大鼠下丘脑前部—延髓内脏中枢参与束缚—浸水应激反应的神经元类型及突触可塑性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
束缚-浸水应激(restraint water-immersion stress,RWIS)是一种强度较大的复合刺激,能在数小时内产生迷走神经介导的胃运动机能亢进、胃酸分泌增多、急性胃粘膜损伤等现象,该应激模型被广泛用来研究应激性胃溃疡的发生机制及其临床治疗药物的筛选。Fos蛋白是即刻早期基因(IEG)c-fos的表达产物,神经元有Fos表达,表明神经元处于活动状态。我们课题组前期的研究发现束缚-浸水应激不同时间段(30、60、120 min),迷走复合体(DVC)、疑核(NA)以及下丘脑前部的视上核(SON)、室旁核(PVN)、视交叉上核(SCh)等均有不同程度的Fos表达,说明上述核团参与束缚-浸水应激致胃粘膜损伤的中枢调控。束缚-浸水应激诱导的胃损伤效应能被预先切断膈肌下迷走神经或给予阿托品所抑制,而预先切除垂体、肾上腺或给予肾上腺素能α-受体阻断剂酚苄明对束缚-浸水应激引起的胃运动机能亢进、胃酸分泌增多没有影响。这说明胃机能的神经调控主要是副交感控制,而且这种副交感信息主要来自迷走神经背核(DMV),部分来自疑核。迷走神经背核、疑核过度活动可能是导致大鼠胃粘膜损伤的初级中枢机制之一,但电刺激、化学刺激迷走神经背核、疑核均引起胃运动抑制。是不是束缚-浸水应激过程中,高位中枢——下丘脑前部的活动解除了延髓内脏中枢对胃的抑制作用,从而导致胃运动亢进、胃酸分泌增多的呢?如果是,那么:
     1.束缚-浸水应激过程中,延髓迷走复合体、疑核等核团(称为延髓内脏中枢)内被激活的神经元是什么性质的神经元?
     2.视上核、室旁核是下丘脑前部最显著的2个核团,主要由大细胞精氨酸加压素能神经元和催产素能神经元组成,参与多种应激反应。那么,在束缚-浸水应激过程中,下丘脑前部视上核、室旁核中被激活的神经元是不是催产素能神经元和精氨酸加压素能神经元?
     3.如果下丘脑前部室旁核和视上核催产素能神经元和精氨酸加压素神经元的轴突末梢除了分布到垂体后叶之外,还下行到延髓内脏中枢,与这里的神经元形成突触联系,以神经递质的形式调控这些神经元的活动。那么束缚-浸水应激后迷走复合体、疑核的神经元胞体膜或树突膜上的精氨酸加压素受体、催产素受体(胞体膜上分布有精氨酸加压素受体、催产素受体的神经元我们称为精氨酸加压素敏感、催产素敏感神经元)会发生什么变化?
     4.神经系统是生命活动中起整合和调节作用的信息系统,神经元是神经系统的结构和功能单位,具有接受、整合和传递信息的功能。突触是神经元之间信息交流最关键的连接部位,在反射活动中各种神经冲动都要通过突触进行传导,可以说突触是整个神经系统传递的最小功能单位,突触的数量及结构的完整性对维持脑功能的正常发挥起重要作用。突触膨体素(SYN)是一种广泛分布于突触前囊泡膜上的钙结合酸性糖蛋白,参与突触囊泡的导入、转运和神经递质的释放、突触囊泡再循环、突触发生和稳定等生理过程,其含量与突触密度呈正相关。突触蛋白I主要分布在神经末梢的小型突触前囊泡外侧,磷酸化后可作用于囊泡释放池释放囊泡、囊泡与突触前膜的融合以及囊泡的再循环等几个环节,在神经递质释放及突触可塑性等生理活动过程中具有重要作用。因此,突触膨体素和突触蛋白I可作为突触前终末的特异性标记物,用来检测突触的密度和分布,从而反映突触可塑性的变化情况。那么,在束缚-浸水应激过程中,下丘脑前部、延髓内脏中枢部位的突触膨体素和突触蛋白I的表达会发生什么样的变化?
     为解决上述问题,设计实验如下:
     (1)根据束缚-浸水时间将雄性Wistar大鼠随机分为2组,分别是对照组(unstressed group)和应激1h组。以Fos作为神经元活动的标志,采用Fos与儿茶酚胺能神经元(CA)标志酶酪氨酸羟化酶(TH)、胆碱能神经元(ACh)标志酶胆碱乙酰转移酶(ChAT)以及催产素(OT)、精氨酸加压素(AVP)等神经递质和催产素受体(OTR)、精氨酸加压素Ⅰ型b亚型受体(V1bR)免疫组织化学双标技术,研究大鼠下丘脑前部、延髓内脏中枢等核团内相应神经元的活动情况,探讨这些核团中哪类神经元参与应激状态的胃机能调控,哪类神经元作用大一些,为进一步阐明束缚-浸水应激致胃机能紊乱的中枢调控机制提供实验依据和基础资料。
     (2)根据束缚-浸水时间将雄性Wistar大鼠随机分为4组,分别是对照组(unstressed group)和应激1h、2h、4h组。采用免疫组织化学技术及Western-blotting技术观察束缚-浸水应激不同时间段下丘脑前部-延髓内脏中枢主要核团中突触膨体素和突触蛋白I的变化,旨在探讨束缚-浸水应激过程中上述部位是否发生突触可塑性的改变,如有,哪些核团发生改变,从而为研究束缚-浸水应激致胃粘膜损伤后突触的重塑打下基础。
     本文研究发现:
     1.迷走神经背核、疑核中胆碱能神经元过度活动是束缚-浸水应激致胃粘膜损伤中枢机制之一
     乙酰胆碱转移酶免疫反应阳性(ChAT-IR)神经元分布于DVC吻-尾全段。RWIS 1h组DMV和NA中单位面积内的ChAT-IR神经元较对照组显著减少;Fos和乙酰胆碱转移酶双标阳性(Fos+ChAT-IR)神经元在DMV吻段、中段、尾段和NA中分别是对照组的3.60、16.00、4.00和3.29倍,占ChAT-IR神经元的比例均显著高于对照组。而在NTS中ChAT-IR神经元、Fos+ChAT-IR神经元在RWIS 1h组和对照组间几无变化,Fos+ChAT-IR神经元占ChAT-IR神经元的比值组间差异不显著。这说明DMV和NA中ACh能神经元的过度活动,尤其是DMV中段ACh能神经元的过度活动是RWIS致胃粘膜损伤的主要机制之一,NTS中的胆碱能神经元不参与RWIS致胃粘膜损伤的中枢调控过程。
     2.延髓内脏中枢主要核团中的儿茶酚胺能神经元参与束缚-浸水应激致胃粘膜损伤的调控,而下丘脑前部核团中儿茶酚胺能神经元很少甚或没有,因此不是下丘脑前部参与束缚-浸水应激反应的主要神经元,但核团内神经元的活动可能受延髓儿茶酚胺能神经元的反馈调节
     Fos和酪氨酸羟化酶双标阳性(Fos+TH-IR)神经元主要分布于NTS(A2/C2细胞群)和VLM(A1/C1细胞群),AP中也有较多分布,DMV中只有中段和尾段有少量酪氨酸羟化酶免疫反应阳性(TH-IR)神经元,NA中只有TH阳性终末,未见TH-IR神经元胞体存在。RWIS 1h组Fos+TH-IR神经元占TH-IR神经元的比例在DMV、NTS、AP和VLM分别为38.0%、34.4%、18.6%和45.7%,分别是对照组(分别为14.3%、9.7%、4.5%、18.9%)的2.7倍、3.6倍、4.1倍和2.4倍,组间差异均极显著(P<0.01),说明延髓内脏中枢上述核团中的CA能神经元参与了RWIS致胃机能紊乱的中枢调控。
     PVN中只有少量TH-IR神经元胞体分布于,SON中没有TH阳性胞体,但两核团中都有大量TH阳性终末,提示在RWIS过程中PNV、SON中的CA能神经元并不起主要作用或不起作用,但核团中神经元的活动可能受延髓CA能神经元的反馈调控。
     3.下丘脑前部主要核团中的催产素能、精氨酸加压素能神经元参与束缚-浸水应激反应,且精氨酸加压素能神经元活动强于催产素能神经元
     催产素免疫阳性(OT-IR)神经元主要分布于PVN内侧大细胞部及SON背侧;精氨酸加压素免疫阳性(AVP-IR)神经元主要分布于PVN大细胞部和SON的腹侧。RWIS 1h组,PVN中有约34%的OT-IR神经元、40%的AVP-IR神经元表达Fos;SON中有约28%的OT-IR神经元、53%的AVP-IR神经元表达Fos。束缚-浸水应激激活了PVN、SON中的OT和AVP能神经元,且AVP能神经元活动强于OT能神经元。
     4.延髓内脏中枢多数活动神经元的胞体膜上分布有催产素受体、精氨酸加压素V1b受体,提示催产素、精氨酸加压素在束缚-浸水过程中通过OT受体、V1b受体调节延髓内脏中枢神经元活动
     催产素受体免疫阳性(OTR-IR)神经元、V1b受体免疫反应阳性(V1bR-IR)神经元都几近均匀地分布于DVC吻-尾全段。DMV中RWIS 1h组超过10%的OTR-IR和V1bR-IR神经元表达Fos,而对照组只约3%;NTS中RWIS 1h组约10%的OTR-IR神经元和8%V1bR-IR神经元为双标神经元,而对照组则分别为5%和4%,这些RWIS 1h组和对照组的显著差异说明DMV、NTS中的神经元的活动受OT、AVP的调控。RWIS 1h组Fos与OTR双标免疫阳性(Fos+OTR-IR)、Fos与V1bR双标免疫阳性(Fos+V1bR-IR)神经元神占Fos-IR神经元的比值,在DMV中分别约58%和72%,在NTS中约45%和52%,说明OT、AVP对这些核团中神经元活动的调控主要是通过OT受体和V1b受体,尤其是V1b受体。
     5.短时间的束缚-浸水应激改变了突触膨体素和突触蛋白I在下丘脑前部和延髓内脏中枢中的含量及其分布
     在RWIS 0h到4h过程中,下丘脑前部中突触膨体素表达在不同应激时间段差异不显著;但突触蛋白I,尤其是突触蛋白Ib的含量发生了显著性变化,这说明短时间的RWIS应激引起下丘脑前部突触可塑性的改变。在RWIS 0h到4h过程中,延髓中的突触膨体素表达量呈现一个先增加后减少的趋势,突触蛋白I含量也发生了显著性变化,说明延髓内脏中枢在RWIS致胃粘膜损伤中枢调控过程中也发生了突触可塑性的变化。
     综上所述,束缚-浸水应激诱导DMV、NA中胆碱能神经元Fos显著表达,说明DMV、NA中胆碱能神经元的过度活动是RWIS诱导胃粘膜损伤的中枢机制之一。DVC、VLM中的CA能神经元可能投射到下丘脑前部,激活下丘脑前部的OT、AVP能神经元,尤其是AVP能神经元,OT、AVP能神经元继而投射到DMV、NTS,通过与OT受体、V1b受体结合激活这些核团中的OT、AVP敏感神经元,进而参与束缚-浸水应激导致胃粘膜损伤的调控。短时间的束缚-浸水应激不影响突触膨体素在下丘脑前部的含量和分布,但显著影响突触膨体素在延髓内脏中枢中含量及其分布;短时间的束缚-浸水应激影响突触蛋白I在下丘脑前部和延髓内脏中枢中含量及其分布,说明RWIS过程中下丘脑前部、延髓内脏中枢发生了突出可塑性的改变。
Restraint water-immersion stress (RWIS), considered to be a mixture of physical and psychological stressors, induces vagally-mediated gastric hypercontractility, hypersecretion of gastric acid and acute gastric erosions within a few hours. It is widely used to study the pathogenesis of stress-induced gastric lesions and to filtrate the medicine that can cure this disease. Using Fos as a marker of the activation of neurons, we found that after different durations of RWIS, the most intense Fos expression was observed in specific brain areas, such as the medullary visceral zone [dorsal motor nucleus of the vagus (DMV), nucleus of solitary tract (NTS), area postrema (AP) and nucleus ambiguous (NA)] and the anterior hypothalamus [paraventricular nucleus (PVN) and supraoptic nucleus (SON)]. These results indicate that the neuronal hyperactivity of the DMV, NTS, AP, NA, PVN and SON may play an important role in the gastric erosions induced by RWIS. Pretreatment with bilateral subdiaphragmatic vagotomy or atropine inhibited gastric hypercontractility, hypersecretion of gastric acid and prominently alleviated gastric erosions under RWIS, while pretreatment with hypophysectomy, adrenalectomy or phenoxybenzamine failed to affect gastric hypercontractility, hypersecretion of gastric acid and gastric erosions under RWIS, which innervates the stomach, and the abnormalities of gastric functions induced by RWIS are not due to the hyperactivity of the hypothalamo-pituitary-adrenal (HPA) axis, but due to the hyperactivity of vagal parasympathetic efferents, which largely originating in the DMV and partly in the NA. It seems that the hyperactivity of the DMV and NA leads to gastric lesions,but, electrical and chemical stimulations of the DMV and NA inhibited gastric motility. So, whether the hyperactivity of the higher centre, mainly the PVN and SON, relieves the inhibition of gastric motility mediated by the primary nerve centre? If so:
     1. Would the brainstem circuits regulating gastric function change during RWIS? What are the phenotype natures of activated neurons during RWIS?
     2. The PVN and SON are the main nuclei of the anterior hypothalamus, which might be stimulus-dependent. Vasopressin (AVP) and oxytocin (OT) are two structurally related nonapeptides synthesized mainly in the magnocellular neurons of the PVN and SON, and may act as neurotransmitters and/or neuromodulators which are considered to be related to gastric functions and the regulation of stress response. Whether the activated neurons in the PVN and SON of rats induced by RWIS were vasopressinergic and oxytocinergic neurons, and whether the activated neurons would display certain typical topographic features?
     3. Supposed that the activated neurons in the anterior hypothalamus not only projected to the candal part of pituitary but also to the medulla oblongata gastric nerve centre, and then may act as neurotransmitters to innervate the activity of the primary nerve centres of regulating gastric functions. If so, whether the phenotypic natures of activated neurons in the medullary visceral zone were AVP sensitive or OT sensitive neurons, where AVP or OT receptors located?
     4. Synapses are connections between neurons; biological signals are transferred from the presynaptic membrane by the synaptic transmission to the postsynaptic membrane. Synaptophysin (SYN or p38) and SynapsinI are the specific component of presynaptic membrane and the small synaptic vesicles (SSVs). The proteins were clearly found in vesicles in all efferent terminals, in both medial and lateral efferent systems, where they are believed to be involved in synaptic vesicle formation and exocytosis, the exocytosis of stored neurotransmitter. So, SYN and SynapsinI are considered to be the sensitive neuritic markers for synaptic degeneration and regenerative response.
     Thus, in the present study:
     (1) Male Wistar rats were randomly divided into 2 groups designated according to their duration of RWIS, respectively 0h and 1h. The rats stressed for 0h were considered as a control group. Additionally, to evaluate the role of catecholaminergic neurons, cholinergic neuron, oxytocinergic neurons ( or OT sensitive neurons) and vasopressinergic (or AVP sensitive neurons) in the anterior hypothalamus and the medulla oblongata gastric nerve centre during RWIS, the phenotype nature of activated neurons was determined by a double immunohistochemical method for collocations of Fos with one of Tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), Vasopressin (AVP), oxytocin (OT) and oxytocin receptor (OTR), V1-type AVP receptors (V1bR).
     (2) Male Wistar rats were randomly divided into 4 groups designated according to their duration of RWIS, respectively 0h, 1h, 2h and 4h. The rats stressed for 0h were considered as a control group. Additionally, in order to detect whether synaptic plasticity changed, immunohistochemistry staining technique and Western blotting technique were used to determine the expression and amounts of SYN and SynapsinI in the anterior hypothalamus and the medulla oblongata gastric nerve centre during RWIS.
     The present data demonstrate that:
     1. The hyperactivity of cholinergic neurons in the DMV and NA but the NTS might be one of the primary central mechanisms of the gastric dysfunctions induced by the RWIS. ChAT-IR neurons were observed evidently from the rostral to the caudal portions of the DVC either in the RWIS rats or the unstressed rats. In the DMV and NA, RWIS for 1h induced a robust decrease in ChAT-IR neurons. In the RWIS 1h rats, the number of Fos+ChAT-IR neurons was evidently increased compared to the unstressed rats, 3.60-fold in the rostral DMV, 16.00-fold in the intermedial DMV, 4.00-fold in the caudal DMV. Meanwhile, the percentage of Fos+ChAT-IR neurons in ChAT-IR neurons was 3% and 21% in the unstressed and RWIS 1h rats, respectively (P<0.01). In the NA, the number of Fos+ChAT-IR neurons was evidently increased 3.29-fold compared to the unstressed rats, and the percentage of Fos+ChAT-IR neurons in ChAT-IR neurons was 36% (i.e. 4.78-fold VS the unsressed rats) (P<0.01). But, in the NTS, the number of ChAT-IR neurons and Fos+ChAT-IR neurons was hardly increased compared to the unstressed rats, and the percentage of Fos+ChAT-IR neurons in ChAT-IR neurons between the RWIS 1h and unstress rats (P>0.05). These data strongly suggest that ChAT-neurons in the DMV and NA, but not the NTS, are related to stress-responsive signal transduction.
     2. Catecholaminergic neurons in the medulla oblongata gastric nerve centre may be related to the stress-responsive signal transduction, while those in the anterior hypothalamus were not but activated by Catecholaminergic neurons.
     In the brainstem, the marked activation of catecholaminergic neurons induced by RWIS encompasses mainly the NTS (A2/C2), VLM (A1/C1) cell groups and AP along with a few stained cells were found in the intermediate and the rostral DMV, while no TH-IR neurons were observed, although the CA-nerve ending were relatively abundant in the NA. In RWIS rats and unstressed rats, the percentage of Fos+TH-IR neurons in TH-IR neurons was respectively 38.0% and 14.3% in the DMV (i.e. 2.7-fold), 34.4% and 9.7% in the NTS (i.e. 3.6-fold), 18.6% and 4.5% in the AP (i.e. 4.1-fold), 45.7% and 18.9% in the VLM (i.e. 2.4-fold) (all the P<0.01). These data strongly suggest that CA-neurons in the medullary visceral zone are related to stress-responsive signal transduction.
     In the anterior hypothalamus, TH-labeled immunoreactive perikarya represented the fairly lowest population of cells in the PVN, and in the SON the presence of TH-immunoreactive perikarya was completely absent either in the control rats or the rats stimulated with RWIS, which indicate that the CA-neurons in the PVN and SON may be not related to the stress-responsive signal transduction, but the neurons may be activated by CA-neurons.
     3. The hypothalamic oxytocinergic and vasopressinergic neurons were involved in the regulation of a variety of central neural functions, but not the main type neurons activated by RWIS.
     OT-IR neurons were mostly located in the magnocellular portion of the PVN (including PaMM and PaLM), while mainly in dorsal part of the SON; AVP-IR neurons mainly located in the magnocellular portion of the medial part of the PVN (PaMM), while mainly in dorsal part of the SON. RWIS for 1h results in the activations of a large population of OT- and AVP- containing neurons, 31% and 40% in the PVN, 28% and 53% in the SON, respectively. These data indicate that the hypothalamic oxytocinergic and vasopressinergic neurons may be involved in the regulation of a variety of central neural functions, and more vasopressinergic neurons than the oxytocinergic ons were activated during RWIS.
     4. The phenotypic natures of activated neurons in the medullary visceral zone were AVP sensitive or OT sensitive neurons, where OTR or V1bR located in the medulla oblongata gastric nerve centre, which indicate that OT and AVP might mediate the activity of these neurons by OTR and V1bR.
     OTR-IR and V1bR-IR neurons were observed evidently from the rostral to the caudal portions of the DVC either in the RWIS rats or the unstressed rats. In the present study, more than 10% of OTR-IR and V1bR-IR neurons in the DMV were activated in the RWIS rats while less than 3% in the nonstressed rats. In the NTS, the percentages of Fos-IR neurons in the OTR-IR and V1bR-IR neurons were 10% and 8%, while 5% and 4% in the nonstressed rats, respectively. The significant difference of the ratio between the RWIS and nonstressed groups indicates that the OT-sensitive and AVP-sensitive neurons may be involved in the modulation of the gastric dysfunction during the RWIS. In addition, in RWIS 1h rats, the percentage of Fos+OTR-IR and Fos+V1bR-IR neurons in Fos-IR nuclei was more than 58% and 72% in the DMV, 35% and 52% in the NTS, which indicated that OT and AVP mediate the activity of these neurons mainly by OTR and V1bR.
     5. Amounts and distributions of SYN did not significantly differ in the anterior hypothalamus but the medulla oblongata with different durations of RWIS; and amountsand distribution of SynapsinI in the anterior hypothalamus and the medulla oblongata gastric nerve centre were changed
     During RWIS 0h to 4h, the SYN and SynapsinI immunoreactivity and amounts were examined using immunohistochemistry and Wstern blotting. Amounts and distributions of SYN did not significantly differ in the anterior hypothalamus but the medulla oblongata with different durations of RWIS (P<0.05). Amountsand distribution of SynapsinI in the anterior hypothalamus and the medulla oblongata gastric nerve centre were changed (P<0.05). These data indicate that RWIS effect the distribution and contents of SYN and SynapsinI in the medulla oblongata and/or the anterior hypothalamus. Since changes of SYN and SynapsinI correlated with brain dysfunction, the synaptic plasticity was changed in the anterior hypothalamus and the medulla oblongata gastric nerve centre in rats exposed to RWIS.
     In conclusion, RWIS for 1h results in the activations of a large population of ChAT-IR neurons in the DMV and NA, which indicates that the hyperactivity of cholinergic neurons in the DMV and NA leads to gastric lesions. OT- and AVP-containing neurons in the PVN and SON, which may be activated by Catecholaminergic neurons, would project to the NTS or DMV, mediated by OTR and V1bR, and then the DMV in turn provide the preganglionic efferent fibers to regulate gastric information. RWIS effects the distribution and contents of SynapsinI but SYN in the anterior hypothalamus, while in the medulla oblongata gastric nerve centre, the distribution and contents of SYN and SynapsinI changed during the RWIS. These data indicate that the synaptic plasticities were changed in the anterior hypothalamus and the medulla oblongata gastric nerve centre in rats exposed to RWIS.
引文
[1]蒋春雷,路长林.应激医学[M].上海:上海科学技术出版社, 2006, P4-6.
    [2]祝建平.大鼠迷走背核-孤束核在胃运动及应激性胃粘膜损伤中的调控作用[D].济南:山东师范大学硕士论文, 2005.
    [3]牛廷献,史智勇,罗晓红.大鼠应激性胃溃疡发生机制及防治的研究[J].中国兽医科技, 2003, 33:75.
    [4]艾洪滨,张震东.大鼠浸水应激性胃粘膜损伤机制的研究[J].生理学报, 1990, 42 (5):496-502.
    [5] Garrick T, Buack S, Bass P. Gastric motility is a major factor in cold restraint-induced lesion formation in rats[J]. Am J Physiol Gastrointest Liver Physiol, 1986, 250:191-199.
    [6]李兆申.应激性溃疡发生机制及预防对策研究现状[J].解放军医学杂志, 1999, 24(6):391-393.
    [7] Pagani FD, Norman WP, Kasbekar DK. Localization of sites within dorsal motor nucleus of vagus that affect gastric motility[J]. Physiol, 1985, G73-G84.
    [8]程世斌,卢光启.迷走背核的研究进展[J].生理学进展, 1996, 27(1):13-18.
    [9] Takeuchi K, Furukawa O, Okada M, Niida H, Okabe S. Influences of stress on gastric alkaline secretion in rats[J]. J Pharmacol Exp Ther, 1990, 252 (3):1228-1233.
    [10] Ephgrave KS, Cullen JJ, Broadhurst K, Kleiman-Wexler R, Shirazi SS, Schulze-Delrieu K. Gastric contractions, secretions and injury in cold restraint[J]. Neurogastroenterol Motil, 1997, 9 (3):187-192.
    [11] Kobayashi K, Kashimak K, Higuchi K, Arakawa T. The mechanisms of gastroin-testinal mucosal injury repair [J] . Nippon Rinsho, 1998 , 56(9):2215-2222.
    [12]戴义隆,李栋生,陈启盛.应激性胃粘膜损害的实验研究(垂体-肾上腺系统与应激性胃粘膜损害) [J].南京医学院学报, 1985, 5(2):95-96.
    [13]陈启盛,戴义隆.迷走神经与应激性胃粘膜损害的关系[J].南京医学院学报, 1991, 11(2):96-99.
    [14] Kaneko H, Tache Y, Kusugami K. Importance of medullary thyrotropin-releasing hormone in brain-gut circuits regulating gastric integrity: preclinical studies[J]. J Gastroenterol, 2002, 37(14):128-132.
    [15] Zhang JF, Zheng F. The role of paraventricular nucleus of hypothalamus in stress-ulcer formation in rats[J]. Brain Res, 1997, 761:203-209.
    [16] Wang L, Cardin S, Martinez V, Tache Y. Intracerebroventricular CRF inhibits cold restraint-induced c-fos expression in the dorsal motor nucleus of the vagus and gastric erosions in rats[J]. Brain Res, 1996, 736 (1-2):44-53.
    [17] Chan RK, Brown ER, Ericsson A, Kovacs KJ, Sawchenko PE. A comparison of two immediate-early genes, c-fos and NGFI-B, as markers for functional activation in stress-related neuroendocrine circuitry[J]. J Neurosci, 1993, 13(12):5126-5138.
    [18] Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. Pattern and time course of immediate early gene expression in rat brain following acute stress[J]. Neuroscience, 1995, 64(2):477-505.
    [19] Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in the brain: metabolic mapping at thecellular level[J]. Science, 1988, 240 (4857): 1328-1331.
    [20]许爽,蒋星红,郭试瑜,俞光第,印其章,久光正.水浸束缚应激及电击足底应激诱导的大鼠脑内FOS蛋白表达[J].中国应用生理学杂志, 1999, 15(4):311-315.
    [21]张红梅,刘晓伟,曲宏达,廖剑,戚振红,谢子英,杨恬,阎伟伟.左金丸对应激性溃疡大鼠下丘脑室旁核c-fos及HPA轴的调节作用[J].中国中西医结合急救杂志, 2004, 1l(5):276.
    [22] Zhang YY, Zhu WX, Cao GH, Cui XY, Ai HB. c-Fos expression in the supraoptic nucleus is the most intense during different durations of restraint water-immersion stress in the rat[J]. J Physiol Sci, 2009, 59:367-375.
    [23] Zhang YY, Cao GH, Zhu WeX, Cui XY, Ai HB. Comparative study of c-Fos expression in the rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress[J]. Chinese Journal of Physiology, 2009, 52(3):143-150.
    [24] Okumura T, Namiki M. Vagal motor neurons innervating the stomach are site-specifically organized in the dorsal motor nucleus of the vagus nerve in rats[J]. J Auton Nerv Syst, 1990, 29:157-162.
    [25] Lee CH, Jung HS, Lee TY, Lee SR, Yuk SW, Lee KG, Lee BH. Studies of the central neural pathways to the stomach and Zusanli (ST36) [J]. Am J Chin Med, 2001, 29:211-220.
    [26] Hayakawa T, Takanaga A, Tanaka K, Maeda S, Seki M. Cells of origin of vagal motor neurons projecting to different parts of the stomach in the rat: confocal laser scanning and electron microscopic study[J]. Anat Embryol (Berl), 2003, 207:289-297.
    [27] Okumura T, Namiki M. Vagal motor neurons innervating the stomach are site-specifically organized in the dorsal motor nucleus of the vagus nerve in rats[J]. J Auton Nerv Syst, 1990, 29:157-162.
    [28] Pagani F.D, Norman W.P, Gillis R.A. Medullary parasympathetic projections innervate specific sites in the feline stomach[J]. Gastroenterology, 1988, 95:277-288.
    [29] Kalia M. Brainstem localization of vagal preganglionic neurons[J]. Autonom Nerv Syst, 1981, 3:451-481.
    [30] McLean JH, Hopkins DA. Ultrastructural identification of labeled neurons in the dorsal motor nucleus of the vagus nerve following injections of horseradish peroxidase into the vagus nerve and brainstem. J Comp Neurol[J]. 1982, 206(3):243-52.
    [31] Geis GS, Wurster RD. Horseradish peroxidase localization of cardiac vagal preganglionic somata[J]. Brain Res. 1980, 182(1):19-30.
    [32]程世斌,卢光启.大鼠胃不同部位副交感节前神经元的中枢定位[J].解剖学报. 1993, 24(1):5l-56.
    [33] Ishikawa T, Osumi Y, Fujiwara M, Nagata M. Possible roles of central cholinergic nicotinic mechanisms in regulation of gastric functions[J]. Eur. J. Pharmacol. 1982, 80:331-336.
    [34]朱长庚.神经解剖学[M].北京:人民卫生出版社. 2002: P499-506, 886.
    [35] Ng YK, Xue YD, Wong PT. Different distributions of nitric oxide synthase-containing neurons in the mouse and hypothalamus[J]. Nitric oxide, 1999 3(5):383-392.
    [36] Oh JD, Woolf N J, Roghani A, EdwardsR H, Butcher LL. Cholinergic neurons in the rat central nervous system demonstrated by in situ hybridization of choline acetyltransferase mRNA[J]. Neuroscience, 1992, 47(4):807-22. [ 37 ] Radziszewski P, Ekblad E, Sundler F, Mattiasson A. Distribution of neuropeptide-, tyrosine hydroxylase- and nitric oxide synthase containing nerve fibers in the external urethral sphincter of the rat. [M] Scand J Urol Nephrol Suppl, 1996, 179:81-5.
    [38] Ekblad E, Alm P, Sundler F. Distribution, origin and projections of nitric oxide synthase-containing neurons in gut and pancreas[J]. Neuroscience, 1994, 63(1):233-48.
    [39] Alm P, Larsson B, Ekblad E, Sundler F, Andersson KE. Immunohistochemical localization of peripheral nitric oxide synthase-containing nerves using antibodies raised against synthesized C- and N-terminal fragments of a cloned enzyme from rat brain[J]. Acta Physiol Scand, 1993, 148(4):421-9.
    [40]程世斌,罗天锡,卢光启.迷走背核内胃副交感节前神经元的超微结构及联系[J].神经解剖学杂志. 1992, 8(2):225-229.
    [41]程世域,罗天锡,卢光启.大鼠胃迷走感觉纤维的中枢投射——光镜电镜研究[J].中山医科大学学报, 1993, 14(4):252-255.
    [42]乔小英,卢光启.迷走背核的中枢传入来源及其肽能递质[J].中山医科大学学报, 1990, 11 (2):17-22.
    [43]戴晓章,叶蒙福.杏仁体和下丘脑至迷走背核簇尾侧部的投射[J].南京医学院学报, 1990, 10 (2):101-104.
    [44]王晓霞,程世斌,卢光启.大鼠岛叶皮质与迷走背核的直接通路——光镜和电镜研究[J].解剖学报, 1994, 25(2):128-131.
    [45] Berk ML. Projections of the lateral hypothalamus and bed nucleus of the stria terminalis to dorsal vagal complex in the pigeon[J]. J Comp Neurol, 1987, 260(1):140-156.
    [46] Gray TS, magnuso DJ. Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat[J]. J Comp Neurol, 1987, 262(3):365-74.
    [47] Willette CJ, Ruther JG, Gwyn DG, Leslie, RA. Projections between the hypothalamus and the dorsal vagal complex in the cat: an HRP and autoradiographic study[J]. Brain Res Bull, 1987, 18(1):63-71.
    [48] Zhang XY, Ai HB, Cui XY. Effects of nuclei ambiguus and dorsal motor nuclei of vagus on gastric H+ and HCO3- secretion in rats[J]. World J Gastroenterol, 2006, 12 (20):3271-3274.
    [49] Krowicki ZK, Burmeister MA, Berthoud HR, Scullion RT, Fuchs K, Hornby PJ. Orexins in rat dorsal motor nucleus of the vagus potently stimulate gastric motor function[J]. Am J Physiol, 2002, 283: G465-G472.
    [50] Cruz M T, Murphy E C, Sahibzada N, Verbalis JG, Gillis RA. A reevaluation of the effects of stimulation of the dorsal motor nucleus of the vagus on gastric motility in the rat[J]. Am J PhysiolRegul Integr Comp Physiol, 2007, 292(1): R291~R307.
    [51] Zhou SY, Lu YX, Yao HR, Owyang C. Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat[J]. Am J Physiol, 2008, 294: G1201-G1209.
    [52] Travagli R A, Hermann G E, Browning K N, Rogers RC. Brainstem circuits regulating gastric function[J]. Annu Rev Physiol, 2006, 68: 279-305.
    [53] Paxinos G, Watson C. The rat brain in stereotaxic coordinates (fifth edition)[M]. Burlington, MA, USA: Elsevier Academic Press, 2005.
    [54] Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches[J]. J Comp Neurol, 1980, 193(2): 467-508.
    [55]孙红梅,邱树华.大鼠孤束核中部轴突终末及突触形式观察:针刺针麻的形态学研究[J].北京中医药大学学报, 1994, 17(6):19-22.
    [56]吴利平,李辉,李云庆.大鼠延髓和脊髓背角的PKCγ阳性神经元向孤束核投射[J].第四军医大学学报, 2001, 22(23):2171-74.
    [57]彭克美,冯悦平,张维民. 6种家禽孤束核的脊髓通路—HRP逆行追踪法研究[J].华中农业大学学报, 1997, 16(5):374-379..
    [58]都格尔斯仁,刘为民,乔灵.鸡孤束核向脑干的传出性投射—HRP顺行追踪法研究[J].内蒙古农牧学院学报, 1997, 18(1):27-29.
    [59] Schaffar N, Kessler JP, Bosler O, Jean A. Central serotonergic projections to the nucleus tractus solitarii: Evidence from a double labeling study in the rat[J]. Neuroscience, 1988, 26(3):951-8.
    [60]肖明,丁炯,左国平.辣根过氧化物酶示踪大鼠孤束核、臂旁核至中央杏仁核投射的解剖观察[J].南京医科大学学报, 2000, 20(5):371-375.
    [61] Davis SF, Derbeneva AV, Williams KW, Glatzer NR, Smith BN. Excitatory and inhibitory local circuit input to the rat dorsal motor nucleus of the vagus originating from the nucleus tractus solitarius[J]. Brain research, 2004, 1017:208-217.
    [62] Krowicki KZ, Sivarao VD, Abrahams PT, Hornby JP. Excitation of dorsal motor vagal neurons evokes non-nicotinic receptor-mediated gastric relaxation[J]. J Auton Nerv Syst, 1999, 77 (2-3):83-89.
    [63]孙洪兆.大鼠疑核-迷走背核-孤束核内注射谷氨酸钠对胃运动影响的比较[D].济南:山东师范大学硕士论文, 2007.
    [64]马秀英,何瑞荣.最后区的研究进展[J].生理科学进展, 1994, 25(4):354-356.
    [65] Miselis R R, Hyde T M, Shapiro R E. Area postrema and adjacent solitary nucleus in water and energy balance[J]. Fed Proc, 1984, 43(15):2969-2971.
    [66] Shapiro R E, Miselis R R. The central neural connections of the area postrema of the rat[J]. J Comp Neurol, 1985, 234(3):344-364.
    [67]朱望东,杨天祝.感受性室周器官的形态学及参与神经免疫调节的研究进展[J].解剖科学进展, 2001, 7(1): 64~67.
    [68] Bori H L,马丽云.最后区:延髓室周器官的化学感受器[J].国外医学:内分泌学分册, 1990, 10(1): 28-31.
    [69] Koga T, Kobashi M, Mizutani M, Tsukamoto G, Matsuo R. Area postrema mediates gastric motor response induced by apomorphine in rats[J]. Brain Res, 2003, 960(1-2):122-131.
    [70] Bongianni F, Mutolo D, Carfi M, Pantaleo T. Area postrema glutamate receptors mediate respiratory and gastric responses in the rabbit[J]. Neuroreport, 1998, 9(9):2057-2062.
    [71]苗亮.刺激大鼠延髓最后区对胃酸分泌影响及其机制研究[D].济南:山东师范大学硕士论文, 2008.
    [72] Ter Horst GJ, Luiten PG, Kuiper F. Decsending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat [J]. J Auton Nerv Syst, 1984, 11: 59-75.
    [73] Sakanaka M, Shibasaki T, Lederis K. Distribution and efferent projections of corticotropin-releasing factor-like immunoreactivity in the rat amygdaloid complex [J]. Brain Res, 1986, 382: 213-238.
    [74] Jongen-Relo AL, Amaral DG. Evidence for a GABAergic projection from the central nucleus of the amygdale to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study [J]. Eur J Neurosci, 1998, 10: 2924-2933.
    [75] Herbert H, Moga MM, Saper CB. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat [J]. J Comp Neurol, 1990, 293: 540-580.
    [76] Stuesse SL, Fish SE. Projections to the cardioinhibitory region of the nucleus ambiguus of rat [J]. J Comp Neurol, 1984, 229: 271-278.
    [77] Ennis M, Xu SJ, Rizvi TA. Discrete subregions of the rat midbrain periaqueductal gray project to nucleus ambiguus and periambigual region [J]. Neuroscience, 1997, 80: 829-845.
    [78] Cunningham ET, Jr Simmons DM, Swanson LW, Sawchenko PE. Enkephalin immunoreactivity and messenger RNA in a discrete projection from the nucleus of the solitary tract to the nucleus ambiguus in the rat [J]. J Comp Neurol, 1991, 307: 1-16.
    [79] Morillo AM, Nunez Abades PA, Gayton SP, Pásaro R. Brainstem projections by axonal collaterals to the rostral and caudal ventral respiratory group in the rat [J]. Brain Res Bull, 1995, 37: 205-211.
    [80] Ross CA, Ruggiero DA, Reis DJ. Afferent projections to cardiovascular portions of the nucleus of the tractus solitarii in the rat [J]. Brain Res, 1981, 223: 511-534.
    [81] King GW. Topology of ascending brainstem projections to nucleus parabrachialis in the cat [J]. J Comp Neurol, 1980, 191: 615-638.
    [82] Rikard-Bell GC, Bystrzycka EK, Nail BS. Brainstem projections to the phrenic nucleus: a HRP study in the cat [J]. Brain Res Bull, 1984, 12: 469-477.
    [83]叶蒙福,宋鹤九.胃的神经支配-HRP法[J].解剖学杂志, 1993, 16(1):39-42.
    [84] Shapiro RE, Miselis RR. The central organization of the vagus nerve innervating the stomach of the rat [J]. J Comp Neurol, 1985, 238:473-488.
    [85] Leslie RA, Gwyn DG, Hopkins DA. The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat [J]. Brain Res Bull, 1982, 8:37-43.
    [86] Coil JD, Norgren R. Cells of origin of motor axons in the subdiaphragmatic vagus of the rat [J]. J Auton Nerv Syst, 1979, 1:203-210.
    [87]罗政良,董新文,单红英.大鼠胃的神经支配-荧光双标记法研究[J].解剖学报, 1987, 13:379-385.
    [88] Wang L, Martinez V, Larauche M, Tache Y. Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain[J]. Brain Res, 2009, 1247:79-91.
    [89] Maruyama M, Matsumoto H, Fujiwara K, Noguchi J, Kitada C, Fujino M, Inoue K. Prolactin-releasing peptide as a novel stress mediator in the central nervous system[J]. Endocrinology.2001, 142(5):2032-8.
    [90] Sawchenko PE, Swanson LW. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat[J]. J Comp Neurol, 1982, 205:260-272.
    [91] Briski K, Gillen E. Differential distribution of Fos expression within the male rat preoptic area and hypothalamus in response to physical vs. psychological stress[J]. Brain Res Bull, 2001, 55(3):401-408.
    [92]李慧,张玉玉,艾洪滨.切断膈肌下迷走神经对应激大鼠延髓、下丘脑Fos表达的影响[J].神经解剖学杂志, 2010, 26(2):107-111.
    [93] Swanson LW, Kuypers HG. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods[J]. J Comp Neurol, 1980, 194(3): 555-570.
    [94] Weindl A, Sofroniew MW. Immunohistochemical localization of hypothalamic peptide hormones in neural target areas, in Wuttke W, Weindl A, Voigt KG, Dries R-R (eds): Brain and Pituitary Peptides[M]. Basel, Switzerland, S Karg, 1980, P97-109.
    [95] Weindl A, Sofroniew MW. Neuroanatomical pathways related to vasopressin, in Ganten D, Pfaff D (eds): Neurobiology of Vasopressin[M]. Berlin, Springer-Verlag, 1985, P137-195.
    [96] Ferguson AV, Marcus P, Spencer J, Allace JL. Paraventricular nucleus stimulation causes gastroduodenal mucosal necrosis in the rat[J]. Am J Physiol, 1988, 255(24):R861-R865. [ 97 ] Hierlihy LE, Wallace JH, Ferguson AV. Autonomic pathways in the development of neural stimulation-induced gastric mucosal damage[J]. Am J Physiol, 1994, 266:G179-G185.
    [98] Eugene JZ, Koplovitz I. Gastric secretory response of the anesthetized dog after direct chemical stimulation of the supraoptic region[J]. Exp Neurol, 1977, 55:122-132.
    [99] Tebbea JJ, Dietzeb T, Groteb C, Monnikes H. Excitatory stimulation of neurons in the arcuate nucleusinhibits gastric acid secretion via vagal pathways in anesthetized rats[J]. Brain Res, 2001, 913:10-17.
    [100] Gatón J, Fernández de la Gándara F, Velasco A. The role of the neurotransmitters acetylcholine and noradrenaline in the pathogenesis of stress ulcers[J]. Comp Biochem Physiol, 1993, 106(1):125-129.
    [101]李彩伟,黄碧兰.大鼠孤束核微量注射乙酰胆碱对电针抗大鼠应激性胃粘膜损伤的影响[J].咸宁学院院报(医学报). 2007, 21(3):34-36.
    [102] McCune SK, Voigt MM, Hill JM. Expression of multiple alpha adrenergic receptor subtype messenger RNAs in the adult rat brain[J]. Neuroscience, 1993, 57(1):143-151.
    [103] Wang R, Macmillan LB, Fremeau RT, Magnuson MA, Lindner J, Limbird LE. Expression of alpha 2-adrenergic receptor subtypes in the mouse brain: evaluation of spatial and temporalinformationimparted by 3 kb of 5’regulator sequence forthealpha 2A AR-receptor gene in transgenic animals[J]. Neuroscience, 1996, 74(1):199-218.
    [104] Glavin GB, Szabo S. Dopamine in gastrointestinal disease[J]. Dig Dis Sci, 1990, 35:1153-1155.
    [105]陆林,黄明生.多巴胺受体亚型及其基因调控[J].国外医学精神病学分册, 1997, 24:202-204.
    [106] Jaber M, Robinson SW, Missale C, Caron MG. Doparnine receptors and brain function[J]. Neuro- pharmacology, 1996, 35(1l):1503-1519.
    [107] Le Folla B, Diazb J, Sokolof P. Neuroadaptations to hyperdopaminergia in dopamine D3 receptor- deficientmice [J]. Life Sci, 2005, 76(11):1281-1296.
    [108] Van Tol H H, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O. Cloning of the gene for a human dopamine D5 receptor w ith higher affinity for dopam ine than D1[J]. Nature, 1991, 350(6319):610-614.
    [109] Sibley DR. New insights into dopaminergic receptor function using antisense and genetically altered animals[J]. Annu Rev Pharrnacol Toxicol, 1999, 39:313-341.
    [110]党小荣,张文斌.大鼠孤束核内传递内脏伤害性信息的儿茶酚胺能神经元向臂旁核的投射[J].神经解剖学杂志, 2001, 17:235-238.
    [111] Glavin G B. Central dopamine involvement in experimental gastrointestinal injury[J]. Prog Neuro- psychopharmacol Biol Psychiatry, 1992, 16(2):217-221.
    [112] Glavin G B. Dopamine: a stress modulator in the brain and gut[J]. Gen Pharmacol, 1992, 23(6): 1023-1026.
    [113] Xing LP, Balaban C, Seaton J, Washington J, Kauffman G. Mesolimbic dopamine mediates gastric mucosal protection by central neurotensin[J]. Am J Physiol, 1991, 260 (23):G34-G38.
    [114]高霄飞,王雪琦,何成.抑郁症单胺类递质受体研究进展[J].生理科学进展, 2002, 33(1):17-20.
    [115] Krowicki ZK, Hornby PJ. Serotonin microinjected into the nucleus raphe obscurus increases intragastric pressure in the rat via a vagally-mediated pathway[J]. J Pharmacol Exp Ther, 1993, 265: 468-476.
    [116] Yoneda M, Tache Y. Potentiating interactions between medullary serotonin and thyrotropin releasinghormone-induced gastric erosions in rats[J]. Neurosci Lett, 1993, 161:199-202.
    [117] Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function [J]. Science, 1992, 258:597-603.
    [118] Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor [J]. Nature, 1991, 354:31-37.
    [119] Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M. Glutamate receptors: brain function and signal transduction [J]. Brain Res Rev, 1998, 26: 230-235.
    [120] Nakanishi S, Masu M. Molecular diversity and functions of glutamate receptors [J]. Annu Rev Biophys Biomol Struct, 1994, 23:319-348.
    [121] Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, phar- macology, and distinct properties in the function of the central nervous system [J]. Annu Rev Pharmacol Toxicol, 1989, 29:365-402.
    [122]张宇,王桢,郑肇青. I型代谢型谷氨酸受体在脊髓水平参与疼痛信号的传递[J].山西医科大学学报, 2006, 37(5):449-451.
    [123]吴丽丽,严灿,徐志伟.代谢型谷氨酸受体与应激损伤[J].中国药理学通报. 2004, 20(2): 125-128.
    [124] Houamed KM, Kuijper JL, Gilbert TL, Haldeman BA, O'Hara PJ, Mulvihill ER, Almers W, Hagen FS. Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain [J]. Science, 1991, 252:1318-1321.
    [125] Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate [J]. J Biol Chem, 1993, 268:11868-11873.
    [126] Okamoto N, Hori S, Akazawa C, Hayashi Y, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction [J]. J Biol Chem, 1994, 269:1231-1236.
    [127] Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S. A family of metabotropic glutamate receptors [J]. Neuron, 1992, 8:169-179.
    [128] Saugstad JA, Kinzie JM, Mulvihill ER, Segerson TP, Westbrook GL. Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors [J]. Mol Pharmacol, 1994, 45:367-372.
    [129] Saugstad JA, Kinzie JM, Mulvihill ER, Segerson TP, Westbrook GL. Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors [J]. Mol Pharmacol, 1994, 45:367-372.
    [130] Gilad GM, Gilad VH. Region-selective stress-induced increase of glutamate uptake and release in rat forebrain[J]. Brain Res, 1990, 52(2):335-338.
    [131]姚树欣,艾洪滨,崔希云.束缚浸水应激对大鼠脑组织中游离氨基酸含量的影响[J].生物医学工程研究, 2006, 25(2):96-99.
    [132] Krowicki ZK, Arimura A, Nathan NA, Hornby PJ. Hindbrain effects of PACAP on gastric motor function in the rat [J]. Am J Physiol, 1997, 272:1221-1229
    [133]孙一耕.化学刺激和电刺激大鼠延髓最后区对胃运动的影响[D].山东师范大学硕士论文, 2007.
    [134] Shirasaki T, Aibara K, Akaike N. Direct modulation of GABAA receptor by intraeellular ATP in disociated nucleus tractus solitari neurones of rat[J]. J Physiol, 1992, 449:551-572.
    [135]金煜,丁美萍.γ一氨基丁酸受体亚型和癫痫[J].国外医学神经病学神经外科学分册, 2002, 29(l): 47-50.
    [136]史远,艾洪滨,崔希云.大鼠侧脑室注射GABA对束缚-浸水应激性胃溃疡的影响[J].生物医学工程研究, 2006, 26(1):55-58.
    [137] Feng HS, Lynn RB, Han J, Brooks FP. Gastric effects of TRH analogue and bicuculline injected into dorsal motor vagal nucleus in cats[J]. Am J Physiol, 1990, 259(2 Pt 1):G321-G326.
    [138] Washabau RJ, Fudge M, Price WJ, Barone FC. GABA receptors in the dorsal motor nucleus of the vagus influence feline lower esophageal sphincter and gastric function[J]. Brain Res Bull, 1995, 38(6): 587-594.
    [139] Hara N, Hara Y, Natsume Y, Goto Y. Gastric hyperacidity and mucosal damage caused by hypothermia correlate with increase in GABA concentrations of the rat brain[J]. European Journal of Pharmacology, 1991, 194:77-81.
    [140] Takeuchi K, Kato S, Takehara K, et al. Role of nitric oxide in mucosal blood flow response and the healing of HCI-induced lesions in the rat stomach[J]. Digestion 1997, 58(1):19-27.
    [141] Whittle BJR. Nitric oxide in gastrointestinal physiology and pathology. In: Johnson LR, ED. Physiology of the Gastrointestinal Tract [M]. 3rd ed. New York: Raven Press, 1994, P267-296.
    [142] Ng YK, Xue YD, Wong PT. Different distributions of nitric oxide synthase containing neurons in the mouse and rat hypothalamus[J]. Nitric oxide, 1999, 3(5):383-392.
    [143]泉福林,单红英,董新文.大鼠部分脑区内氧化氮合酶与经典神经递质的共存[J].解剖学报, l996, 27(9):153-l57.
    [144] Vinceut SR, Kimura H. Histochenfical mapping of nitric oxide syntbase II1 tile rat brain[J]. Neuroscience, 1992, 46:755-784.
    [145] Lu Y, Ding YQ, Qin BZ, Li JS. The distribution and origin of axon terminals with NADPH diaphorase activity in the nucleus of the solitary tract of the rat[J]. Neurosci Lett, 1994, 171(1-2):70-72.
    [146] Travagli RA, Gillis RA. Nitric oxide-mediated excitatory effect on neurons of dorsal motor nucleus of vagus[J]. Am J Physiol, 1994, 266:G1-G6.
    [147]黄碧兰,王秋桂,余良主,丁洁琼,唐琼.孤束核微量注射一氧化氮合酶抑制剂对应激性大鼠胃黏膜损伤的影响[J].中国临床康复. 2006, 10(34):92-94.
    [148]孙洪兆.大鼠疑核调控胃运动及其机制的研究[D].济南:山东师范大学博士论文, 2010.
    [149] Swaab DF, Nijveldt F, Pool CW. Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus[J]. J Endocrinol, 1975, 67:461-462.
    [150] George JM, Jacobowitz DM. Localization of vasopressin in discrete areas of the rat hypothalamus[J]. Brain Res, 1975, 93:363-366.
    [151] Sofroniew MV, Glasmann W. Golgi-like immunoperoxidase staining of hypothalamic magnocellular neurons that contain vasopressin, oxytocinor neurophysin in the rat[J]. Neuroscience, 1981, 6:619-643
    [152] Ostrowski NL, Lolait SJ, Bradley DJ, O’Carroll AM, Brownstein MJ, Young III WS. Distribution of V1a and V2 vasopressin receptor messenger ribo-nucleic acid in rat liver, kidney, pituitary and brain[J]. Endocrinology, 1992, 131:533-535.
    [153] Ostrowski NL, Lolait SJ, Young III WS. Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal and brain vasculature[J]. Endocrinology, 1994, 135: 1511-1527.
    [154] Kre′marik P, Freund-Mercier MJ, Stoeckel ME. Oxytocin and vasopressin binding sites in the hypothalamus of the rat: histoautoradiographic detection[J]. Brain Res Bull, 1995, 36:195-208.
    [155] Rogers RC, Hermann GE. Oxytocin, oxytocin antagonist, TRH, and hypothalamic paraventricular nucleus stimulation effects on gastric motility[J]. Peptides, 1987, 8:505-513.
    [156] Grassi M, Drago F. Effects of oxytocin on emotional stress and stress-induced gastric lesions[J]. J Physiology (Paris), 1993, 87:261-264.
    [157] Pirnik Z, Kiss A. Fos expression variances in mouse hypothalamus upon physical and osmotic stimuli: Co-staining with vasopressin, oxytocin, and tyrosine hydroxylase[J]. Brain Res Bull, 2005, 65: 423–431.
    [158] Barberis C, Tribollet E. Vasopressin and oxytocin receptors in the central nervous system[J]. Crit Rev Neurobiol, 1996, 10:119-154.
    [159] Vaccari C, Lolait SJ, Ostrowski NL. Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain[J]. Endocrinology, 1998, 139:5015-5033.
    [160] Hernando F, Schoots O, Lolait SJ, Burbach JP. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin[J]. Endocrinology, 2001, 142:1659-1668.
    [161] Dayanithi G. Moos FC, Richard Ph. Vasopressin controls magnocellular vasopressin neurons via V1-type receptors in rat[J]. J Physiol (Lond), 1995, 489:184P-185P.
    [162] Young WS, Li J, Wersinger SR, Palkovit MR. The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint dtress or adrenalectomy[J]. Neuroscience, 2006, 143(4):1031-1039.
    [1] Bressloff PC, Earnshaw BA. A dynamic corral model of receptor trafficking at a synapse[J]. Biophys J, 2009, 96(5):1786-1802.
    [2] Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus[J]. Nature, 1993, 361(6407):31-39. [ 3 ] Bliss TV, Richter-Levin G. Spatial learning and the saturation of long-term potentiation[J]. Hippocampus, 1993, 3(2):123-125.
    [4] Singh P, Heera PK, Kaur G. Expression of neuronal plasticity markers in hypoglycemia induced brain injury[J]. Mol Cell Biochem.2003, 247(1-2):69-74.
    [5] Polley DB, Kvasnak E, Frostig RD. Naturalistic experience transforms sensory maps in the adult cortex of caged animals[J]. Nature, 2004, 429(6987):67-71.
    [6] Arancibia S, Rage F, Astier H, Tapia-Arancibia L. Neuroendocrine and autonomous mechanisms underlying thermoregulation in cold environment [J]. Neuroendocrinology, 1996, 64(4):257-267.
    [7] Diamond DM, Branch BJ, Fleshner M, Rose GM. Effects of dehydroepiandrosterone sulfate and stress on hippocampal electrophysiological plasticity[J]. Ann N Y Acad Sci, 1995, 774:304-307.
    [8] Coussens CM, Steven KD, Abraham WC. Glucocorticoid receptor activation lowers the threshold for NMDA-receptor-dependent homosynaptic long-term depression in the hippocampus through activation of voltage-dependent calcium channels[J]. J Neurophysiol, 1997, 78:1-9.
    [9] Yamada K, McEwen BS, Pavlides C. Site and time dependent effects of acute stress on hippocampal long-term potentiation in freely behaving rats[J]. Exp Brain Res, 2003, 152(1):52-59.
    [10] Fluharty SJ, Snyder GL, Stricker EM, Zigmond MJ. Short- and long-term changes in adrenal tyrosine hydroxylase activity during insulin-induced hypoglycemia and cold stress[J]. Brain Res, 1983, 267(2): 384-387.
    [11]池霞.沉默突触的研究进展[J].国外医学儿童分册, 2003, 30(1):21-23.
    [12]屠云洁,耿照玉,陈国宏.动物冷应激反应中多种基因调控机制的研究[J].中国畜牧兽医, 2010, 37(1):84-87.
    [13] Sudhof TC, Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling[J]. Neuron, 1991, 6(5):665-677.
    [14] Jessell TM, Kandel ER. Synaptic transmission: a bidirectional and self-modifiable form of cell-cell communication[J]. Cell, 1993, 72 Suppl:1-30.
    [15] Bruns D, Riedel D, Klingauf J, Jahn R. Quantal release of serotonin[J]. Neuron, 2000, 28(1):205.
    [16]黄小玉,王忱.突触可塑性的结构基础和分子机制[J].重庆医学, 2006, 35(21):1992-1994.
    [17] De Robertis ED, Bennett HS. A submicroscopic vesicular component in the synapse [J]. Fed Proc, 1954, 13:35-42.
    [18] Sheng M. Molecular organization of the postsynaptic specialization[J]. Proc Natl Acad Sci USA, 2001, 98: 7058-7061.
    [19]孔敏,高玉兴.突触体素与神经系统疾病[ J] .山东医药, 2010, 50(9):111-112.
    [20]王慧娟,苏丽英,李陈莉,邢敏,赵秀丽,赵春芳,王立轩.大鼠缺血后突触体素和突触密度的关系[J].解剖学杂志, 2004, 27(6):642-645.
    [21]钱雪松,李陈莉,侯广棋,曹玉纯,孙万彬,仝宇红.人胚胎小脑突触体素及NOS阳性细胞的观察[J].河北医科大学学报, 1999, 20(6):325-328.
    [22] Davies KG, Schweitzer JB, Looney MR, Bush AJ, Dohan FCJr, Hermann BP. Synaptophysin immunohistochemistry densitometry measurement in resected human hippocampus: implication for the etiology of hippocampal sclerosis[J]. Epilepsy Res, 1998, 32(3):335-344.
    [23] Xu H, He J, Richardson JS, Li XM. The response of synaptophysin and microtubule-associated protein 1 to restraint stress in rat hippocampus and its modulation by venlafaxine[J]. J Neurochem, 2004, 91(6): 1380-1388.
    [24] Jahn R, Chiebler W, Quinlent C. A 38,000 Dalton membrane Protein (P38) presention synaptic vesicle. Prc Natl Acad Sci USA. 1985, 82:4137-4141.
    [25] Wiedenmann B, Franke WW. Identification and location of synaptophysi,an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicle. Cell, 1985, 41:1017-1028.
    [26]朱长庚.神经解剖学[M].北京:人民卫生出版社. 2002, P187-252.
    [27] Trimble WS, Scheller RH. Molecular biology of synaptic vesicle-associated proteins[J]. Trends Neurosci, 1988, 11(6):241-242.
    [28] Sudhof TC, Lottspeich F, Greengard P, Mehl E, Jahn R. A synaptic vesicle protein with a novol cytoplasmic domain and four transmembrane regions[J]. Science, 1987, 238 (4830):1142-1144.
    [29] Navone F, Jahn R D, Gioia G . Protein P38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells[ J ]. Cell Biol, 1986, 103 (6Pt1):25112-2527.
    [30]舒先涛,张纯洁,陈运才.大鼠小脑皮质内突触素P38]免疫反应产物的分布及年龄变化[J].解剖学杂志, 1997, 20 (1):41-44.
    [31]潘三强,宿宝贵,韩辉,等.大鼠下丘脑和背侧丘脑在空间记忆时突触素的变化[J] .暨南大学学报(医学版) , 2001, 21 (4):13-17.
    [32]王慧娟.大鼠脑缺血后头确虫的形态学变化及突触体素的表达[D].石家庄:河北医科大学硕士论文, 2002.
    [33] Zoltowska A. Pathogenesis of breast carcinoma immunohistochemical study [ J ] . Archivum immuno logiae et Therapiae Experimentalis, 1997, 45 (1):101-108.
    [34] Alder J, Lu B, Valtorta F, Greengard P, Poo M. Calcium-dependent transmitter secretion reconstituted in Xenopus oocytes: requirement for synaptophysin[J]. Science, 1992, 257(5070):657-661.
    [35] Edelmann L, Hanson PI, Chapman ER, Jahn R. Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine[J]. EMBO J, 1995, 14(2):224-231.
    [36] Valtorta F, Pennuto M, Bonanomi D, Benfenati F. Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis?[J]. Bioessays, 2004, 26(4):445-453.
    [37] Daly C, Sugimori M, Moreira JE, Ziff EB, Llinas R. Synaptophysin regulates clathrin-independent endocytosis of synaptic vesicles[J]. Proc Natl Acad Sci USA, 2000, 97(11):6120-6125.
    [38] Thiele C, Hannah MJ, Fahrenholz F, Huttner WB. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles[J]. Nat Cell Biol, 2000, 2(1):42-49.
    [39] Tarsa L, Goda Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippo- campal neurons[J]. Proc Natl Acad Sci USA, 2002, 99(2):1012-1016.
    [40] Reichardt LF, Kelly RB. A molecular description of nerve terminal function[J]. Annu Rev Biochem, 1983, 52:871-926.
    [41] Walch-Solimena C, Jahn R, Sudhof TC. Synaptic vesicle proteins in exocytosis: what do we know?[J]. Curr Opin Neurobiol, 1993, 3(3):329-336.
    [42] Chaudhuri S, Bhaumik K. On the role of synaptotagmin in synaptic vesicle exocytosis[J]. J Theor Biol, 1996, 178(4):419-422.
    [43] Yao CK, Lin YQ, Ly CV, Ohyama T, Haueter CM, Moiseenkova-Bell VY, Wensel TG, Bellen HJ. A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis[J]. Cell, 2009, 138(5):947-960.
    [44] Igarashi M, Watanabe M. Roles of calmodulin and calmodulin-binding proteins in synaptic vesicle recycling during regulated exocytosis at submicromolar Ca2+ concentrations[J]. Neurosci Res, 2007, 58(3):226-233.
    [45] Li L, Chin LS. The molecular machinery of synaptic vesicle exocytosis[J]. Cell Mol Life Sci, 2003, 60(5): 942-960.
    [46] O'Connor V, Augustine GJ, Betz H. Synaptic vesicle exocytosis: molecules and models[J]. Cell, 1994,76(5):785-787.
    [47] Rubenstein JL, Greengard P, Czernik AJ. Calcium-dependent serine phosphorylation of synapto- physin[J]. Synapse, 1993, 13(2):161-172.
    [48] Elferink LA, Scheller RH. Synaptic vesicle proteins and regulated exocytosis[J]. J Cell Sci Suppl, 1993, 17:75-79.
    [49] Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats[J]. Stroke, 1995, 26(11):2135-2144.
    [50] Damer CK, Creutz CE. Secretory and synaptic vesicle membrane proteins and their possible roles in regulated exocytosis[J]. Prog Neurobiol, 1994, 43(6):511-536.
    [51] Scharfman HE, Sollas AL, Berger RE, Goodman J H. Electrophysiological evidence of monosynaptic excitatory transmission between granule cells after seizure-induced mossy fiber sprouting[J]. J Neurophysiol, 2003, 90(4):2536-2547.
    [52]李雪峰,刘绍明,闫志强,李建.液压脑损伤大鼠大脑皮质突触素的动态变化[J].现代生物医学进展, 2008, 8(2):225-228.
    [53] Rosahl TW, Geppert M, Spillane D, Herz J, Hammer RE, Malenka RC, Sudhof TC. Short-term synaptic plasticity is altered in mice lacking synapsin I[J]. Cell, 1993, 75(4):661-670.
    [54] Sudhof TC. The structure of the human synapsin I gene and protein[J]. J Biol Chem, 1990, 265(14): 7849-7852.
    [55]梁燕玲,张苏明.突触蛋白的结构与功能[J].医学研究生学报, 2003, 16(12):929-932.
    [56] Kao HT, Porton B, Czernik AJ, Feng J, Yiu G, Haring M, Benfenati F, Greengard P. A third member of the synapsin gene family [J]. Proc Natl Acad Sci USA, 1998, 95(8):4667-4672.
    [57] Schiebler W, Jahn R, Doucet J P, Rothlein J, Greengard P. Characterization of synapsin I binding to small synaptic vesicles[J]. J Biol Chem, 1986, 261(18):8383-8390.
    [58] Sudhof TC, Czernik AJ, Kao HT, Takei K, Johnston PA, Horiuchi A, Kanazir SD, Wagner MA, Perin MS, De Camilli P. Synapsins: mosaics of shared and individual domains in a family of synaptic vesicle phosphoproteins[J]. Science, 1989, 245(4925):1474-1480.
    [59] Koontz MA, Hendrickson AE. Comparison of immunolocalization patterns for the synaptic vesicle proteins p65 and synapsin I in macaque monkey retina[J]. Synapse, 1993, 14(4):268-282.
    [60] Bustos R, Kolen ER, Braiterman L, Gorelick FS, Hubbard AL. SynapsinⅠis expressed in epithelial cells: localization to a unique trans-Golgi compartment [J]. J Cell Sci, 2001, 114 (20):3695-3704.
    [61] Pieribone VA, Porton B, Rendon B, Feng J, Greengard P, Kao HT. Expression of synapsinⅢin nerve terminals and neurogenic regions of the adult brain[J]. J Comp Neurol, 2002, 454 (2):105-114.
    [62]叶世鸣,吴馥梅.突触囊泡相关磷蛋白:突触素Ⅰ[J].生理科学进展, 1989, 20(3):271-272.
    [63] Greengard P, Valtorta F, Czernik A J, Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function[J]. Science, 1993, 259(5096):780-785.
    [64] Hilfiker S, Benfenati F, Doussau F, Nairn AC, Czernik AJ, Augustine GJ, Greengard P. Structural domains involved in the regulation of transmitter release by synapsins[J]. J Neurosci, 2005, 25:2658-69.
    [65] Fornasiero E F, Bonanomi D, Benfenati F, Valtorta F. The role of synapsins in neuronal development[J]. Cell Mol Life Sci, 2010, 67(9):1383-1396.
    [66] Takei Y, Harada A, Takeda S, Kobayashi K, Terada S, Noda T, Takahashi T, Hirokawa N. Synapsin I deficiency results in the structural change in the presynaptic terminals in the murine nervous system[J]. J Cell Biol, 1995, 131(6 Pt 2):1789-1800.
    [67] Ferreira A, Chin L S, Li L, Lanier LM, Kosik KS, Greengard P. Distinct roles of synapsin I and synapsin II during neuronal development[J]. Mol Med, 1998, 4(1):22-28.
    [68] Rosahl T W, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Sudhof TC. Essential functions of synapsins I and II in synaptic vesicle regulation[J]. Nature, 1995, 375(6531): 488-493.
    [69] Fiumara F, Onofri F, Benfenati F, Montarolo PG, Ghirardi M. Intracellular injection of synapsin I induces neurotransmitter release in C1 neurons of Helix pomatia contacting a wrong target[J]. Neuroscience, 2001, 104(1):271-280.
    [70] Lu B, Greengard P, Poo MM. Exogenous synapsin I promotes functional maturation of developing neuromuscular synapses[J]. Neuron, 1992, 8(3):521-529.
    [71] Llinas R, Gruner JA, Sugimori M, McGuinness TL, Greengard P. Regulation by synapsin I and Ca(2+)-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse[J]. J Physiol, 1991, 436:257-282.
    [72] Mallart A, Martin AR. The relation between quantum content and facilitation at the neuromuscular junction of the frog[J]. J Physiol, 1968, 196(3):593-604.
    [73] Sato K, Morimoto K, Suemaru S, Sato T, Yamada N. Increased synapsin I immunoreactivity during long-term potentiation in rat hippocampus[J]. Brain Res, 2000, 872(1-2):219-222.
    [74] Spillane DM, Rosahl TW, Sudhof TC, Malenka RC. Long-term potentiation in mice lacking synapsins[J]. Neuropharmacology, 1995, 34(11):1573-1579.
    [1]艾洪滨,张震东.大鼠浸水应激性胃粘膜损伤机制的研究[J].生理学报, 1990, 42 (5):496-502.
    [2] Garrick T, Leung FW, Buack S, Hirabayashi K, Guth PH. Gastric motility is stimulated but overall blood flow is unaffected during cold restraint in the rat. Gastroenterology, 1986, 91:141-148.
    [3]张玉玉,祝文兴,孙一耕,艾洪滨.大鼠束缚-浸水应激模型体温降低与应激性胃溃疡的关系.生物医学工程研究, 2007, 26(3):282-284, 290.
    [4] Ephgrave KS, Cullen JJ, Broadhurst K, Kleiman-Wexler R, Shirazi SS, Schulze-Delrieu K. Gastric contractions, secretions and injury in cold restraint. Neurogastroenterol Motil, 1997, 9:187-192.
    [5] Garrick T, Buack S, Bass P. Gastric motility is a major factor in cold restraint-induced lesion formation in rats[J]. Am J Physiol Gastrointest Liver Physiol, 1986, 250:191-199.
    [6] Arai I, Muramatsu M, Aihara H. Body temperature dependency of gastric regional blood flow, acid secretion and ulcer formation in restraint and water-immersion stressed rats[J]. Jpn J Pharmaco, 1986, 40:501-504.
    [7]程世斌,卢光启.迷走神经背核的研究进展[J].生理科学进展, 1996, 27(1):13-18.
    [8]朱长庚主编.神经解剖学[M].北京:人民卫生出版社, 2002, P499-506.
    [9] Travagli R A, Hermann G E, Browning K N, Rogers RC. Brainstem circuits regulating gastric function[J]. Annu Rev Physiol, 2006, 68:279-305.
    [10] Zhang YY, Cao GH, Zhu WeX, Cui XY, Ai HB. Comparative study of c-Fos expression in the rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress[J]. Chinese Journal of Physiology, 2009, 52(3):143-150.
    [11] Zhang YY, Zhu WX, Cao GH, Cui XY, Ai HB. c-Fos expression in the supraoptic nucleus is the most intense during different durations of restraint water-immersion stress in the rat[J]. J Physiol Sci, 2009, 59: 367-375.
    [12]党小荣,张文斌.大鼠孤束核内传递内脏伤害性信息的儿茶酚胺能神经元向臂旁核的投射[J].神经解剖学杂志.2001, 17:235-238.
    [13] Pirnik Z, Kiss A. Fos expression variances in mouse hypothalamus upon physical and osmotic stimuli: Co-staining with vasopressin, oxytocin, and tyrosine hydroxylase[J]. Brain Research Bulletin, 2005, 65:423–431.
    [14] Wang L, Martinez V, Larauche M, Tache Y. Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain[J]. Brain Research, 2009, 1247:79-91.
    [15] Eybalin M. Neurotransmitters and neuromodulators of the mammalian cochlea[J]. Physiol Rev, 1993, 73(2):309-373.
    [16] Altschuler RA, Kachar B, Rubio JA, Parakkal MH, Fex J. Immunocytochemical localization of choline acetyltransferase-like immunoreactivity in the guinea pig cochlea[J]. Brain Res, 1985, 338(1):1-11.
    [17] Armstrong DM, Super CB, Levey AI, Wainer BH, Terry RD. Distribution of cholinergic neurons in rat brain:demonstrated by the immuno-cytochemical localization of choline acetyltransferase[J]. Comp Neurol, 1983, 216(1):53-68.
    [18] Gatón J, Fernández de la Gándara F, Velasco A. The role of the neurotransmitters acetylcholine and noradrenaline in the pathogenesis of stress ulcers[J]. Comp Biochem Physiol, 1993, 106 (1):125-129.
    [19] Cruz MT, Murphy EC, Sahibzada N, Verbalis JG, Gillis RA. A reevaluation of the effects of stimulation of the dorsal motor nucleus of the vagus on gastric motility in the rat[J]. Am J Physiol, 2007, 292(1):R291-307.
    [20] Zhou SY, Lu YX, Yao H, Owyang C. Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(5):G1201-1209.
    [21] Herrera DG, Robertson HA. Activation of c-fos in the brain [J]. Prog Neuro bio, 1996, l50:83-107.
    [22] Bonaz B, Tache Y. Induction of Fos immunoreactivity in the rat brain after cold-restraint induced gastric lesions and fecal excretion[J]. Brain Res, 1994, 652:56-64.
    [23] Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system:Involvement of the inducible proto-oncogenes fos and jun[J]. Annu Rev Neurosci, 1991, 14:421-451.
    [24] Zimmermann M. Ethical considerations in relation to pain in animal experimentation[J]. Acta Physiol Scand Suppl, 1986, 554:221-233.
    [25] Paxinos G, Watson C. The rat brain in stereotaxic coordinates (fifth edition)[M]. Burlington, MA, USA: Elsevier Academic Press, 2005.
    [26] Guth PH, Aures D, Paulsen G. Topical aspirin plus HCl gastric lesion in the rat. Cytoprotective effect of prostaglandin, cimetidine and probanthine[J]. Gastroenterology, 1979, 76:88-93.
    [27] Okumura T, Namiki M. Vagal motor neurons innervating the stomach are site-specifically organized in the dorsal motor nucleus of the vagus nerve in rats[J]. J Auton Nerv Syst, 1990, 29(2):157-162.
    [28] Pagant FD, Norman WP, Kasbekar DK. Localization of sites within dorsal motor nucleus of vagus that affect gastric motility[J].Am J Physiol,1985, 249(1 Pt 1):G73-84.
    [29] Pagani FD, Norman WP, Gillis RA. Medullary parasympathetic projections innervate specific sites in the feline stomach[J]. Gastroenterology, 1988, 95(2):277-288.
    [30] Okumura T, Okamura K, Kitamori S, Hara H, Shibata Y, Namiki M. Gastric lesions induced by kainic acid injection into the dorsal motor nucleus of the vagus nerve in rats[J]. Stand J Gastroenterol, 1989, 162:15-18.
    [31] Okumura T, Uehara A, Taniguchi Y, Watanabe Y, Tsuji K, Kitamori S, Namiki M. Kainic acid injection into medullary raphe produces gastric lesions through the vagal system in rats[J]. Am J Physiol, 1993, 264(4 Pt 1):G655-658.
    [32] Okumura T, Okamura K, Shibata Y, Namiki M. Gastric ulcer formation induced by kainic acid injectioninto the dorsal motor nucleus of the vagus nerve (DMN) and identification of the neuronal input to the DMN in rats[J]. Nippon Shokakibyo Gakkai Zasshi, 1989, 86(8):1597-1603.
    [33] Krowicki ZK, Burmeister MA, Berthoud HR, Scullion RT, Fuchs K, Hornby PJ. Orexins in rat dorsal motor nucleus of the vagus potently stimulate gastric motor function[J]. Am J Physiol, 2002, 283: G465-G472.
    [34]程世斌,卢光启.大鼠胃不同部位副交感节前神经元的中枢定位[J].解剖学报,1993,24 (1):51-56.
    [35]叶蒙福,宋鹤九.胃的神经支配-HRP法[J].解剖学杂志, 1993, 16(1):39-42.
    [36] Kalia M. Brainstem localization of vagal preganglionic neurons [J].Autonom Nerv Syst, 1981, 3(2/4):451-481.
    [37] Shapiro RE, Miselis RR. The central organization of the vagus nerve innervating the stomach of the rat [J]. J Comp Neurol, 1985, 238:473-488.
    [38] Hudson LC. The location of extrinsic efferent and afferent nerve cell bodies of the normal canine stomach [J]. J Auton Nerv Syst, 1989, 28:1-14.
    [39]周吕,柯美云.胃肠动力学一基础与临床[M].北京:科学出版社, 1999:85-86
    [40]党小荣,张文斌.大鼠孤束核内传递内脏伤害性信息的儿茶酚胺能神经元向臂旁核的投射[J].神经解剖学杂志. 2001, 17:235-238.
    [41] Wang LX, Martinez V, Larauche M, Tache Y. Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain[J]. Brain Res, 2009, 1247:79-91.
    [42] Maruyama M, Matsumoto H, Fujiwara K, Noguchi J, Kitada C, Fujino M, Inoue K. Prolactin-releasing peptide as a novel stress mediator in the central nervous system[J]. Endocrinology, 2001, 142: 2032-2038.
    [43] Bonaz B, Tache Y. Water-avoidance stress-induced c-fos expression in the rat brain and stimulation of fecal output: role of corticotropin-releasing factor[J]. Brain Res, 1994, 641:21-28.
    [44] Pirnik Z, Mravec B, Kiss A. Fos protein expression in mouse hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei upon osmotic stimulus: colocalization with vasopressin,oxytocin, and tyrosine hydroxylase[J]. Neurochemistry International, 2004, 45:597-607.
    [45] Cunningham Jr ET, Sawchenko PE. Anatomical specificity of noradrenergic inputs to the paraventr- icular and supraoptic nuclei of the rat hypothalamus[J]. J Comp Neurol, 1988, 274:60-76.
    [46] Cunningham Jr ET, Bohn MC, Sawchenko PE. Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat[J]. J Comp Neurol, 1990, 292:651-667.
    [47] Tucker DC, Saper CB, Ruggiero DA, Reis DJ. Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord[J]. J Comp Neurol , 1987, 259:591-603.
    [48] Yu D, Gordon FJ. Anatomical evidence for a bi-neuronal pathway connecting the nucleus tractussolitarius to caudal ventrolateral medulla to rostral ventrolateral medulla in the rat[J]. Neurosci Lett, 1996, 205: 21-24.
    [49] Chang MS, Sved AF, Zigmond MJ, Austin MC. Increased transcription of the tyrosine hydroxylase gene in individual locus coeruleus neurons following footshock stress[J]. Neuroscience, 2000, 101:131-139.
    [1]蒋春雷,路长林主编.应激医学[M].上海:上海科学技术出版社, 2006, P34-60, 158-176.
    [2] Bonaz B, TachéY. Water-avoidance stress-induced c-Fos expression in the rat brain and stimulation of fecal output: role of corticotrophin-releasing factor[J]. Brain Res, 1994, 641:21-28.
    [3] Senba E, Ueyama T. Stress-induced expression of immediate early genes in the brain and peripheral organs of the rat[J]. Neurosci Res, 1997, 29:183-207.
    [4] Chowdhury GM, Fujioka T, Nakamura S. Induction and adaptation of Fos expression in the rat brain by two types of acute restraint stress[J]. Brain Research Bulletin, 2000, 52(3):171-182.
    [5] Crane JW, French KR, Buller KM. Patterns of neuronal activation in the rat brain and spinal cord in response to increasing durations of restraint stress[J]. Stress, 2005, 8(3):199-211.
    [6] Weinberg MS, Girotti M, Spencer RL. Restraint-induced fra-2 and c-fos expression in the rat forebrain: relationship to stress duration[J]. Neuroscience, 2007, 150(2):478-486.
    [7] Ma S, Morilak DA. Induction of Fos expression by acute immobilization stress is reduced in locus coeruleus and medial amygdala of Wistar-Kyoto rats compared to Sprague-Dawley rats[J]. Neuroscience,2004, 124(4):963-972.
    [8] Wang LX, Cardin S, Martínez V, Tache Y. Introcerebroventricular CRF inhibits cold restraint-induced c-fos expression in the dorsal motor nucleus of the vagus and gastric erosions in rats[J]. Brain Research, 1996, 736:44-53.
    [9] Sun HZ, Zhao SZ, Cui XY, Ai HB. Hindbrain Effects of L-Glutamate on Gastric Motility in Rats[J], Gastroenterology Research, 2009, 2:43-47.
    [10] Sun HZ, Zhao SZ, Cui XY, Ai HB. Effects and mechanisms of L-glutamate microinjected into nucleus ambiguus on gastric motility in rats[J]. J Chin Med, 2010, 123(8):1052-1057.
    [11] Zhou SY, Lu YX, Yao H, Owyang C. Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294:G1201-G1209.
    [12] Armstrong E. Morphological and electrophysiological classification of hypothalamic supraoptic neurons [J]. Prog Neurobiol, 1995, 47(4-5):291-339.
    [13] Zhang YY, Zhu WX, Cao G.H, Cui XY, Ai HB. c-Fos expression in the supraoptic nucleus is the most intense during different durations of restraint water-immersion stress in the rat[J]. J Physiol Sci, 2009, 59:367-375.
    [14] Swaab DF, Nijveldt F, Pool CW. Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus[J]. J Endocrinol, 1975, 67:461-462.
    [15] Sofroniew MV, Glasmann W. Golgi-like immunoperoxidase staining of hypothalamic magnocellular neurons that contain vasopressin, oxytocinor neurophysin in the rat[J]. Neuroscience, 1981, 6:619-643.
    [16] George JM, Jacobowitz DM Localization of vasopressin in discrete areas of the rat hypothalamus[J]. Brain Res, 1975, 93:363-366.
    [17] Pirnik Z, Kiss A. Fos expression variances in mouse hypothalamus upon physical and osmotic stimuli: Co-staining with vasopressin, oxytocin, and tyrosine hydroxylase[J]. Brain Res Bull, 2005, 65:423-431.
    [18] Sawchenko PE, Swanson LW. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat[J]. Brain Res, 1982, 257:275-325.
    [19] Travagli RA, Hermann GE, Browning KN, Rogers RC. Brainstem circuits regulationg gastric function. Annu[J]. Rev Physiol, 2006, 68:279-305.
    [20] Zhou SY, Lu YX, Yao H, Owyang C. Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294:G1201-G1209.
    [21] Pacak K, Palkovits M. Stressor specifity of central neuroendocrine responses: implications for stress-related disorders[J]. Endocrinol Rev, 2001, 22:502-548.
    [22] Briski K, Gillen E. Differential distribution of Fos expression within the male rat preoptic area and hypothalamus in response to physical vs. psychological stress[J]. Brain Res Bull, 2001, 55:401-408.
    [23] Cruz MT, Murphy EC, Sahibzada N, Verbalis JG, Gillis RA. A reevaluation of the effects of stimulation of the dorsal motor nucleus of the vagus on gastric motility in the rat[J]. Am J Physiol, 2007, 292: R291-R307.
    [24] Laguna-Abre MT, Margatho L, Germano CM, Antunes-Rodrigues J, Elias LL, Castro Mde. The effectof adrenalectomy on Fos expression in vasopressinergic and oxytocinergic neurons in response to stress in the rat[J]. Stress, 2007, 10:332-341.
    [25] Pirnik Z, Kiss A. Fos expression variances in mouse hypothalamus upon physical and osmotic stimuli: Co-staining with vasopressin, oxytocin, and tyrosine hydroxylase[J]. Brain Res Bull, 2005, 65:423–431.
    [26] Pirnik Z, Mravec B, Kiss A. Fos protein expression in mouse hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei upon osmotic stimulus: colocalization with vasopressin,oxytocin, and tyrosine hydroxylase[J]. Neurochemistry International, 2004, 45:597–607.
    [27] Nishitani S, Moriya T, Kondo Y, Sakuma Y, Shinoharal K. Induction of Fos immunoreactivity in oxytocin neurons in the paraventricular nucleus after female odor exposure in male rats: effects of sexual experience[J]. Cellular and Molecular Neurobiology, 2004, 24:283-290.
    [28] Zhang JF, Zheng F. The role of paraventricular nucleus of hypothalamus in stress-ulcer formation in rats [J]. Brain Res, 1997, 761:203-209.
    [29] Miyata S, Itoh T, Lin SH, Ishiyama M, Nakashima T, Kiyohara T. Temporal changes of c-fos expression in oxytocinergic magnocellular neuroendocrine cells of the rat hypothalamus with restraint stress[J]. Brain Res Bull, 1995, 37:391-395.
    [30] Giovannelli L, Shiromani PJ, Jirikowski GF, Bloom FE. Expression of c-fos protein by immuno- histochemically identified oxytocin neurons in the rat hypothalamus upon osmotic stimulation[J]. Brain Res, 1992, 588:41-48.
    [31] Giovannelli L, Shiromani PJ, Jirikowski GF, Bloom FE. Oxytocin neurons in the rat hypothalamus exhibit c-fos immunoreactivity upon osmotic stress[J]. Brain Res, 1990, 531:299–303.
    [32] Xiong JJ, Hatton GI. Differential responses of oxytocin and vasopressin neurons to the osmotic and stressful components of hypertonic saline injections: a Fos protein double labeling study[J]. Brain Res, 1996, 719:143-153.
    [33] McCann MJ, Rogers RC. Oxytocin excites gastric-related neurons in rat dorsal vagal complex[J]. J Physiol, 1990, 428:95-108.
    [34] Monnikes H, Schmidt BG, Tache Y. Psychological stress-induced accelerated colonic transit in rats involves hypothalamic corticotropin-releasing factor[J]. Gastroenterology, 1993, 104:716-723.
    [35] HerreraDG,RobertsonHA. Activation of c-fos in the brain [J]. Prog Neuro bio, 1996, l50:83-107.
    [36] Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system:Involvement of the inducible proto-oncogenes fos and jun[J]. Annu Rev Neurosci, 1991, 14:421-451.
    [37] Bonaz B, Tache Y. Induction of Fos immunoreactivity in the rat brain after cold-restraint induced gastric lesions and fecal excretion[J]. Brain Res, 1994, 652:56-64.
    [38] Paxinos G, Watson C. The rat brain in stereotaxic coordinates (fifth edition)[M]. Burlington, MA, USA: Elsevier Academic Press, 2005.
    [39] Zhang YY, Cao GH, Zhu WX, Cui XY, Ai HB. Comparative study of c-Fos expression in the rat dorsalvagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress [J]. Chinese Journal of Physiology, 2009, 52(3):143-150.
    [40] Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in the brain: metabolic mapping at the cellular level[J]. Science, 1988, 240:1328-1331.
    [41] Sharp FR, Sagar SM, Hicks K, Lowenstein D, Hisanaga K. c-fos mRNA, Fos, and Fos-related antigen induction by hypertonic saline and stress[J]. J Neurosci, 1991, 11:2321-2331.
    [42] Monnikes H, Schmidt BG, Tache Y. Psychological stress-induced accelerated colonic transit in rats involves hypothalamic corticotropin-releasing factor[J]. Gastroenterology, 1993, 104:716-723.
    [43] Tsaya HJ, Li HY, Lin CH, Yang YL, Yeh JY, Lin MT. Heatstroke induces c-fos expression in the rat hypothalamus[J]. Neurosci Letters, 1999, 262:41-44.
    [44] Plessis I, Mitchell D, Niesler C, Laburn HP. c-Fos immunoreactivity in selected brain regions of rats after heat exposure and pyrogen administration[J]. Brain Res, 2006, 1120:124-130.
    [45] Sharp FR, Sagar SM, Hicks K, Lowenstein D, Hisanaga K. c-fos mRNA, Fos, and Fos-related antigen induction by hypertonic saline and stressv[J]. J Neurosci, 1991, 11 (8):2321-2331.
    [46] Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in the brain: metabolic mapping at the cellular level[J]. Science, 1988, 240 (4857):1328-1331.
    [47] du Plessis I, Mitchell D, Niesler C, Laburn HP. c-Fos immunoreactivity in selected brain regions of rats after heat exposure and pyrogen administrationv[J]. Brain Res, 2006, 1120:124-130.
    [48] Tsaya H-J, Li H-Y, Lin C-H, Yang Y-L, Yeh J-Y, Lin M-T. Heatstroke induces c-fos expression in the rat hypothalamus[J]. Neuroscience Letters, 1999, 262:41-44.
    [49] Monnikes H, Schmidt BG, Tache Y. Psychological stress-induced accelerated colonic transit in rats involves hypothalamic corticotropin-releasing factor[J]. Gastroenterology, 1993, 104:716-723.
    [50] Asmus S.E, Newman S.W. Colocalization of tyrosine hydroxylase and Fos in the male Syrian hamster brain following different states of arousal[J]. J. Neurobiol, 1994, 25:156–168.
    [51] Briski K P. Glucoprivic induction of Fos immunoreactivity in hypothalamic dopaminergic neurons[J]. Neuroreport, 1998, 9(2):289-295.
    [52] Jhamandas J.H, MacTavish D. Central administration of neuropeptide FF causes activation of oxytocin paraventricular hypothalamic neurons that project to the brainstem[J]. J. Neuroendocrinol. 2003, 15:24-32.
    [53] Swanson LW, Sawchenko PE. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei[J]. Annu Rev Neuronsci, 1983, 6:267-324.
    [54] Laguna-Abre MT, Margatho L, Germano CM, Antunes-Rodrigues J, Elias LL, Castro Mde The effect of adrenalectomy on Fos expression in vasopressinergic and oxytocinergic neurons in response to stress in the rat[J]. Stress, 2007, 10:332-341.
    [1] Wang LX, Cardin S, Martínez V, Tache Y. Introcerebroventricular CRF inhibits cold restraint-induced c-fos expression in the dorsal motor nucleus of the vagus and gastric erosions in rats[J]. Brain Research, 1996, 736:44-53
    [2]朱长庚主编.神经解剖学[M].北京:人民卫生出版社, 2002, P499-506, 886.
    [3]蒋春雷,路长林主编.应激医学[M].上海:上海科学技术出版社, 2006, P34-60,158-176.
    [4] Briski K, Gillen E. Differential distribution of Fos expression within the male rat preoptic area and hypothalamus in response to physical vs. psychological stress[J]. Brain Res Bull, 2001, 55:401-408.
    [5] Pacak K, Palkovits M. Stressor specifity of central neuroendocrine responses: implications for stress-related disorders[J]. Endocrinol Rev, 2001, 22:502-548.
    [6] Palkovits M. Stress-induced expression of co-localized neuropeptides in hypothalamic and amygdaloid neurons[J]. Eur J Pharmacol, 2000, 405:161-166.
    [7] Lee CH, Jung HS, Lee TY, Lee SR, Yuk SW, Lee KG, Lee BH. Studies of the central neural pathways to the stomach and Zusanli (ST36) [J]. Am J Chin Med, 2001; 29:211-220.
    [8]李慧,张玉玉,艾洪滨.切断膈肌下迷走神经对应激大鼠延髓、下丘脑Fos表达的影响[J]. 2010, 26(2):107-11.
    [9]艾洪滨,张震东.大鼠浸水应激性胃粘膜损伤机制的研究[J].生理学报, 1990, 42(5):496-502.
    [10] Takeuchi K, Furukawa O, Okada M, Niida H, Okabe S. Influences of stress on gastric alkaline secretion in rats[J]. J Pharmacol Exp Ther, 1990, 252(3):1228-1233.
    [11] Ephgrave KS, Cullen JJ, Broadhurst K, Kleiman-Wexler R, Shirazi SS, Schulze-Delrieu K. Gastriccontractions, secretions and injury in cold restraint[J]. Neurogastroenterol Motil, 1997, 9(3):187-192.
    [12]戴义隆,李栋生,陈启盛.应激性胃粘膜损害的实验研究(垂体-肾上腺系统与应激性胃粘膜损害) [J].南京医学院学报, 1985, 5(2):95-96.
    [13]陈启盛,戴义隆.迷走神经与应激性胃粘膜损害的关系[J].南京医学院学报, 1991, 11(2):96-99.
    [14] Ostrowski NL, Lolait SJ, Bradley DJ, O’Carroll AM, Brownstein MJ, Young III WS. Distribution of V1a and V2 vasopressin receptor messenger ribo-nucleic acid in rat liver, kidney, pituitary and brain[J]. Endocrinology, 1992, 131:533-535.
    [15] Ostrowski NL, Lolait SJ, Young III WS. Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal and brain vasculature[J]. Endocrinology, 1994, 135: 1511-1527.
    [16] Kre′marik P, Freund-Mercier MJ, Stoeckel ME. Oxytocin and vasopressin binding sites in the hypothalamus of the rat: histoautoradiographic detection[J]. Brain Res Bull, 1995, 36:195-208.
    [17] Barberis C, Tribollet E. Vasopressin and oxytocin receptors in the central nervous system[J]. Crit Rev Neurobiol, 1996, 10:119-154.
    [18] Vaccari C, Lolait SJ, Ostrowski NL. Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain[J]. Endocrinology, 1998, 139:5015-5033.
    [19] Hernando F, Schoots O, Lolait SJ, Burbach JP. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin[J]. Endocrinology, 2001, 142:1659-1668.
    [20] Dayanithi G. Moos FC, Richard Ph. Vasopressin controls magnocellular vasopressin neurons via V1-type receptors in rat[J]. J Physiol (Lond), 1995, 489:184P-185P.
    [21] Rabadan-Diehl C, Makara G, Kiss A, Lolait S, Zelena D, Ochedalski T. Regulation of pituitary V1b vasopressin receptor messenger ribonucleic acid by adrenalectomy and glucocorticoid administration[J]. Endocrinology, 1997, 138:5189-5194.
    [22] Young WS, Li J, Wersinger SR, Palkovit MR. The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint dtress or adrenalectomy[J]. Neuroscience, 2006, 143(4):1031-1039.
    [23] Herrera DG, Robertson HA. Activation of c-fos in the brain [J]. Prog Neuro bio, 1996, l50:83-107.
    [24] Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system:Involvement of the inducible proto-oncogenes fos and jun[J]. Annu Rev Neurosci, 1991, 14:421-451.
    [25] Bonaz B, Tache Y. Induction of Fos immunoreactivity in the rat brain after cold-restraint induced gastric lesions and fecal excretion[J]. Brain Res, 1994, 652:56-64.
    [26] Paxinos G, Watson C. The rat brain in stereotaxic coordinates (fifth edition)[M]. Burlington, MA, USA: Elsevier Academic Press, 2005.
    [27] Zhou S Y, Lu Y X, Yao H, Owyang C. Spatial organization of neurons in the dorsal motor nucleus of thevagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(5):G1201-1209.
    [28] Okumura T, Namiki M. Vagal motor neurons innervating the stomach are site-specifically organized in the dorsal motor nucleus of the vagus nerve in rats[J]. J Auton Nerv Syst, 1990, 29(2):157-162.
    [29] Pagant F D, Norman W P, Kasbekar D K, et al. Localization of sites within dorsal motor nucleus of vagus that affect gastric motility[J]. Am J Physiol, 1985, 249(1 Pt 1):G73-84.
    [30] Pagani F D, Norman W P, Gillis R A. Medullary parasympathetic projections innervate specific sites in the feline stomach[J]. Gastroenterology, 1988, 95(2):277-288.
    [31] Zhang YY, Cao GH, Zhu WeX, Cui XY, Ai HB. Comparative study of c-Fos expression in the rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress[J]. Chinese Journal of Physiology, 2009, 52(3):143-150.
    [32] Zhang YY, Zhu WX, Cao GH, Cui XY, Ai HB. c-Fos expression in the supraoptic nucleus is the most intense during different durations of restraint water-immersion stress in the rat[J]. J Physiol Sci. 2009, 59: 367-375.
    [33] Cruz MT, Murphy EC, Sahibzada N, Verbalis JG, Gillis RA. A reevaluation of the effects of stimulation of the dorsal motor nucleus of the vagus on gastric motility in the rat[J]. Am J Physiol, 2007, 292: R291-R307.
    [34] Rinaman L Oxytocinergic inputs to the nucleus of the solitary tract and dorsal motor nucleus of the vagus in neonatal rats[J]. J Comp Neurol, 1998, 399:101-109.
    [35] Krowicki ZK, Burmeister MA, Berthoud HR, Scullion RT, Fuchs K, Hornby PJ. Orexins in rat dorsal motor nucleus of the vagus potently stimulate gastric motor function[J]. Am J Physiol, 2002, 283: G465-G472.
    [36] Swanson LW, Kuypers HG JM. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde ?uorescence double-labeling methods[J]. J Comp Neurol, 1980, 194: 555-570.
    [37] Van GPL, Palkovits M, De JW. Involvement of neurotransmitters in the nucleus tractus solitarii in cardiovascular regulation[J]. Physiol Rev, 1992, 72:789-824.
    [38] Dampney RAL. Functional organization of central pathways regulating the cardiovascular system[J]. Physiol Rev, 1994, 74:323-364.
    [39] Dufloth DL, Morris M, Michelini LC. Modulation of exercise tachycardia by vasopressin in the nucleus tractus solitarii[J]. Am J Physiol Regul Integr Comp Physiol, 1997, 273:R1271-R1282.
    [40] Michelini LC, Morris M. Endogenous vasopressin modulates the cardiovascular responses to exercise[J]. Ann NY Acad Sci, 1999, 897:198-211.
    [41] Michelini LC. Oxytocin in the NTS: a new modulator of cardiovascular control durin gexercise[J]. AnnNY Acad Sci, 2001, 940:206-220.
    [42] Higa KT, Mori E, Viana FF, Morris M, Michelini LC Baroreflex control of heart rate by oxytocin in the solitary-vagal complex[J]. Am J Physiol Regul Integr Comp Physiol, 2002, 282:R537-R545.
    [43] Benarroch EEParaventricular nucleus, stress response, and cardiovascular disease[J]. Clin Auton Res, 2005, 15:254-263.
    [44] Rogers RC, Hermann GE. Oxytocin, oxytocinantagonist, TRH, and hypothalamic paraventricular nucleus stimulation effects on gastric motility[J]. Peptides, 1987, 8:505-513.
    [45] Grassi M, Drago F. Effects of oxytocin on emotional stress and stress-induced gastric lesions[J]. J Physiology (Paris), 1993, 87:261-264.
    [46] Henke PG. The hypothalamus-amygdala axis and experimental gastric ulcer[J]. Neurosci Biobehav Rev, 1979, 3:75-82.
    [1] Wiedenmann B, Franke W W. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles[J]. Cell, 1985, 41(3): 1017-1028.
    [2] Sudhof T C, Lottspeich F, Greengard P, Mehl E, Jahn R. A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions[J]. Science, 1987, 238(4830): 1142-1144.
    [3]孔敏,高玉兴.突触体素与神经系统疾病[J].山东医药, 2010, 50( 9) : 111- 112.
    [4] Alder J, Lu B, Valtorta F, Greengard P, Poo M. Calcium-dependent transmitter secretion reconstituted in Xenopus oocytes: requirement for synaptophysin[J]. Science, 1992a, 257(5070): 657-661.
    [5] Edelmann L, Hanson P I, Chapman E R, Jahn R. Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine[J]. EMBO J, 1995, 14(2): 224-231.
    [6] Sugita S, Janz R, Sudhof T C. Synaptogyrins regulate Ca2+-dependent exocytosis in PC12 cells[J]. J Biol Chem, 1999, 274(27): 18893-18901.
    [7] Valtorta F, Pennuto M, Bonanomi D, Benfenati F. Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis?[J]. Bioessays, 2004, 26(4): 445-453.
    [8] Daly C, Sugimori M, Moreira JE, Ziff EB, Llinas R. Synaptophysin regulates clathrin-independent endocytosis of synaptic vesicles[J]. Proc Natl Acad Sci U S A, 2000, 97(11): 6120-6125.
    [9] Thiele C, Hannah MJ, Fahrenholz F, Huttner WB. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles[J]. Nat Cell Biol, 2000, 2(1): 42-49.
    [10] Tarsa L, Goda Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippo- campal neurons[J]. Proc Natl Acad Sci U S A, 2002, 99(2): 1012-1016.
    [11]王慧娟,苏丽英,李陈莉.大鼠缺血后突触体素和突触密度的关系[J].解剖学杂志, 2004, 27( 6) : 642 -645.
    [12]钱雪松,李陈莉,侯广棋,曹玉纯,孙万彬,仝宇红.人胚胎小脑突触体素及NOS阳性细胞的观察[J].河北医科大学学报, 1999, 20(6):325-328.
    [13] Eastwood SL, Burnet PW, Harrison PJ. Striatal synaptophysin expression and haloperidol-induced synaptic plasticity[J]. Neuroreport, 1994, 5(6): 677-680.
    [14] Davies KG, Schweitzer JB, Looney MR, Bush AJ, Dohan FCJr, Hermann BP. Synaptophysin immunohistochemistry densitometry measurement in resected human hippocampus: implication for the etiology of hippocampal sclerosis[J]. Epilepsy Res, 1998, 32(3): 335-344.
    [15] Xu H, He J, Richardson J S, Li XM. The response of synaptophysin and microtubule-associated protein 1 to restraint stress in rat hippocampus and its modulation by venlafaxine[J]. J Neurochem, 2004, 91(6): 1380-1388.
    [16] Eastwood SL, Burnet PW, McDonald B, Clinton J, Harrison PJ. Synaptophysin gene expression in human brain: a quantitative in situ hybridization and immunocytochemical study[J]. Neuroscience, 1994, 59(4): 881-892.
    [17] Masliah E, Terry RD, Alford M, DeTeresa R. Quantitative immunohistochemistry of synaptophysin in human neocortex: an alternative method to estimate density of presynaptic terminals in paraffin sections[J]. J Histochem Cytochem, 1990, 38(6): 837-844.
    [18] Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system:Involvement of the inducible proto-oncogenes fos and jun[J]. Annu Rev Neurosci, 1991, 14: 421-451.
    [19] Paxinos G, Watson C. The rat brain in stereotaxic coordinates (fifth edition)[M]. Burlington, MA, USA: Elsevier Academic Press, 2005.
    [20] Zhou SY, Lu YX, Yao H, Owyang C. Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294(5): G1201-1209.
    [21] Koontz MA, Hendrickson AE. Comparison of immunolocalization patterns for the synaptic vesicle proteins p65 and synapsin I in macaque monkey retina[J]. Synapse, 1993, 14(4): 268-282.
    [22]王慧娟.大鼠脑缺血后突触的形态学变化及突触体素的表达[D].石家庄:河北医科大学基础医学院, 2002.
    [23]丁晓慧,花放. CGRP对大鼠缺血再灌注后海马内突触体素表达的影响[J].解剖科学进展, 2000, 6(4): 358-360.
    [24] Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats[J]. Stroke, 1995, 26(11): 2135-2144.
    [25]曹同超,陈东,郭家智,李明.突触素在大鼠脊髓损伤后中枢神经不同部位的变化研究[J].昆明医学院学报, 2009, 30(7): 37-40.
    [26] Shojo H, Kibayashi K. Changes in localization of synaptophysin following fluid percussion injury in the rat brain[J]. Brain Res, 2006, 1078(1): 198-211.
    [27]孙毅娜,林来祥,刘嘉玉,张璐,赵学勤,阎玉芹,陈祖.不同典摄入水平对仔鼠大脑2型脱典酶活力与髓鞘碱性蛋白和突触蛋白表达Ⅰ的影响.环境与健康杂志, 2008, 25(8):659-661.
    [28] Vara H, Martinez B, Santos A, Colino A. Thyroid hormone regulates neurotransmitter release in neonatal rat hippocampus. Neuroscience, 2002. 110(1): 19-28.
    [29] Rosahl TW, Geppert M, Spillane D, Herz J, Hammer RE, Malenka RC, Sudhof TC. Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell, 1993. 75(4): 661-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700