南海中层水、中层环流及其与西北太平洋中层水交换研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对WOD05和ARGO历史水文数据共计13748个温盐剖面的分析和HYCOM模式三层嵌套的模拟,研究分析了南海中层水、中层环流及其与西北太平洋中层水交换的空间特性和季节变化特征。
     南海中层水团的最显著特点是处在盐度极小值层,其位势密度处在26.5-27.0σθ之间,中性密度值在26.5-27.2σN之间。南海中层水主要来源于在北太平洋中高纬度生成的北太平洋中层低盐水团。北太平洋中层水从高纬最终能到达吕宋海峡经过了北太平洋副热带环流圈的长途跋涉,即低盐中层水形成后在亚北极-热带锋区混合增密下沉,并向东北流动进入北太平洋副热带环流圈,然后从东北太平洋转向西南方向运动最终可到达吕宋海峡附近。
     吕宋海峡是南海中层水与北太平洋中层水交换的主要通道。南海中层水和北太平洋中层水在水团特性上存在显著差异性,吕宋海峡附近中层水具有混合性。南海中层水深度变化范围是340-740m,浅于吕宋海峡东侧的北太平洋中层水;温度、盐度变化范围分别是6.4-10.6℃和34.4-34.5psu,高于北太平洋中层水。南海中层水厚度基本呈北厚南浅分布,且比北太平洋中层水厚度要大。吕宋海峡附近有自西北太平洋伸向南海的高压、低温、低盐水舌存在。在南海北部,南海中层水温盐压特性和中层环流的流场结构显示出明显的气旋式特征,这是南海中层水和环流受南海季风控制的表现之一。
     南海与西北太平洋中层水交换性质和季节变化特征也显著受南海季风控制。年均意义下南海风场为东北季风,南海与西北太平洋中层水交换表现为西北太平洋中层水入侵南海,本文通过吕宋海峡断面计算得到的年均北太平洋中层水入侵南海的体积输运是0.75Sv。南海强劲的冬季风对北太平洋中层水入侵南海起主导作用,较弱的夏季风对中层水的入侵只起到削减效果,并不能使北太平洋中层水的入侵变为南海中层水的流出。入侵的季节变化特征表现为,春夏季北太平洋中层水进入南海最强,冬季次之,秋季最弱。中层水入侵的季节变化对南海季风的季节变化响应存在时间滞后性。
     北太平洋中层水入侵南海,主要路径是通过吕宋海峡北端,中层水的温盐压分布特点、中层环流结构和吕宋海峡断面的体积输运结果均表明在吕宋海峡北端几乎常年存在一个从太平洋伸向南海的气旋式入侵。吕宋海峡中部和南端,北太平洋中层水的入侵基本很微弱,只在个别月份有量值很小的体积输运,而南海中层水流出进入北太平洋的趋势要强于北太平洋中层水的入侵,但体积输运值也相对很小。
Based on the analysis of a total of 13748 temperature-salinity profiles from historical hydrological data set WOD05 and ARGO and the three nested simulations using HYCOM, the characteristic and seasonal variation of intermediate water, circulation in South China Sea (SCS) and its intermediate water exchange with Northwest Pacific are studied in this paper.
     South China Sea Intermediate Water (SCSIW) in the most significant feature of the salinity minimum, is located at potential density 26.5-27.0σθor neutral density 26.5-27.2σN layer, which is sourced from North Pacific Intermediate Water (NPIW) formed in Middle and high latitudes.NPIW finally reaches the Luzon Strait after an excursion, that is, the source waters sink by cabbeling process and are transformed to NPIW subtropical gyre along the subarctic-tropical frontal zone (SATFZ), then spread from northeast North Pacific southwestward toward the Luzon Strait.
     SCSIW communicates with NPIW mainly through the Luzon Strait which is the only deep channel around the SCS.There are significant differences in water mass property distribution between SCSIW and NPIW,and the intermediate water near the Luzon Strait has a notable mixing property distribution of these two water masses.The depth range of SCSIW is about 340-740m, shallower than NPIW, while the ranges of temperature and salinity is about 6.4-10.6°and 34.4-34.5psu respectively, higher than NPIW. The pattern of thickness distribution of SCSIW is thick in northern part and thin in the southern part, both parts are thicker than NPIW. There are high-pressure, low-temperature and low-salinity tongues entering from the Northwest Pacific to the South China Sea by the Luzon Strait. In the northern SCS,both of the intermediate water property distribution and the intermediate circulation pattern show a obvious cyclonic feature, which is one of the evidences showing that the intermediate water, circulation in the SCS are mainly controlled by monsoon.
     The characteristic and seasonal variation of intermediate water exchange between the Northwest Pacific and the South China Sea are also controlled by monsoon. The SCS is dominated by winter northeast monsoon on annual mean, therefore the NPIW shows an invasion into the SCS and the annual mean volume transport of NPIW calculated from the Luzon Strait section is about 0.75Sv. The strong winter monsoon plays a dominant role on the intrusion of NPIW into SCS,while the weaker summer monsoon can only weaken the intensity of intrusion, rather than reverse the inflow to outflow. The inflow to SCS of NPIW is strongest in spring and summer, followed by winter and weakest in fall.A time lag exists in the response of the invasion of NPIW to monsoon.
     The pathway of the NPIW entering into SCS is mostly from the northern part of the Luzon Strait, the analyses of property distribution of intermediate water, pattern of intermediate circulation and transport of the section in the strait all demonstrate the existence of a cyclonic extending from the North Pacific to SCS through the northern part of the strait. In the middle and southern parts of the Luzon Strait, the transports of both inflow and outflow are weak compared to the northern part, although the transport of outflow is slightly larger than that of inflow.
引文
[1]Chu T Y. A study of water exchange between the Pacific Ocean and the South China Sea. Acta Oceangr. Taiwanica,1972,2:11-24.
    [2]Qu, T. Evidence for water exchange between the South China Sea and the Pacific Ocean through the Luzon Strait. Acta Oceanol. Sin.,2002,2:24-34.
    [3]Qu, T.,J. B.Girton, and J. A. Whitehead. Deepwater overflow through Luzon Strait. J. Geophys. Res.,2006,111,C01002,11 PP, doi:10.1029/2005JC003139.
    [4]Nitani, H. Beginning of the Kuroshio. In Kuroshio:Physical Aspects of Japan Current, edited by H. Stommel and K. Yoshida, EDS, University of Washington Pres,1972.129-163.
    [5]Shaw, P.-T. Seasonal variation of the intrusion of the Philippine sea water into the South China Sea, J. Geophys. Res.,1991,96:821-827.
    [6]Yuan,D.L. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanologica Sinica,2002,21:187-202.
    [7]Sverdrup, H. U.,M. W.,Johnson and R. H. Fleming. The Ocean, their physics, chemistry and general biology, Prentice-Hall, New York,1942:1087pp.
    [8]王胄,陈庆生.南海东北部海域次表层水与中层水之流径.热带海洋,1997,16(2):26-41.
    [9]Qu, T.,H. Mitsudera, and T. Yamagata. Intrusion of the North Pacific waters into the South China Sea, J.Geophys. Res.,2000,105:6415-6424.
    [10]谢骏.南海水团分析:[硕士研究生学位论文].青岛:中国海洋大学,2004.
    [11]田天,魏皓.南海北部及巴士海峡附近的水团分析.中国海洋大学学报,2005,35(1):009-012.
    [12]刘长建,杜岩,张庆荣等.南海次表层和中层水团年平均和季节变化特征.海洋与湖沼,2008,39(1):55-64.
    [13]李薇,李立,刘秦玉.吕宋海峡及南海北部海域的水团分析.台湾海峡,1998,17(2)207-213.
    [14]王凡,赵永平,冯志刚等.1998年春夏温盐结构及其变化特征.海洋学报,2001,23(5):1-13.
    [15]刘增宏,李磊,许建平等.1998年夏季南海水团分析.东海海洋,2001,19(3):1-10.
    [16]李凤岐,李磊,王秀芹等.1998年夏、冬季南海的水团及其与太平洋的水交换.青岛海洋大学学报,2002,32(3):329-336.
    [17]苏纪兰.南海环流动力机制研究综述.海洋学报,2005,Vol.27,No.6:3-10.
    [18]Qu, T.,Y.Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida, and T. Yamagata. Can Luzon Strait Transport Play a Role in Conveying the Impact of ENSO to the South China Sea, J.Clim., 2004,17(8):3644-3657.
    [19]Qu, T.,Du, Y.,Sasaki, H.. South China Sea throughflow:a heat and freshwater conveyor (2006a). Geophys. Res. Lett.,2006,33,L23617, doi:10.1029/2006GL028350.
    [20]Wyrtki K. Physical Oceanography of Southeast Asia Water. NAGA Report,1961,2:1-195.
    [21]Fan, K.L. A study of water masses in Taiwan Strait. Acta Oceanogr. Taiwanica,1982, 3:140-153
    [22]朱祖佑.太平洋与南中国海海水之交换.台湾:台湾大学理学院海洋研究所研究报告,1972,2:11-24.
    [23]黄企洲.巴士海峡黑潮流速和流量的变化.热带海洋,1983,2(1):35-40.
    [24]黄企洲.巴士海峡的海洋学状况.南海海洋科学集刊,北京:科学出版社,1984(6)54-66.
    [25]管秉贤.巳士海峡及其附近夏季环流分布特征.黄渤海海洋,1990,8(4):1-8.
    [26]Chen, C.-T. A.,S.L. Wang, B.J. Wang, and S. C. Pai. Nutrient budgets for the South China Sea basin,Mar. Chem.,2001,75,281-300.
    [27]杨庆轩.吕宋海峡水体通量及其能通量研究:[博士研究生学位论文].青岛:中国海洋大学,2008.
    [28]鲍献文,鞠霞,吴德星.吕宋海峡120°E断面水交换特征.中国海洋大学学报,2009,39(1):1-6.
    [29]郭忠信,方文东.1985年9月的吕宋海峡黑潮及其输送.热带海洋,1988(2):13-19.
    [30]Shaw, P.-T. The intrusion of water masses into the sea southwest of Taiwan, J. Geophys. Res.,1989,94:18213-18226.
    [31]Xu Jianping,Shi Maochong,Zhu Bokang,et al. Several characteristics of water exchange in the Luzon Strait. Acta Oceanologica Sinica,2004,23(1):11-22.
    [32]Chu, T.Y. Environmental study of the surrounding waters of Taiwan. Acta Oceanogr. Taiwanica,1971,1:16-32.
    [33]管秉贤.南海暖流—广东外海一支冬季逆风流动的海流.海洋与湖沼,1978,9(2):117-127.
    [34]仇德忠,杨天鸿,郭忠信.夏季南海北部一支向西流动的海流.热带海洋,1984,3(4):65-73.
    [35]郭忠信,杨天鸿,仇德忠.冬季南海暖流及其右侧的西南向海流.热带海洋,1985,4(1):1-9.
    [36]Chao, S.-Y.,P.-T. Shaw, and S.Y.Wu. Deep sea ventilation in the South China Sea. Deep Sea Res.,Part Ⅰ,1996,43:445-466.
    [37]Xu, J.P.,J. L. Su and D.Z. Qiu. Hydrographic analysis on the intruding of Kuroshio water into the South China Sea. In proceeding of 1980 symposium on hydrometeology of the Chinese Society of Oceanology and Limnology, Science Press, Beijing,1995:p30-40.
    [38]蒲书箴,于惠苓,蒋松年.巴士海峡和南海东北部黑潮分支.热带海洋,1992,11(2):1-7.
    [39]Farris,A. And M. Wimbush. Wind-induced Kuroshio intrusion into the South China Sea. J. Oceanogr.,1996,52(6):771-784.
    [40]Centurioni, L.R.,P. Niiler and D.K. Lee. Observations of inflow of the Philippine Sea surface water into the South China Sea through the Luzon Strait. J. Phys. Oceanogr.,2004, 34:113-121.
    [41]Fang, Y.,G.H. Fang and K.J. Yu. ADI barotropic ocean model for simulation of Kuroshio intrusion into China south-eastern waters. Chin. J. Oceanol. Limnol.,1996,14(4):357-366.
    [42]Metzger, E.J., and H. Hurlburt. The nondeternimistic nature of Kuroshio penetration and eddy shedding in the South China Sea. J. Phys. Oceanogr.,2001,31:1712-1732.
    [43]李立,伍伯瑜.黑潮的南海流套?—南海东北部环流结构探讨.台湾海峡,1989,8(1):89-95.
    [44]Zhang, F.,W.Z.Wang, Q.Z. Huang,Y.S.Li, and K.W. Chau. Summary current structure in Bashi Channel. In proceeding of 1980 symposium on hydrometeology of the Chinese Society of Oceanology and Limnology, Science Press, Beijing,1995:p65-72.
    [45]许建平,苏纪兰,仇德忠.黑潮水入侵南海的水文分析.中国海洋学文集.北京:海洋出版社,1996.6:1-12.
    [46]许建平,苏纪兰.黑潮水入侵南海的水文分析(Ⅱ).热带海洋,1997,16(2):1-23.
    [47]刘秦玉,刘倬腾,刘世培,徐启春,李薇.黑潮在吕宋海峡的形变及动力机制.青岛海洋大学学报,1996,26(4):413-419.
    [48]黄企洲,郑有任.1992年3月南海东北部巴士海峡的海流.中国海洋学文集.北京:海洋出版社,1996.6:42-52.
    [49]李薇,刘秦玉.西边界流在西边界缺口处变形机制的初步研究.青岛海洋大学学报,1997,27(3):277-281.
    [50]李微,刘秦玉,杨海军.吕宋海峡海洋环流的基本特征.青岛海洋大学学报,1998,28(3):345-352.
    [51]刘秦玉,杨海军,李微.吕宋海峡纬向海流及质量输送.海洋学报,2000,22(2):1-8.
    [52]李立,许建平,苏纪兰.南海的黑潮分离流环.中国科学院南海海洋研究所:热带海洋,科学出版社,1997(2):42-57.
    [53]Li L, Nowlin, W D, et al.Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Research,45A,1998:1469-1482.
    [54]李燕初,李立,林明森和蔡文理.用TOPEX_POSEIDON高度计识别台湾西南海域中尺度强涡.海洋学报,2002,24:163-170.
    [55]Wang, G.,J. Su, and P. C. Chu. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett.,2003,30(21),2121,doi:10.1029/2003GL018532.
    [56]Jia, Y.L. and Q.Y. Liu. Eddy shedding from the Kuroshio Bend at the Luzon Strait. J. Oceanogr.,2004,60:1603-1609.
    [57]Yuan, D., W. Han, and D. Hu. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J. Geophys. Res.,2006,111,C11007, doi:10.1029/ 2005JC003412.
    [58]Gong, GC.,K.K. Liu, C.T. Liu, and S.C. Pai. The chemical hydrography of the South China Sea west of Luzon and a comparison with the West Philippine Sea. Terr. Atmos. Oceanic Sci., 1992,3:587-602.
    [59]Chen, C.-T.A. and M.H. Huang. A mid-depth front separating the South China Sea water and the West Philippine Sea water. J. Oceanogr.,1996,52:17-25.
    [60]Chen, C.-T.A.and S.L. Wang. Influence of intermediate water in the western Okinawa Trough by the outflow from the South China Sea. J. Geophys. Res.,1998, 103:12683-12688.
    [61]Chen, C.-T. A.,and S. L. Wang. Carbon, alkalinity and nutrient budget on the East China Sea continental shelf. J. Geophys. Res.,1999,104:20675-20686.
    [62]Chen, C.-T. A. Tracing tropical and intermediate waters from the South China Sea to the Okinawa Trough and beyond. J. Geophys. Res.,2005,110, C05012, doi:10.1029/ 2004JC002494.
    [63]Tian, J.,Q. Yang, X. Liang, L. Xie, D.Hu, F.Wang, and T. Qu. Observation of Luzon Strait transport. Geophys. Res. Lett.,2006,33, L19607, doi:10.1029/2006GL026272.
    [64]谢玲玲.西北太平洋环流及其与南海水交换研究:[博士研究生学位论文].青岛:中国海洋大学,2009.
    [65]You,Y.The South China Sea,a cul-de-sac of North Pacific Intermediate Water. Journal of Oceanography,2005,Vol.61:509-527.
    [66]Wang, J. Observation of abyssal flows in the Northern South China Sea. Acta Oceanogr. Taiwanica,1986,16:36-45.
    [67]Liu, C.-T. and R.-J. Liu. The deep current in the Bashi Channel, Acta Oceanogr. Taiwan., 1988,20:107-116.
    [68]许建平.阿尔戈全球海洋观测大探秘.北京:海洋出版社,2002.
    [69]孙朝晖,刘增宏,朱伯康,许建平.全球海洋中Argo剖面浮标运行状况分析.海洋技术,2006,25(3):127-134
    [70]Foster, T. D.,and E. C. Carmack. Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res.,1976,23:301-317.
    [71]McDougall, T. J. Neutral surfaces(1987a).J. Phys. Oceanogr.,1987,17:1950-1964.
    [72]McDougall, T. J. Thermobaricity, cabbeling, and watermass conversion(1987a). J. Geophys. Res.,1987,92:5448-5464.
    [73]McDougall, T. J.,and D.R. Jackett. On the helical nature of neutral trajectories in the ocean. Prog. Oceanogr.,1988,20:153-183.
    [74]You, Y.,and T. J. McDougall. Neutral surfaces and potential vorticity in the world's oceans. J. Geophys. Res.,1990,95:13235-13261.
    [75]D. R. Jackett and McDougall, T. J. A Neutral Density Variable for the World's Oceans. J. Phys.Oceanogr.,1997,27:237-263.
    [76]You, Y. Mapping of an Approximate Neutral Density Surface with Ungridded Data. J. Ocean Univ. Chin.,2008,7(1):1-9.
    [77]张艳慧.热带西太平洋次表层水和中层水分布特征及其年代变化:[博士研究生学位论文].青岛:中国科学院海洋研究所,2006.
    [78]Qu, T.,H. Mitsudera, and T. Yamagata. A climatology of the circulation and water mass distribution near the Philippine coast. J. Phys. Oceanogr.,1999,29:1488-1505.
    [79]王东晓,刘雄斌,王文质等.理想海底地形的南海海洋经向翻转数值模拟.科学通报,2004,49(5):480-486.
    [80]Chassignet, E.P.,H.E. Hurlburt, O.M. Smedstad, G.R. Halliwell, P.J. Hogan, A.J. Wallcraft, and R. Bleck. Ocean prediction with the Hybrid Coordinate Ocean Model (HYCOM).In: Ocean Weather Forecasting:An Integrated View of Oceanography, Chassignet, E.P.,and J. Verron (Eds.), Springer,2006:413-426
    [81]魏泽勋,乔方利,方国洪,崔秉昊,方越,王新怡.全球大洋环流诊断模式研究[J].海洋科学进展,2004,22(1):1-14.
    [82]You, Y,N. Suginohara, M. Fukasawa, H. Yoritaka, K. Mizuno,Y. Kashino and D. Hartoyo. Transport of North PacificIntermediate Water across Japanese WOCE sections.J. Geophys. Res.,2003,108,10.1029/2002JC001662.
    [83]Talley, L. D.An Okhotsk Sea anomaly:Implication for ventilation in the North Pacific. Deep-Sea Res.,Part A,1991,38,Suppl.1A:S171-S190.
    [84]Yasuda, I. The origin of the North Pacific Intermediate Water. J. Geophys. Res.,1997, 102:893-909.
    [85]You, Y. Contribution of salt-fingering to the conveyor belt circulation in the abyssal northern Indian Ocean. Geophys. Res. Lett.,2000,27:3913-3916.
    [86]Van Scoy, K. A.,D.B.Olson and R. A. Fine. Ventilation of North Pacific Intermediate Waters:The role of the Alaska gyre. J. Geophys. Res.,1991,96:16801-16810.
    [87]Halliwell Jr.,G.R.,Bleck, R.,and Chassignet, E.P..Atlantic Ocean simulations performed using a new Hybrid Coordinate Ocean Model (HYCOM).EOS, Fall AGU Meeting.1998
    [88]Halliwell Jr.,G.R.,Bleck, R.,and Chassignet, E.P.,and Smith,L.T..Mixed layer model validation in Atlantic Ocean simulations using the Hybrid Coordinate Ocean Model (HYCOM).EOS,80, OS304.2000
    [89]Bleck, R.. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling,2002,4:55-88
    [90]Wallcraft, A.,Halliwell, G., Bleck, R.,Carroll, S.,Kelly, K., Rushing, K., Hybrid Coordinate Ocean Model (HYCOM) User's Manual:Details of the numerical code.,2002.
    [91]George L. Mellor, Tetsuji Yamada. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics,1982, vol.20, No.4:851-875.
    [92]Large, W.G.,McWilliams, J.C. and Doney, S.C.,Oceanic vertical mixing:A review and a model with a non-local boundary layer parameterization. Rev. Geophys.,1994,32:363-403.
    [93]Large, W.G.,Danabasoglu,G.,Doney, S.C.,and McWilliams, J.C.,Sensitivity to surface forcing and boundary layer mixing in a global ocean model:Annual-mean climatology. J. phys.Oceanogr.1997,27:2418-2447.
    [94]Chassignet, E. P.,L. T. Smith Jr., G.R. Halliwell Jr.,and R. Bleck, North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM):Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr.,2003,33: 2504-2526.
    [95]Thacker, W. C.,and O. E. Esenkov, Assimilating XBT data into HYCOM. Journal of Atmospheric and Oceanic Technology,2002,19:709-724.
    [96]Thacker, W.C.,S.-K. Lee, and G.R. Halliwell, Jr.,Assimilating 20 years of Atlantic XBT data into HYCOM:a first look. Ocean Modeling,2004,7:183-210.
    [97]Halliwell Jr.,G.R.,Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid Coordinate Ocean Model (HYCOM).Ocean Modelling,2004,7:285-322.
    [98]Kara, A. B.,A. J. Wallcraft, and H. E. Hurlburt, How does solar attenuation depth affect the ocean mixed layer? Water turbidity and atmospheric forcing impacts on the simulation of seasonal mixed layer variability in the turbid Black Sea. J. Climate,2005,18:389-409.
    [99]Kara, A. B.,A. J. Wallcraft, and H. E. Hurlburt, A new solar radiation penetration scheme for use in ocean mixed layer studies:an application to the Black Sea using a fine-resolution Hybrid Coordinate Ocean Model (HYCOM).J. Phys. Oceanogr.,2005,35:13-32.
    [100]Kara, A. B.,A. J. Wallcraft, and H. E. Hurlburt, Sea surface temperature sensitivity to water turbidity from simulations of the turbid Black Sea using HYCOM. J. Phys. Oceanogr., 2005,35:33-54.
    [101]Kara, A. B.,H. E. Hurlburt, and A. J. Wallcraft, Stability-dependent exchange coefficients for air-sea fluxes. J. Atmos. Oceanic. Technol.,2005,22,1080-1094.
    [102]Kara, A. B.,H.E. Hurlburt, A. J. Wallcraft, and M. A. Bourassa, Black Sea mixed layer sensitivity to various wind and thermal forcing products on climatological time scales. J. Climate,2005,18:5266-5293.
    [103]Kara, A. B.,H. E. Hurlburt, A. J. Wallcraft, and M. A. Bourassa, CORRIGENDUM for Black Sea mixed layer sensitivity to various wind and thermal forcing products on climatological time scales. J. Climate,2006,19:494-495.
    [104]Lee, S.-K.,D. B.Enfield, and C. Wang, Ocean general circulation model sensitivity experiments on the annual cycle of Western Hemisphere Warm Pool. J. Geophys.Res.,110, C09004,2005,doi:10.1029/2004JC002640.
    [105]Chassignet, E.P.,H.E. Hurlburt, O.M. Smedstad, G.R. Halliwell, A.J. Wallcraft, E.J. Metzger, B.O. Blanton, C. Lozano, D.B.Rao, P.J. Hogan, and A. Srinivasan, Generalized vertical coordinates for eddy-resolving global and coastal ocean forecasts. Oceanography, 2006,19:20-31.
    [106]Chassignet, E.P., H.E. Hurlburt, O.M. Smedstad, GR. Halliwell, P.J. Hogan, A.J. Wallcraft, and R. Bleck, Ocean prediction with the Hybrid Coordinate Ocean Model (HYCOM). In:Ocean Weather Forecasting:An Integrated View of Oceanography, Chassignet, E.P.,and J. Verron (Eds.), Springer,2006:413-426.
    [107]Halliwell, G.,R.Bleck, and E. Chassignet,1998:Atlantic Ocean simulations performed using a new hybrid-coordinate ocean model. EOS,Trans. AGU, Fall 1998 AGU meeting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700