压力感受器和外周心血管受体的初级传入纤维的一个终止位点,同时也是血压敏感神经元。因此,孤束核介导的压力感受器对交感神经放电起抑制作用。NTS的中间亚核是由各种脑细胞发出的丰富的神经纤维支配的,在心血管调节中有重要作用,同时延髓最后区和丘脑下部核也对心血管调节起到作用。因此,我们认为,孤束核对血压调控起着非常重要的作用。另有研究证明,自发性高血压大鼠(SHR)的孤束核联合部与血压正常大鼠相比(WKY)发生了改变。另外,一些神经递质和调节因子对心血管调节起到重要作用,例如,γ-氨基丁酸(GABA)。
     GABA是一个著名的神经递质,包括药理学定义的离子型GABAA受体(GAR),生理学定义的代谢型GABAB受体(GBR),通过其受体介导能在大脑中起到抑制作用。离子型GAR有一个内在的氯离子的通道,能够快速诱导抑制性突触后电位。代谢型GBR是一个G-蛋白偶联受体,通过激活钾离子通道调节神经元的活性,反过来又可以导致神经元膜的超极化,慢性抑制神经细胞的活动。孤束核内以发现高密度的GAR、GBR和高密度的GABA的神经末梢。GBR是由GBR1、GBR2蛋白组成的异源二聚体。GBR1对于激活的异源二聚体配体是至关重要的,而GBR2仅仅是用来转换GBR1细胞膜的表面上的穿梭蛋白。大量研究已经证实GAR和GBR在压力感受器的传入和反射功能的整合中发挥重要作用。显微注射进入孤束核的GAR激动剂(蝇蕈醇),或GBR激动剂(巴氯芬)通过抑制压力感受器反射,使交感神经张力升高产,抗利尿激素的释放增多,产生了显着的升压反应。相反,GBR拮抗剂显微注射能够拮抗GABA能神经元,抑制孤束核神经元,结果是使动脉压下降。更有趣的是,显微注射GBR激动剂(巴氯芬)进入孤束核后,升压作用更明显,这一结果在一些高血压的动物模型中也可以看到,例如DOCA-盐型高血压大鼠,血管紧张素Ⅱ灌注诱导的高血压大鼠,肾外包扎性高血压模型大鼠。这些研究表明,在这些动物中观察到的高血压可能与增强的GBR功能有关。然而,NTS内的GBR的表达是否在高血压时增强,或者GBR在NTS表达增强是否会导致血压升高,仍然没有答案。
     在本研究中,我们检测了GBR、GAR在SHR大鼠和WKY大鼠的孤束核中的表达。并且发现含GBR基因的病毒载体显微注射入孤束核后,GBR表达增强并引起血压升高。
     方法:
     1.采用Real-time PCR和Western Blots的方法分别检测GABAB受体在WKY大鼠和SHR大鼠的NTS中的表达情况。
     2.采用立体定位仪进行双侧NTS定位,基因转移的方法,通过显微注射AAV2-GBR1病毒载体进入WKY大鼠的NTS后,利用免疫荧光染色和免疫印迹的方法检测GABAB受体的表达情况。
     3.采用无线电遥测系统记录AAV2病毒载体介导GBR1基因转移至WKY大鼠NTS中,WKY大鼠MAP、HR和血浆中去甲肾上腺素水平变化情况。利用血压传感器和桥式放大器记录GBR和GAR的激动剂和拮抗剂对SHR大鼠和WKY大鼠的BP、HR及RSNA的影响。
     结果:
     1.与血压正常大鼠相比,GBR1在自发性高血压大鼠的孤束核中表达增加。
     2. AAV2病毒载体介导GBR1基因转移至WKY大鼠NTS中可诱导GBR1表达显著增加;并且WKY大鼠MAP、HR增加及血浆中去甲肾上腺素水平增高。
     3. GBR激动剂和拮抗剂对SHR大鼠的BP、HR及RSNA变化的影响较WKY大鼠更为显著。
     结论:
     与血压正常大鼠相比,GABAB受体(GBR)在自发性高血压大鼠的孤束核中的表达增加;GBR1在孤束核中过度表达,可诱发血压正常大鼠导致慢性高血压和心率增加;在急性升压反应的研究中,把巴氯芬显微注射到孤束核中,与血压正常大鼠相比自发性高血压大鼠的升压反应增强。
The nucleus tractus solitarius (NTS) is a termination site forprimary afferent fibers from baroreceptors,and other peripheralcardiovascular receptors,that contain blood pressure (BP)-sensitiveneurons.As such,it mediates the inhibitory actions of baroreceptors onsympathetic discharge.The intermediate portion of the NTS is richlyinnervated by fibers from various brain nuclei that are known to have animportant role in cardiovascular control,including the area postrema andhypothalamic nuclei.Thus,it is believed that the NTS plays an importantrole in BP regulation,as well as contributing to the development andmaintenance of hypertension.Several studies have demonstrated that thecommissural NTS may be altered in the spontaneous hypertensive rat(SHR). These cardiovascular regulatory actions are carriedout by several neuronal transmitters and modulators [eg, such as γ-aminobutyric acid (GABA)].
     GABA is a well-known neurotransmitter that exerts inhibitoryactions in the brain,mediated through its receptors,which include theionotropic GABA A receptor (GAR) and metabotropic GABA B receptor (GBR), that are defined on the basis of pharmacological andphysiological studies.The ionotropic GAR has an intrinsic Cl-channel,which is responsible for inducing fast inhibitory postsynapticpotentials.The GBR is a G-protein-coupled receptor,and regulatesneuronal activity via activation of K+channels, which in turn induceshyperpolarization of the neuronal membrane and chronic inhibition ofneuronal activity. A high density of both GAR and GBR and a highdensity of GABA-containing nerve terminals have been found within theNTS. The GBR is a heterodimer comprised of GBR1and GBR2proteins. GBR1is critical for ligand activation of the heterodimer,whereas GBR2is merely a shuttle protein to transfer GBR1ontothe surface of the cell membrane. A large number of studies havedemonstrated that both GAR and GBR play an important role in theintegration of baroreceptor afferent inputs and baroreflexfunction.Microinjection of the GAR agonist,muscimol,or the GBRagonist, baclofen,into the NTS produces a marked pressor response viainhibition of baroreflexes, elevation of sympathetic tone,and vasopressinrelease.Conversely, microinjection of GBR antagonists removes tonicGABAergic inhibition of NTS neurons and results in a fall in arterialpressure. More interestingly, the pressor response to microinjection ofbaclofen into the NTS is enhanced in several hypertensive animalmodels, such as DOCA-salt hypertensive rats, rats with AngII-infusion induced hypertension,and1-kidney renal wrap hypertensive rats.Thosestudies demonstrated that enhanced GBR function could be associatedwith the high BP observed in those animals.However,whether GBRexpression is enhanced in the NTS during hypertension,and whether theenhanced expression of GBR in the NTS would lead to elevatedBP,remains unanswered.
     In the present study, we examined the GBR and GAR expression inthe NTS of SHR and WKY rats.We also investigated the functionalconsequences of enhanced GBR expression in the NTS duringhypertension by microinjection of a viral vector containing the GBRgene into the NTS.
     Methods:
     1.Real-time PCR and Western Blots were used to detect changes in theexpression of GBR in the NTS of SHR rats and WKY rats.
     2.Rats whose microinjection sites were within the boundaries of the NTSwere used for data analysis,and took advantage of the ways of genetransfer into the NTS. By bilateral microinjection of the AAV2-GBR1viral vector into the NTS of WKY rats.Immunofluorescence staining andwestern blots detect changes in the expression of GBR in the NTS ofWKY rats.
     3.A radiotelemetry system records Eeffect of GBR1gene transfer onarterial pressure,HR,and norepinephrine plasma levels. Taking use of a pressure transducer which was connectedto a Bridge Amplifier recordseffect of agonists and antagonists of GBR and GAR on BP, HR, andRSNA in SHR and WKY rats.
     Results:
     1.GBR1expression is enhanced in the NTS of SHR vs. WKY rats
     2.GBR was overexpressed in the NTS by bilateral microinjection of theAAV2-GBR1viral vector into the NTS of WKY rats.Effect of GBR1gene transfer on arterial pressure, HR, and norepinephrine plasma levelswere increased steadily.
     3.Effect of agonists and antagonists of GBR on BP, HR, and RSNA inSHR was significantly enhanced compared with WKY rats.
     Conclusions:
     GBR1expression is enhanced in the NTS of SHR vs. WKY ratsand overexpression of this gene in the NTS results in chronic elevationof blood pressure and heart rate in normotensive rats. In an acutestudy,the pressor response to baclofen microinjected into the NTS wasenhanced in SHR as compared with WKY rats.
引文
[1] Reis DJ, Talman WT. Brain lesions and hypertension. In: De Jong W,ed.Experimental and Genetic Models of Hypertension. New York:Elsevier;1984:451-473. Birkenh ger WH, Reid JL, eds. Handbook ofHyper-tension, vol4.
    [2] Cottle MA. Degeneration studies of the primary afferents of ninth andtwelfth cranial nerves in cat. J Comp Neurol.1964;122:329–345.
    [3] Miura M, Reis DJ. Termination and secondary projections of carotidsinus nerve in the cat brainstem. Am J Physiol.1969;217:142–153.
    [4] Miura M, Reis DJ. The role of solitary and paramedium reticularnuclei in mediating cardiovascular reflex responses from carotidbaro-and chemoreceptors. J Physiol.1972;223:525–548.
    [5] Crill WE, Reis DJ. Distribution of carotid sinus and depressor nervesin the cat brain stem. Am J Physiol.1968;214:269–276.
    [6] Loewy AD, Mckeller S. The neuroanatomical basis of centralcardiovascular control. Fed Proc.1980;39:2495–2503.
    [7] Doba N, Reis DJ. Acute fulminating neurogenic hypertensionproduced by brainstem lesions in the rat. Circ Res.1973;32:584–593.
    [8] Snyder DW, Doba N, Reis DJ. Regional distribution of blood flowduring arterial hypertension produced by lesions of the nucleus tractussolitarii in rats. Circ Res.1978;42:87–91.
    [9] Nathan MA, Reis DJ. Chronic labile hypertension produced bylesions of the nucleus tractus solitarii in the cat. Circ Res.1977;40:72–81.
    [10] Schmitt H, Laubie M. Destruction of the nucleus tractus solitarii indogs: acute effects on blood pressure and haemodynamics, chroniceffects on blood pressure: importance of the nucleus for the effects ofdrugs. In:Meyer P, Schmitt H, eds. Nervous System and Hypertension.New York:Willey-Flammarion;1979:173–201.
    [11] Zanutto BS,Valentinuzzi ME,Segura ET. Neural set point for thecontrol of arterial pressure: role of the nucleus tractus solitarius[J]. Biomedical Engineering Online2010,9:1-4.
    [12] Zanutto BS,Frías BC,Valentinuzzi ME. Blood pressure long termregulation: A neural network model of the set point development[J].Biomedical Engineering Online2011,10:54.
    [13] Guyenet PG.The sympathetic control of blood pressure[J].NatureReviews Neuroscience,2006,7(5):335-346.
    [14] Schreioer AM Guyenet PG.The Baroreflex and beyoud:control ofsympathetic vasomotor tone by GABAergic neyrons in theventrolateral medulla.Clin Exp Pharmacol Physiol.2002;29(5-6)514-521
    [15] Dampney RA,Polson JW et al:Function organization of brainpathways subserving the baroreceptot reflex:studies in consciousanimals using immediate early gene expression.Cell Mol Neurobiol2003;23(4-5):579-616
    [16] Sved AF,Ito S et al:Excitatory inputs to the RALM in the contest ofthe baroreceptor reflex.Ann NY Acad Sci2001;(940):247-258
    [17] Minson JB,Llewellyn-Smith IJ:C-Fos expression in central neuronsmediating the arterial baroreceptor reflex.Clin Exp Hypertens.1997;(19):631-643
    [18] Aicher SA,Kurucz OS:Nucleus tractus solitarius efferent terminalssynapse on neurons in the caudal ventrolateral medulla that project tothe rostral vrntrolateral medulla1995;693(1-2):51-63
    [19] Pagani M,Lucini D Autonomic dysregulation in essentialhypertension:insight from heart rate and arterial pressure varialility.Auton Neurosci2001;90(1-2):76-82.
    [20] Thomas E,Loheier,Eric D et al.Prolonged activation of the baroreflexproduces sustained hypertension Hyperten2004;43(part2):306-311.
    [21]张镜如等.生理学(第四版)人民卫生出版社,北京,1996.
    [22] Ritz E,Adamczak M et al.Kidney and hypertension-causes.Herz.2009;28(8):663-667
    [23] Dampney RAL.Functional organization of central pathways reglatingthe cardiovascular system.Physiol Rev.1994:74(2):323-364
    [24] Schreiofer AM Guyenet PG.The baroreflex and beyoud:control ofsympathetic vasomotor tone by GABAergic neyrons in theventrolateral medulla.Clin Exp Pharmacol Physiol.2002;29(5-6)514-21
    [25] Sved AF,Ito S et al:Excitatory inputs to the RALM in the contest ofthe baroreceptor reflex.Ann NY Acad Sci2001;(940):247-258
    [26] Sapru HN.Glutamate circuits in selected medullo-spinal areasregulating cardiovascular function.Clin Exp Pharmacol Physiol2002;29:491-496.
    [27] Sun MK,Guyenet PG.GABA mediated baroreceptor inhibition ofreticulospinal neurons.Am J Physiol.1985;249Regulatory IntegrativeComp.Physio.18: R672-R680
    [28] Lawrence AJ,Jarrott B Neurochemical modulation of cardiovascularcontrol in the nucleus tractus solitarius.Prog Neurobiol.1996;48(1):21-53
    [29] Jean A The mucleus trctus solitarius:neuranotomic neurochemical andfunctional aspects.Arch Int Physiol Biochim Biophs1991;(5):A3-52.
    [30] Vasquez EC,Meyrelles SS et al.Neural reflex regulation of arterialpressure in pathophysiological:interplay among the baroreflex,thecardiopulmonary reflexes and the chemoreflex.Braz J Med Biol Res1997;30(4):521-532.
    [31] Dampney RA, Polson JW et al.: Function organization of brainpathways subxervieing the baroreceptor reglex: studies in consciousanimals using immediate early gene expression.Cell Mol Neurobiol.2003;23(4-5)579-616.
    [32] KAI IA M', MESULAM M M. Brain stem projection of sensory andmotor components of the vagus complex in the cat:The cervical vagusand nodose ganglion [J].J Comp Neurol,1980,193:453一465
    [33] OKUMA Y,OSUMI Y. Central cholinergic descending pathway tothe dorsal motor nucleus of the vagus in regulation of gastricfunction[J].Jpn J Phamarcol,1986,413:373-379.
    [34] MENETREY D,BASBAUM A I. Spinal and trigeminal projections tothe nucleus of the solitary tract:a possible substrate for somatovisceraland viscerovlsceral reflex activation[J].J Comp Neurol,1987,255:439-450.
    [35] WANG Q,LI P. Stimulation of the ventrolateral medulla inhibits thebaroreceptor input to the nucleus tractus solitarius [J].Brain Res,1988,473:227一235.
    [36] ANNE N,CLAUDE C,CATHERINE B D, et al. Serotonergicprojections from the nodose ganglia to the nucleus tractussolitarius:an immunohistochemical and double labeling study in therat[J].Neurosci Lef t,1990,114:22一26.
    [37] SCHAFFAR N,KESS I ER J P,BOSLER0,e1al. Centralserotonergic projections t0the nucleus tractus solitarii:Evidence froma double labeling study in the rat[J].Neurosci Lett,1988,26:951-958.
    [38]肖明,丁炯,左国平.辣根过氧化物酶示踪大鼠孤束核、臂旁核至中央杏仁核投射的解剖观察[J].南京医科大学学报,2000,20:371-375.
    [39] KAZUYOSHl0,KAZUHISA E,JANUSZ L,e1al. Projectionsfrom the commissural subnucleus of the nucleus of the solitarytract:An anterogra}de tracing study in the cat [J].J Comp Neurol,1992,324:365一378.
    [40] LI Y Q,RAO Z R, SHI J W. Substance P-like immunoreactiveneurons in the nucleus tractus solitarii of the rat send1990,120:theiraxons to the nucleus accumbens IJ1.Neurosci Lett,194一196.
    [41]管振龙,郎兵,丁玉强.胃肠道伤害性刺激引起大鼠孤束核与中脑导水管周围灰质神经元表达Fos [J].中国神经科学杂志,1998,14(4):199-204.
    [42] MACHADO B H,MAUAD H,CHIANCA J D A, et al.Autonomicprocessing of the cardiovascular reflexes in the nucleus tractussolitarii [J].Braz J Med Biol Res,1997,30(4):533-543.
    [43] Sapru HN. Glutamate circuits in selected medullo-spinal areasregulating cardiovascular function. Clin Exp Pharmacol Physiol2002;29:491-496.
    [44] Wang JJ,Rong WF: NMDA receptor mechanism involved in arterialbaroreflex.Acta Pharmacol Sin.2000;(7):617-622.
    [45] Guyenet Pq Filtz TM, Donaldson SR et al. Role of excitatory aminoacids in rat vagal and sympathetic baroreflexes. Brain Res,1987,(407):272-284.
    [46] Ricardo JA, Koh ET. Anatomical evidence of direct projections fromthe nuclers of the solitary tract to the hypothalamus, amygdala andother forebrain structure in the rat. Brain Res.1978;(153):1-26.
    [47] Nosaka S, Yaramoto T, Yasunaga K, et al. Location of vagalcardioinhibitory preganglionic neurons within rat brainstem. J CompNeurol.1979;(186)79-92.
    [48] Loewy AD, Burton H. Nuclei of the solitary tract: efferent projectionsto the lower brainstem and spinal cord of the cat. J Comp Neurol.1978;(181):421一450.
    [49] Kalia M, Mesulam MM. Brain stem projections of sensory and motorcomponents of the vagus complex in the cat: II Laryngeal,Tracheobronchial, Pulmonary, Cardiac, and Gastrointestinal branches.J Comp Neurol.1980;(193):467-508.
    [50] Beckstead RM, Morse JR, Norgren R. The nucleus of the solitary tractin the monkey: Projections to the thalamus and brainstem nuclei. JComp Neurol.1980;(190):259-282.
    [51] Granger JP, Alexander BT et al.Mechanisms of pressure natriuresis.Curr Hypertens2002;4(2):152-159.
    [52] Cervenka L, Simova M et al. Role of the kidney in long-termregulation of blood pressure and the development of hypertension.Cesk Fysiol2000;49(3):116-33.
    [53] Gerald F.DiBona Sympathetic nervous systen and the kidney inhypertension Curr Opin Nephrol Hypertens2002;(11):197-200.
    [54] Osborn JW, Jacob F A neural set point for the long-term control ofarterial pressure:beyond the arterial baroreceptor reflex. Am JPhysiol Regul Comp Physiol2005;288(4):R846-855.
    [55] Malpas SC: What sets the long-term level of sympathetic nerveactivity: is there a role for arterial baroreceptors Am J Physiol RegulIntegr Comp Physiol.2004;(5):R975.
    [56] Lohmeier TE,Hildebrandt DA. Recent insights into the interactionsbetween the baroreflex and the kidneys in hypertension. Am J hysiolRegul Integr Comp Physiol.2005;288(4):8828-836.
    [57] Lohmeier TE. The sympathetic nervous system and long-term bloodpressure regulation.Am J Hypertens2001;14(6pt2):147s-154s.
    [58] Ciriello, J., Hochstenbach, S., Roder, S.,1994. Central projections ofbaroreceptor and chemoreceptor afferent fibers in the rat. Nucleus ofthe Solitary Tract, edited by Barraco IRA. CRC, Boca Raton, FL, pp.35–50.
    [59] Bowery, N.G., Hudson, A.L., Price, G.W.,1987. GABAA andGABAB receptor site distribution in the rat central nervous system.Neuroscience20(2),365–383.
    [60] Sved, J.C., Sved, A.F. Cardiovascular responses elicited by gammaamino butyric acid in the nucleus tractus solitarius: evidence of theaction of GABAB receptor.Neuropharmacology.1989,28,515–520.
    [61] Callera, J.C., Bonagamba, L.G., Nosjean, A., Laguzzi, R., Machado,B.H. Activation of GABA receptors in the NTS of awake rats reducesthe gain of baroreflex bradycardia.Auton. Neurosci.2000,84,58–67.
    [62] Yin, M., Sved, A.F.,1996. Role of gamma-aminobutyric acid Breceptors in baroreceptor reflexes in hypertensive rats. Hypertension27(6),1291–1298.
    [63] Catelli, J.M., Sved, A.F. Enhanced pressor response to GABA in thenucleus tractus solitarii of the spontaneously hypertensive rat. Eur. J.Pharmacol.1988,151,243–248.
    [64] Palkovits, M., Zaborszky, L. Neuroanatomy of central cardiovascu-lar control. Nucleus tractus solitarii: afferent and efferent neuronalconnections in relation to the baroreceptor reflex arch. Prog.Brain Res.1977,47,9–34.
    [65] Talman, W.T., Perrone, M.H., Reis, D.J. Evidence for L–glutamate asthe neurotransmitter of baroreceptor afferent nerve fibers. Science.1980,209,813–815.
    [66] Van Giersbergen,P.L., Palkovits, M., De Jong, W. Involvement ofneurotransmitters in the nucleus tractus solitarii incardiovascular regulation. Physiol. Rev.1992,72,789–824.
    [67] Sved, A.F., Gordon, F.J. Amino acids as central neurotransmitters inthe baroreceptor reflex pathway. News Physiol. Sci.1994,9,243–246.
    [68] Hwang, B.H., Wu, J.Y. Ultrastructural studies on catecholaminergicterminals and GABAergic neurons in nucleus tractus solitarius of therat medulla oblongata. Brain Res.1984,302,57.
    [69] Maley, B., Newton, B.W. Immunohistochemistry of gamma-amino-butyric acid in the cat nucleus tractus solitarius. Brain Res.1985,330,364–368.
    [70] Persson, P. A hypertensive response to baclofen in the nucleustractus solitarii in rats. J. Pharm. Pharmacol.1981,33,226–231.
    [71] Doble, A. and Martin, I. L. Multiple benzodiazepine receptors: noreason for anxiety. Trends Pharmacol. Sci.1992,13:76–81.
    [72] Burt, D. B. and Kamatchi, G. L. GABA A receptor subtypes: frompharmacology to molecular pharmacology. FASEB J.1991,5:2916–2923.
    [73] Sieghart, W. Structure and pharmacology of g-aminobu-tyric acid Areceptor subtypes. Pharmacol. Rev.1995,47:181–234.
    [74] Sigel, E. and Buhr, A. The benzodiazepine binding site of GABA Areceptors. Trends Pharmacol. Sci.1997,18:425–429.
    [75] Barnard, E. A., Skolnick, P., Olsen, R. W., Mohler, H.,Sieghart, W.,Biggio,G., Braestrup,C.,Bateson,A.N.,and Langer,S.Z.Internationalunion of pharmacology. XV.Subtypes of g-Aminobutyricacid A receptors: Classification on the basis of subunit structureand receptor function. Pharmacol.Rev.1998,50:291–314.
    [76] Mehta, A. K. and Ticku, M. K. An update on GABA A receptors.Brain Res. Rev.1999,29:196–217.
    [77] Johnston, G. A. R. GABA C receptors: relatively simpletransmitter-gated ion channels? Trends Pharmacol. Sci.1996,17:319–323.
    [78] Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middle-miss, D.N., Shaw, J., and Turnbull, M.(-)-Baclofen decreases neurotransmitterrelease in the mammalian CNS by an action at a novel GABA receptor.Nature.1980,283:92–94.
    [79] Hill, D. R. and Bowery, N. G..3H-baclofen and3H-GABA bindto bicuculline-insensitive GABA B sites in rat brain. Nature.1981,290:149–152.
    [80] Wojcik, W. J. and Neff, N. H. g-Aminobutyric acid B re-ceptors arenegatively coupled to adenylate cyclase in brain, and in thecerebellum: these receptors may Hill, D. R., Bowery, N. G., andHudson, A. L. Inhibition of GABA B receptor binding byguanyl nucleotides. J. Neuro-chem1984;42:652–657.
    [81] Asano,T.,Ui,M.,and Ogasawara,N. Prevention of the agonist bindingto g-aminobutyric acid B receptors by guanine nucleotides andislet-activating protein, pertussis toxin, in bovine cerebral cortex. J.Biol. Chem1985;260:12653–12658.
    [82] Asano, T. and Ogasawara, N. Uncoupling of g-aminobu-tyric acidB receptors from GTP-binding proteins by N-ethyl-maleimide: effect of N-ethylmaleimide on purified GTP-binding proteins.Mol. Pharmacol1986;29:244–249.
    [83] Xu, J. and Wojcik, W. J. Gamma aminobutyric acid B receptor-mediated inhibition of adenylate cyclase in cultured cerebellargranule cells: blockade by islet-activating protein. J.Pharmacol. Exp.Ther1986;239:568–573.
    [84] Ohmori, Y., Hirouchi, M., Taguchi, J., and Kuriyama, K. Functionalcoupling of g-aminobutyric acid B receptor with calcium ion channeland GTP-binding protein and its alteration following solubilizationof the g-aminobutyric acid B receptor. J.Neurochem1990;54:80–85.
    [85] Malcangio, M. and Bowery, N. G. GABA B receptor-me-diatedinhibition of forskolin-stimulated cyclic AMP accumulation in ratspinal cord. Neurosci. Lett1993;158:189–92.
    [86] Karbon,E.W.,Duman,R.S.,and Enna,S.J.GABABreceptors andnorepinephrine-stimulated cAMP production in rat brain cortex. BrainRes1984;306:327–332.
    [87] Karbon, E. W. and Enna, S. J. Characterization of the relationshipbetween g-aminobutyric acid B agonists and transmit-ter-coupledcyclic nucleotide-generating systems in rat brain.Mol. Pharmacol1985;27:53–59.
    [88] Wojcik, W. J., Ulivi, M., Paez, X., and Costa, E. Islet-activatingprotein inhibits the b-adrenergic receptor facilitation elicited by g-aminobutyric acid B receptors. J. Neurochem1989;53:753–758.
    [89] Scherer, R. W., Ferkany, J. W., Karbon, E. W., and Enna, S. J. g-Aminobutyric acid B receptor activation modifies agonist bindingto b-adrenergic receptors in rat brain cerebral cortex. J. Neurochem1989;53:989–991.
    [90] Tang, W. J. and Gilman, A. G. Type specific regulation of adenylylcyclase by G protein bg subunits. Science1991;254:1500–1503.
    [91] Federman,A.D.,Conklin B.R.,Schrader,K.A.,Reed,R.R.,and Bourne,H.R. Hormonal stimulation of adenylyl cy-clase via Gi protein bgsubunits. Nature1992;356:159–161.
    [92] Andrade, R. Enhancement of b-adrenergic responses by Gi-linkedreceptors in rat hippocampus. Neuron1993;10:83–88.
    [93] Hashimoto, T. and Kuriyama, K. In vivo evidence that GABA Breceptors are negatively coupled to adenylate cyclase in rat striatum. J.Neurochem1997;69:365–370.
    [94] Bormann, J. Electrophysiology of GABAAand GABABreceptorsubtypes. Trends Neurosci1988;11:112–116.
    [95] Newberry, N. R. and Nicoll, R. A. Direct hyperpolarizing action ofbaclofen on hippocampal pyramidal cells. Nature1984;308:450–452.
    [96] Dutar, P. and Nicoll, R. A. A physiological role for GABA B receptorsin the central nervous system. Nature1988;332:156–158.
    [97] Dutar, P. and Nicoll, R. A. Pre-and postsynaptic GABA B receptors inthe hippocampus have different pharmacological properties. Neuron1988;1:585–591.
    [98] Holz,G.G.,Rane,S. G., and Dunlap, K. GTP-binding proteins mediatetransmitter inhibition of voltage-dependent calcium channels. Nature1986.;319:670–672.
    [99] Deisz, D. A. and Lux, H. D. g-Aminobutyric acid induced depressionof Ca2+currents of chick sensory neurons. Neurosci.Lett1985;56:205–210.
    [100] Scott,R.H.,Wooten,J.F.,and Dorphin,A.C. Modulationof neuronalT-type Ca2+channels by photoinactivation of intracellular guanosine5-O-(3-thio) trisphosphate.Neuroscience1990;38:285–294.
    [101] Scholz, K. P. and Miller, R. J. GABA B receptor-mediated inhibitionof Ca2+currents and synaptic transmission in cultured rathippocampal neurones. J. Physiol1991;444:669–686.
    [102] Cox, D. H. and Dunlap, K.1992. Pharmacological discrimination ofN-type from L-type Ca2+current and its selective modulation bytransmitters. J. Neurosci.12:906–914.
    [103] Maguire,G.,Maple,B,Lukasiewicz P.,and Werblin,F.g-Aminobutyratetype B receptor modulation of L-type Ca2+channel current atbipolar cell terminals in the retina of the tigersalamander. Proc. Natl.Acad. Sci. USA1989;86:10144–10147.
    [104] Heidelberger, R. and Matthews, G. Inhibition of calciuminflux andcalcium current by g-aminobutyric acid in single synaptic terminals.Proc. Natl. Acad. Sci. USA1991;88:7135–7139.
    [105] Mintz, I. M. and Bean, B. P. GABA B receptor inhibition of P-type Ca2+channels in central neurons. Neuron1993;10:889–898.
    [106] Connor, J. A., Tseng, H. Y., and Hockberger, P. E. Depo-larization-and transmitter-induced changes in intracellular Ca2+of ratcerebellar granule cells in explant cultures. J. Neurosci1987;7:1384–1400.
    [107] de Erausquin,G.,Brooker,G.,Costa,E.,and Wojcik,W. J. Stimulation ofhigh affinity g-aminobutyric acid B receptors potentiates thedepolarization-induced increase of intraneu-ronal ionized calciumcontent in cerebellar granule neurons.Mol. Pharmacol1992;42:407–414.
    [108] Ito, Y., Ishige, K., Zaitsu, E., Anzai, K., and Fukuda, H. g-Hydroxybutyric acid increases intracellular Ca2+concentration andnuclear cyclic AMP-responsive element-and activator protein1DNA-binding activities through GABA B receptor in culturedcerebellar granule cells. J. Neurochem1995;65:75–83.
    [109] Gray,J.A.and Green,A.R.GABA B receptor mediated inhibition ofpotassium-evoked release of endogenous5-hy-droxytriptamine frommouse frontal cortex. Br. J. Pharmacol1987;91:517–522.
    [110] Conzelmann,U.,Meyer,D.K.,and Sperk,G.Stimulation of receptors ofg-aminobutyric acid modulates the release of cholecystokinin-likeimmunoreactivity from slices of rat neostriatum. Br. J. Pharmacol1986;89:845–852.
    [111] Bonanno,G.,Gemignani,A.,Fedele,E.,Fontana, G., and Rai-teri, M. g-Aminobutyric acid B (GABA B) receptors mediate inhibition ofsomatostatin release from cerebrocortex nerveterminals. J. Pharmacol.Exp. Ther1991;259:1153–1159.
    [112] Travagli, R. A., Ulivi, M., and Wojcik, W. J. g-Aminobu-tyric acid-Breceptors inhibit glutamate release from cerebellar cells: consequencesof inhibiting cyclic AMP formation and calcium influx. J. Pharmacol.Exp. Ther1991;258:903–909.
    [113] Bonanno,G. and Raiteri,M.Functional evidence for mul-tipleg-aminobutyric acid B receptor subtypes in the rat cerebralcortex.J.Phrmacol.Exp.Ther1992;262:114–118.
    [114] Olpe,H.R.and Karlsson,G. The effects of baclofen and twoGABAB-receptor antagonists on long-term potentiation. Naunyn-Schmiedeberg’s Arch. Pharmacol1990;342:194–197.
    [115] Mott,D.D.and Lewis,D. V. Facilitation of the inductionof long-termpotentiation by GABA B receptors. Science1991;252:1718–1720.
    [116] Davies,C.H.,Starkey,S.J.,Pozza,M.F.,and Collingridge,G. L. GABA Bautoreceptors regulate the induction of LTP.Nature1991;349:609–611.
    [117] Kuriyama,K.,Kanmori,K.,Taguchi,J.,and Yoneda,Y.Stress-inducedenhancement of suppression of [3H]GABA release from striatal slicesby presynaptic autoreceptor. J. Neuro-chem1984;42:943–950.
    [118] Pittaluga, A., Asaro, D., Pellegrini, G., and Raiteri, M. Studies on[3H]GABA and endogenous GABA release in rat cerebral cortexsuggest the presence of autoreceptors of the GABA B type. Eur. J.Pharmacol1987;144:45–52.
    [119] Waldmeier,P.C.,Wicki, P.,Feldtrauer, J. J.,and Baumann, P. A.Potentialinvolvement of a baclofen-sensitive autoreceptor in the modulation ofthe release of endogenous GABA from rat brain slices invitro.Naunyn-Schmideberg’s Arch. Pharmacol1988;337:289–295.
    [120] Raiteri,M.,Pellegrini,G.,Cantoni C.,and Bonanno,G. A novel type ofGABA receptor in rat spinal cord Naunyn-Schmideberg’s Arch.Pharmacol1989;340:666–670.
    [121] Seabrook,G..R.,Howson,W.,and Lacey,M.G. Subpop-ulations ofGABA-mediated synaptic potentials in slices of rat dorsal striatum aredifferentially modulated by presynaptic GABA B receptors. BrainRes1991;562:332–334.
    [122] Bonanno, G. and Raiteri, M. g-Aminobutyric acid (GABA)autoreceptors in rat cerebral coetex and spinal cord representpharmacologically distinct subtypes of the GABA B receptor.J.Pharmacol. Exp. Ther1993;265:765–770.
    [123] Bonanno, G. and Raiteri, M. Multiple GABA B receptors.TrendsPharmacol. Sci1993;14:259–261.
    [124] Kaupmann,K.,Huggel,K.,Heid,J.,Flor,P. J.,Bischoff,S.,Mickel, S. J.,McMaster, G.,Angst,C.,Bittiger,H.,Froestl,W.,and Bettler,B.Expression cloning of GABA B receptorsuncovers similarity tometabotropic glutamate receptors. Nature1997;368:239–246.
    [125] Isomoto,S,Kaibara,M.,Sakurai-Yamashita,Y.,Nagayama,Y., Uezono,Y., Yano, K., and Taniyama, K. Cloning and tissue distribution ofnovel splice variants of the rat GABA B receptor. Biochem. Biophys.Res. Commun1998;253:10–15.
    [126] Kaupmann, K., Schuler, V., Mosbacher, J., Bischoff, S., Bittiger,H.,Heid, J., Froestl, W., Leonhard, S., Pfaff, T., Karschin, A.,andBettler,B. Human g-aminobutyric acid type B receptors aredifferentially expressed and regulate inwardlyrectifying K+channels.Proc.Natl.Acad. Sci. USA1998;95:14991–14996.
    [127] Grifa, A.,Totaro, A., Rommens,J. M.,Carella,M.,Roetto, A.,Borgato,L.,Zelante,L.,and Gasparini,P.GABA(g-amino-butyric acid)neurotransmission: Identification and fine mapping of the human GABAB receptor gene.Biochem. Biophys. Res. Commun1998;250:240–245.
    [128] Couve, A., Filippov, A. K., Connolly, C. N., Bettler, B., Brown,D. A.,and Moss, S. J.Intracellular retention of recombinant GABA Breceptors.J.Biol. Chem1998;273:26361–26367.
    [129] Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin,M.M.,Dai,M.,Yao, W. J., Johnson, M.,Gunwaldsen,C.,Huang,L.Y.,Tang,C.,Shen,Q. R., Salon, J. A., Morse,K.,Laz, T., Smith, K. E.,Nagarathnam, D., Noble, S. A., Branchek,T. A., and Gerald, C. GABAB receptors function as a heteromeric assembly of the subunitsGABABR1and GABABR2.Nature1998;396:674–679.
    [130] White,J. H.,Wise,A.,Main,M.J.,Green,A.,Fraser,N. J.,Disney, G. H.,Barnes, A. A., Emson, P., Foord, S. M., and Marshall, F. H.Heterodimerization is required for the formation of a functionalGABA B receptor. Nature1998;396:679–682.
    [131] Kaupmann, K.,Malitschek, B.,Schuler, V.,Heid,J., Froestl,W., Beck, P.,Mosbacher, J., Bischoff, S., Kulik, A., Shigemoto,R., Karschin, A.,and Bettler, B. GABA B-receptor subtypes assemble into functionalheteromeric complexes. Nature1998;396:683–687.
    [132] Kuner,,R.,Kohr,G.,Grunewald,S.,Eisenhardt,G.,Bach,A.,and Kornau,H.C. Role of heteromer formation in GABA B receptor function.Science1999;283:74–77.
    [133] Mohler, H. and Fritschy, J. M. GABA B receptors make it to the top-as dimers. Nature1999;20:87–89.
    [134] Marshall,F. H.,Jones,K. A.,Kaupmann, K., and Bettler,B. GABABreceptors-the first7TM heterodimers. Nature1999;20:396–399.
    [135] Kammerer,R.A.,Frank,S.,Schulthess,T.,Landwehr,R.,Lustig,A.,andEngel,J. Heterodimerization of a functional GABA B receptor ismediated by parallel coiled-coil a-he-lices. Biochemistry1999;38:13263–13269.
    [136] Ng, G.Y.K.,Clark,J.,Coulombe,N.,Ethier,N.,Hebert,T. E.,Sullivan,R.,Kargman,S., Chateauneuf, A.,Tsukamoto, N.,McDonald, T,Whiting,P.,Mezey,E.,,Johnson,,M.,Liu,Q.,Kolalowski,Jr,L.F.,Evans,J.F.,BonnerT. I.,and O’Neill,G. P. Identification of a GABA B receptor subunit,gb2, required for functional GABA B receptor activity. J. Biol.Chem1999;274:7607–7610.
    [137] Benke, D., Honer, M., Michel, C., Bettler, B., and Mohler, H. g-Aminobutyric acid type B receptor splice variant proteins GBR1aand GBR1b are both associated with GBR2in situ and displaydifferential regional and subcellular distribution J.Biol. Chem1999;274:27323–27330.
    [138] Castelli,M. P.,Ingianni,A.,Stefanini,E.,and Gessa,G. L. Distribution ofGABA B receptor mRNAs in the rat brain and peripheral organs. LifeSci1999;64:1321–1328.
    [139] Ong, J. and Kerr, D. I. GABA-receptors in peripheral tis-sues. LifeSci1990;46:1489–1501.
    [140] Durgam VR, Vitela M, Mifflin SW. Enhanced gamma-aminobutyricacid-B receptor agonist responses and mRNA within the nucleus ofthe solitary tract in hypertension. Hypertension1999;33:530–536.
    [141] Tsukamoto K, Sved AF. Enhanced gamma-aminobutyric acid-medi-ated responses in nucleus tractus solitaries of hypertensive rats.Hypertension1993;22:819–825.
    [142] Zhang Q, Yao F, Rourke ST, Qian SY, Sun C. Angiotensin IIen-hances GABA B receptor-mediated responses and expression innucleus tractus solitarii of rats. Am J Physiol Heart Circ Physiol2009;297: H1837–H1844.
    [143] Matsumura K, Averill DB, Ferrario CM. Angiotensin II acts at AT1receptors in nucleus of the solitary tract to attenuate the baroreceptorreflex. Am J Physiol Regul Integr Comp Physiol1998;275: R1611-R1619.
    [144] Katsunuma N,Tsukamoto K,Ito S, Kanmatsuse K. Enhancedangio-tensin-mediated responses in the nucleus tractus solitarii ofspontaneously hypertensive rats. Brain Res Bull2003;60:209–214.
    [145] Murphy MN, Mizuno M, Downey RM, et al. Neuroanl nitric oxidesynthase expression is lower in areas of the nucleus tractus solitariusexcited by skeletal muscle relexes in hyper-tensive rats. Am J PhysiolHeart Circ Physiol2013;304: H1547–H1557.
    [146] Hirooka Y, Sakai K, Kishi T,, et al. Enhanced depressor response toendothelial nitric oxide synthase gene transfer into the nucleus tractussolitarii of spontaneously hypertensive rats. Hypertens Res2003;26:325–331.
    [147] Nozoe M, Hirooka Y, Koga Y, et al. Inhibition of Rac1-derivedreactive oxygen species in nucleus tractus solitarius decreases bloodpressure and heart rate in stroke-prone spontaneously hypertensiverats. Hypertension2007;50:62–68.
    [148] Shinohara K, Hirooka Y, Kishi T, et al. Reduction of nitricoxide-mediated γ-amino butyric acid release in rostral ventrolateralmedulla is involved in superoxide-induced sympathoexcitation ofhypertensive rats. Circ J2012;76:2814–2821.
    [149] Landulpho CD, Dias AC, Colombari E. Cardiovascular mechanismsactivated by microinjection of baclofen into NTS of conscious rats.Am J Physiol Heart Circ Physiol2003;284: H987–H993.
    [150] Callera JC, Bonagamba LG, Nosjean A, et al. Activation of GABAreceptors in the NTS of awake rats reduces the gain of baroreflexbradycardia. Autonom Neurosci Basic Clin2000;84:58–67.
    [151] Thrasher TN. Unloading arterial baroreceptors causes neurogenichypertension. Am J Physiol Regul Integr Comp Physiol2002;282:R1044–R1053.
    [152] Lohmeier TE, Irwin ED, Rossing MA, et al. Pro-longed activation ofthe baroreflex produces sustained hypotension. Hypertension2004;43:306–311.
    [153] Howe PR, Rogers PF, Minson JB. Dietary sodium loading elevatesblood pressure in baroreceptor denervated rats. J Auton Nerv Syst1990;29:151–156.
    [154] Heusser K, Tank J, Luft FC, et al. Baroreflex failure. Hypertension2005;45:834–839.
    [155] Jordan J, Toka HR, Heusser K, et al. Severely impairedbaroreflex-buffering in patients with monogenic hypertension andneurovascular contact. Circulation2000;102:2611–2618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700