0506华南致灾暴雨的多尺度分析和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
暴雨是华南汛期晕要的天气系统,研究暴雨发生发展的多尺度相互作用和结构等,可以揭示华南暴雨的动力机制和物理机理,提高对华南暴雨的认识和预报能力。文章利用NCEP再分析资料、常规观测资料、云图资料和逐时降水资料等,通过物理诊断方法、尺度分离、数值模拟等方法,对0506华南致灾暴雨过程中的各种尺度的影响系统的相互作用和大气环流结构等进行了研究。
     2005年6月华南出现了一次强降水过程,其持续时间长,影响范围广,造成了珠江流域的洪灾,研究此次降水的影响系统将对华南暴雨的科研与预报工作有重要意义。
     本文针对过程的降水特征、环流变化、锋面结构等作了实况分析;使用滤波方法对风场进行了尺度分离;并利用模拟结果,对锋面的要素变化做简要讨论,重点研究了低层风场日变化与实际云团变化和降水发展的关系;通过对比试验分析了季风及水汽在降水过程中产生的作用。通过这些工作研究造成降水的各尺度的主要影响系统,认识它们之间的相互作用关系,得出以下的主要结论:
     1)分析实况资料,发现降水具有特殊分布、锋面结构具有异常性,并提出本次过程的天气系统的配置模型。本次过程出现两条丰要雨带,降水具有明显的日变化性质,且在一些时段,雨带出现北抬现象。过程由多个尺度的系统影响,在有利的季风环流、行星尺度背景的条件下,静止锋在华南地区维持,中尺度系统不断发展移动并直接造成华南地区的持续强降水。本次过程的锋面结构与典型梅雨锋锋面结构有相似之处,但也存在有许多不同,丰要表现为近地层锋面不明,砂,冷窄气以中层入侵为主,锋面不接地。该过程的天气系统的配置模型是,过程由多个尺度的系统影响,在活跃的西南夏季风、有利的中高纬行星尺度大气环
     流背景的条件下,准静止锋在华南地区维持和摆动,中尺度系统不断在华南地区发展移动并直接造成华南地区的持续强降水。行星尺度天气系统的变动,是引发整个降水过程结束的重要原因。
     2)对风场进行尺度分离并分析得到的各尺度系统发现,不同的雨区,影响系统的尺度不同:风场的天气尺度系统在低层表现为切变线,它的移动位置与雨带相同,并且北抬时间与锋面雨带北抬时间一致,尺度约为3000km左右;波长为1000km波动主要表现为低涡,它们沿着切变线的位置东移,与锋面雨带中的强对流雨团有关;波长为400km左右的波动的维持和发展,与锋前暖区对流降水对应,对19-21日广东暖区降水起着关键的作用。
     3)数值模拟结果表明,过程中华南地区气流的同变化,与一般的海陆风变化有差异,这也是本次暖区降水的日变化有别于华南一般出现的夜雨现象的l丰要原因。华南地区的近地层风场的日变化,反映了由于日夜温度分布不均匀引起的气流的变化。由丁辐射等原因,降水期间地面温度差异与晴空时的海陆热力分布有很大不同,因此引起近地层风的日变化与一般海陆风的风向不同。在平均风场的背景下,近地层风出现明显日变化,造成近地层风场的局地性辐合,触发了锋前不稳定的暖区内强降水的产生及日变化。
     4)通过季风强度对比试验和水汽输送强度对比试验,发现季风的强度对降水的落区有影响,水汽则对垂直运动和降水有正反馈作用。季风的强度影响了辐合场的位置,为降水提供了充分的动力条件,还输送了源源不断的暖湿气流,补充降水需要的大部分水汽。
     综合以上各点,各尺度天气系统的相互作用,是整个雨带形成且维持在华南的主要原因,因此,提出关于各尺度系统对降水的共同作用如下:行星尺度的季风北进到华南,副高在华南以南地区维持,西风带上低槽东移速度减慢,加上高层南业高压的盘踞,华南地区形成了有利于天气系统发展的背景。在这一背景下,干空气从中层南下,与强大暖空气相对,形成低层切变线,并造成锋面附近的上升运动。由于切变线的存在,低层风场极易产生低涡,低涡沿着切变线东移,是锋面上对流强降水的直接因素。雨带的北抬,是由于切变线的北抬以及低涡沿着切变线东北移动而造成的。由于温度的日变化,导致低层风场出现日变化。日变化叠加在平均风场上,形成中尺度波动,在处于位势不稳定的锋前暖区,触发强对流上升运动,造成暖区暴雨。
     以往的华南暴雨研究工作中,局限于研究单个尺度系统或孤立地研究不同尺度系统,缺乏深入研究引起华南暴雨的不同尺度系统之间的相互作用及相互关系。本文通过数值模拟以及尺度分离等新方法,系统地开展影响华南暴雨的多尺度系统的相互作用和相互关系的研究。该工作能够较好的补充了以往研究中的不足,为今后华南暴雨的研究提供新思路和研究方向。更重要的是,本文的一些新方法和新结论如降水分布的特殊性、影响雨团系统的尺度多样性、低层风场日变化对降水日变化的引导作用等,对探索华南暴雨的动力机制和物理机理有重要的科学意义。
The rainstorm is an important synoptic system during flood season at South of China, the research of the interactions and their structures of multiple scale systems can post the dynamical and physical mechanism which triggers and maintains the rainstorm, and improve the understanding and forecasting of the rainstorm at South of China. Using NCEP reanalysis data, routine observation, cloud images and hourly precipitation observation, this paper investigates the multi-scale interactions and their structures of the rainstorm on June 2005 at South of China by analyzing, scale separation and numerical simulation.
     The rainstorm on June 2005 over southern China is an intensive rainfall which maintained a long time, influenced extensive area and caused the flood of Zhujiang River. The investigation of this rainstorm has significant meaning on the research, forecast and disaster mitigation of rainstorm over South of China.
     First, this paper analyzes the rainfall characteristic, the change of circulation and the structure of front using observation data. Then, this paper separates and analyzes different scale component of the wind of NCEP reanalysis data by filter. Finally, the paper briefly discusses the change of the element in the front, and focuses on the relationship among the daily change of the low-level wind, the change of cloud and the development of the rainfall. The contrastive experiments of the strength of the monsoon and the transportation of vapor show that the monsoon and vapor play a key role during the process to maintain and strengthen the rainfall. This paper investigates multi-scale major influent systems and their interaction which caused the rainstorm, and draws the following major conclusion:
     1) The analysis of the observation shows the especial distribution characteristic of the rainfall, the abnormity of the front structure, and proposes a conceptual model of the configuration of the systems in the process. The especial characteristic of the rainfall is that the rainfall has two major zones, possesses apparent diurnal variation and the zones would move northward. The abnormity of the front structure shows that the structure is similar to the structure of the Meiyu front, but possesses many differences: the front near ground is not apparent, and the cold air invades from middle level primarily. The configuration of the systems is that the process was impact by many different scale systems, in the favorable monsoon and planetary-scale circumstance, the stationary front maintained at South of China and the meso-scale system continually evolved and resulted in the long time heavy rainfall.
     2) The analysis of the different scale systems derived from the scale separation of the wind by filter finds that the scale of the impact system on the different rainfall zone is distinct. In synoptic scale, the low-level wind is shear wind and its spatial and temporal moving is consistent with that of rainfall. In meso scale, the low vortex is the wave whose scale is about 1000km, and moves along the line of wind shear and connects with the strong convective precipitation in the front. In small scale, the maintain and development of the wave whose scale is about 400km are corresponding to the convective precipitation in the warm region ahead the front and have significant impact on the rainfall in warm region.
     3) The numerical simulation indicates the difference between diurnal variation of the flow at South of China and the diurnal change of the circulation of the sea-land wind is the primary reason of the difference between the diurnal variation of the rainfall during this process and that of the nightly rainfall. The diurnal variation of the low-level wind at South of China reflects the change of the flow due to the diurnal uneven distribution of the temperature. The variation caused the local convergence in the near ground wind, which trigger the generation of strong rainfall in the instable warn region ahead the front.
     4) The contrastive experiments of the strength of the monsoon and the transportation of vapor show that the strength of the monsoon impacts on the location of the rainfall, and the strength of the water vapor posts positive feedback on the vertical movement and rainfall. The strength of the monsoon has impact on the location of the convergence which is the sufficient dynamical condition for rainfall, and transports lasted warm wet water vapor to supply the water vapor needed by rainfall.
     In summary, the interaction of different scale systems is the key reason for the whole rainfall zone generated and maintained at South of China. The South Asia high in high-level and prevention of the eastern moving of the trough in zonal wind by the arrival of the monsoon and the abnormal western and southern location of the subtropical anticyclone form the favorable background for the development of different scale systems. Under this circumstance, the cold air move to south from middle-level and joint the strong warm wet water vapor from south, then form the shear in low-level and generate the ascend movement near the front. Due to the shear in low-level, the low vortex will arise from the shear wind and move eastern alone the line of the wind shear. This is the direct factor induce the convective strong precipitation in the front. The moving northern of the rainfall zone is the contribution of the moving northern of the shear line and the moving eastern of the low vortex along the shear line. Due to the diurnal variation of the temperature, the diurnal variation of the low-level wind merges into the mean wind to form the meso-scale systems which triggers the strong convection and heavy rainfall in the warm region ahead the front where the potential instability accumulated.
     The research on the rainstorm at South of China in the past was limited by investigating single scale system or investigating isolated the different scale systems, and lacked of systematic research on the interaction and interrelationship among different scale systems which caused the rainstorm at South of China. By numerical simulation and scale separation, this paper systematically investigates the interaction and interrelationship among different scale systems which caused the rainstorm. This work makes a considerable supplement to the deficiency of the research in the past, and gives a guideline to the further research. The most important point is the new methods and the new conclusion such as the especial characteristic of the rainfall, the diversity of the scale of the influent systems, and the diurnal variations of the low-level wind to the diurnal variation of the precipitation have significant scientific meaning to the exploration for the dynamical and physical mechanism of the rainstorm at South of China.
引文
[1]周秀骥,薛纪善,陶祖钰等,’98 华南暴雨科学试验研究,气象出版社,北京,2003年
    [2]倪允琪,周秀骥,张人禾等,我国南方暴雨的试验与研究,应用气象学报,2006年 12 月,17 卷,6 期。691-704
    [3]薛纪善主编,1994 年华南夏季特大暴雨研究,气象出版社,北京,1999 年
    [4]陶诗言,丁一汇,等. 中国之暴雨. 北京:科学出版社 25-26
    [5]丁一汇.1980.暴雨和强对流研究.北京:科学出版社,1~13
    [6]丁一汇. 高等天气学, 北京:气象出版社.2005.236pp,423
    [7]赵平,孙健,等.1998 年春夏南海低空急流形成机制研究,科学通报,2003 年,48(6),623-627
    [8]黄荣辉,等.夏季风东亚水汽输送特征及其与南亚季风区水汽输送的差别,大气科学,22(4)460-469
    [9]Tao S Y, Chen L X. A review of recent research on the East Asian Summer Monsoon in China[C. Monsoon Meteorology Oxford university press. 1987, 61~ 92.
    [10]陈隆勋, 朱乾根等. 东亚季风[M . 北京: 气象出版社, 1991: 362.
    [11]Huang R H, Yin Baoyu, Liu AiDi. Intraseasonal Variability of East Asia Summer Monsoon and its association with the convection [C. Proceeding of international workshop on climate variability. Beijing: China Meteorological Press. 1992, 139~ 155.
    [12]罗绍华, 金福辉. 南海海温变化与初夏西太平洋副热带高压活动及长江中下流汛期降水关系的分析. 大气科学, 1986, 10(4): 409~ 417.
    [13]黄荣辉, 孙凤英. 热带西太平洋暖池的热状态及其上空对流活动对东亚夏季气候异常的影响[J. 大气科学, 1994, 18(2): 141~ 151.
    [14]张顺利,陶诗言,等.长江中下游致洪暴雨的多尺度条件,科学通报.2002 年.47(6),467-473
    [15]史学丽,丁一汇. 1994 年中国华南大范围暴雨过程的形成与夏季风活动的研究.气象学报,2000.55(6)
    [16]陶诗言,张小玲,等.长江流域梅雨锋暴雨灾害研究。北京:气象出版社,2004,3-4pp,26
    [17]丁一汇,村上胜人.东亚季风.北京:气象出版社,1994.27pp,79
    [18]容广陨,等.南海地区注意天气系统及其与华南降水的关系,气象科学技术集刊No.10(季风论文专集),气象出版社,1987,221-233
    [19]吴尚森,梁建茵,李春晖. 南海夏季风强度与我国汛期降水的关系.热带气象学报.2003,19(增刊),25-36
    [20]吕梅,成新喜,等.1994 年华南暴雨期间夏季风的特征及其对水汽的输送,热带气象学报,1998 年,14(2),135-141
    [21]梁必骐. 南海热带大气环流系统. 北京.气象出版社.1991.22pp, 209pp, 40
    [22]孙颖,丁一汇,等.1997 年东亚夏季风异常活动在汛期降水中的作用,应用气象学报,2002 年,13(3),277-287
    [23]柳艳菊,丁一汇,等.1998 年夏季风爆发前后南海地区的水汽输送和水汽收支.2005,21(1),55-62
    [24]黄荣辉,等.夏季风东亚水汽输送特征及其与南亚季风区水汽输送的差别,大气科学,22(4)460-469
    [25]薛纪善主编,1994 年华南夏季特大暴雨研究,气象出版社,1999,25
    [26]陶诗言,徐淑英. 夏季江淮流域持久性旱涝现象的环流特征,气象学报, 1962,30(1) : 1~10
    [27]陶诗言等,中国夏季副热带天气系统若干问题的研究,北京: 科学出版社, 1963,106~123
    [28]黄士松, 副热带高压东西向移动及其预报的研究,气象学报, 1963 ,33 (3) : 320~332
    [29]毕慕莹, 夏季西太平洋副热带高压的振荡,气象学报,1989 ,47 (4) : 467~474
    [30]喻世华, 杨维武, 季节内西太平洋副热带高压异常进退的诊断研究,热带气象学报,1995,11 (3) : 214~222
    [31]喻世华, 张韧, 杨维武, 副热带高压进退机理研究,北京:解放军出版社, 1999, 47~53
    [32]赵兵科,姚秀萍,吴国雄,2003 年夏季淮河流域梅雨期西太平洋副高结构和活动特征及动力机制分析, 大气科学.2005,29(5):771-779
    [33]叶笃正,黄荣辉. 长江黄河流域旱涝规律和成因研究[M]. 济南:山东科学技术出版社,1996. 65—77,367.
    [34]伍荣生.现代天气学原理[M]. 北京:高等教育出版社,1999. 191—192.
    [35]陈兴芳,赵振国. 中国汛期降水预测研究及应用[M]. 北京:气象出版社,2000. 1—20.
    [36]中央气象局,中国高空气候,北京:气象出版社,1975,61
    [37]阮均石等,天气学基础知识,北京:气象出版社,1985,
    [38]苏东玉,李跃清, 蒋兴文,南亚高压的研究进展及展望,干旱气象,2006,24(3),68-74
    [39]丁治英,张兴强,寿绍文,南亚高压与偏北风急流出口区的暴雨生成机制, 应用气象学报,2002,13(6),671-678
    [40]杜银,谢志清, 中国西南地区夏季降水的年际变化及与南亚高压的关系, 四川气象,2002,22(4),8-13
    [41]黄燕燕,钱永甫,长江流域、华北降水特征与南亚高压的关系分析, 高原气象,2004,23(1),68-74
    [42]梁必骐. 天气学教程.北京:气象出版社,1995 年.536
    [43]陈受钧, 谢安. 次天气尺度与天气尺度系统动能交换的诊断分析[J]. 气象学报, 1981,39: 408~ 415.
    [44]吕克利等. 大尺度凝结加热与中尺度位温扰动对冷锋锋生的作用[J]. 大气科学, 1995,19(3): 319.
    [45]黄士松,等.华南前汛期暴雨.广州:广东科技出版社,1986,28-54
    [46]文莉娟,等.98.5 华南前汛期暴雨的非静力数值模拟和中尺度系统分析.高原气象.2005.24(2),223-231
    [47]林爱兰,梁建茵,等.“0506”华南持续性暴雨的季风环流背景
    [48]纪忠萍, 方一川, 梁 健, 梁玉琼, “05. 6”广东致洪暴雨过程的500 hPa环流场及低频特征, 广东气象,2006,(2),15-18
    [49]叶 萌, 张 东, 何夏江, “05. 6”广东致洪暴雨过程的预报着眼点, 广东气象,2006(1),35-38
    [50]孙建华 卫 捷 赵思雄 陶诗言, 2005 年夏季的主要天气及其环流分析, 气候与环境研究,2006,11(2)
    [51]马 慧, 陈桢华, 2005年6月华南暴雨的气候背景,广东气象,2005(4),14-16
    [52]廖胜石,罗建英,蔡芗宁, 2005 年6 月华南致洪暴雨过程中FY22C卫星TBB场分析, 气象,2007,33(1),81-86
    [53]王秀文 桂海林, 100hPa 环流特征与2005 年梅雨异常的关系, 气象,2006,32(11),88-93
    [54]张东,林钢,叶萌,陈桂兴,汪瑛,华南连续性特大致洪暴雨个例分析,气象科技,2007,35(1),82-87
    [55]夏茹娣,赵思雄,孙建华,一类华南锋前暖区暴雨β中尺度系统环境特征的分析研究,大气科学,2006,30(5),988-1008
    [56]何立富,华南暴雨形成机理与中尺度对流系统研究,博士论文,2006
    [57]Ding Yihui. Summer monsoon rainfalls in China. J Meteor Soc Japan, 1992, 70, 373-369
    [58]Zhu Q G, He J H, Wang P X. A study of circulation differences between East-Asian and Indian Summer Monsoon with their interaction. Adv Atmos Sci, 1986. 3: 466-477
    [59]丁一汇, 村上胜人. 亚洲季风. 北京: 气象出版社, 1994. 263
    [60]郭其蕴; 王继琴;近三十年我国夏季风盛行期降水的分析,地理学报,1981(2)
    [61]林之光; 彭道和; 我国三十年(1951—1980)气候若干极值,气象科技,1987(4)
    [62]张小玲,张建忠. 1981年7月9_14日四川持续性暴雨分析.应用气象学报. 2006, 17(增刊),79-87
    [63]张庆云,陶诗言,张顺利. 1998年嫩江_松花江流域持续性暴雨的环流条件. 大气科学,2001,25(4),567-576
    [64]Fang Zongyi. The preliminary study of medium-scale cloud cluster over the Changjiang basin in summer. Advanced in Atmospheric Science,1986,2(3):334-340
    [65]李玉兰,陶诗言,杜长萱.梅雨锋上中尺度对流云团的分析.应用气象学报,1993,4(3):278-285
    [66]项续康,江吉喜.我国南方地区的中尺度对流复合体.应用气象学报,1995,6(1):9-17
    [67]张小玲,陶诗言,等. 1996年7月洞庭湖流域持续性暴雨过程分析. 应用气象学报. 2004,15(1):21-31
    [68]仪清菊,刘品,王明志. 1998年华南暴雨试验期暴雨过程概述. 气象科技. 1999(3):33-39
    [69]孟妙志,郭清历,冯富强. 宝鸡2006年7月8_9日连续突发性暴雨的中尺度系统特征分析. 陕西气象. 2007(2):21-23
    [70]廖移山,闵爱荣,李武阶. 长江中游一次中β低涡暴雨的数值模拟分析. 高原气象. 2007,26(1):187-196
    [71]贝耐芳,赵思雄. 1998年“二度梅”期间突发性强暴雨系统的中尺度分析[J].大气科学, 2002,26(4):526-540
    [72]方宗义,项续康,方翔,李小龙,2003年7月3日梅雨锋切变线上的_中尺度暴雨云团分析, 应用气象学报,2005,16(5),569-575
    [73]许美玲,段旭,张腾飞,杨明珠,低纬高原地区一次罕见大暴雨的中尺度数值模拟,高原气象,2006,25(2),268-276
    [74]孙晶,楼小凤,胡志晋,赵思雄,梅雨期暴雨个例模拟及其中小尺度结构特征分析研究, 大气科学,2007,31(1),1-18
    [75]陈永林,杨引明,曹晓岗,王智,上海“0185”特大暴雨的中尺度强对流系统活动特征及其环流背景的分析研究,2007,18(1),29-35
    [76]黄东林,周伟灿,薛荣康,西南低涡东移对华南暴雨增幅的动力机制分析,广西气象,2006,27(4),30-33
    [77]刘淑媛,孙健,王洪庆,陶祖钰,香港特大暴雨_中尺度线状对流三维结构研究, 大气科学,2007,31(2),353-363
    [78]王舒畅,季亮,潘晓滨,李毅,一次梅雨锋暴雨过程的中尺度对比模拟分析,气象科学,2005,25(6),569-578
    [79]薛秋芳,梁海河,张沛源,中β尺度对流云团造成特大暴雨过程的分析,气象,27(2),39-43
    [80]赵思雄,陶祖钰,孙建华,贝耐芳,等. 长江流域梅雨锋暴雨机理的分析研究.气象出版社,北京.2004年,25
    [81]姚秀萍,于玉斌. 2003年梅雨期干冷空气的活动及其对梅雨降水的作用. 大气科学. 2005,29(6):973-985
    [82]王建捷,陶诗言.1998梅雨锋的结构特征及形成与维持,应用气象学报,2002,13(5),526-534
    [83]黄艳芳,郑永光. 1998年二度梅雨锋的演变及结构特征. 北京大学学报,2004,40(5):797-805
    [84]顾震潮.论锋面在副热带里的性质和华中华南锋面分析问题,气象学报,1953,24(1), 28-32
    [85]徐娟.低层梅雨锋结构及锋生中冷空气的分析,科技通报,2004,20(6), 506-511
    [86]闫敬华,薛纪善.“5.24”华南中尺度暴雨系统结构的数值模拟分析,热带气象学报,2002,18(4)
    [87]张小玲,陶诗言,张庆云. 1998年梅雨锋的动力热力结构分析. 应用气象学报. 2002,13(3),257-268
    [88]张小玲,陶诗言,张顺利,梅雨锋上的三类暴雨,大气科学,2004,28(2), 187-204
    [89]Gandin,L.S.,1963:Objective Analysis of Meteorological Fields. Leningrad, USSR, Hydrometeor. Publ. House (English version, Israel Program for Scientific Translations, 1965), 242.
    [90]Barnes,S.L., and D.K.Lilly,1975: Covariance analysis of severe storm environments. Preprints Ninth conf. Severe Local Storms, Norman, Amer. Meteor. Soc., 201-306.
    [91]Maddox,R.A., and VonderHaar,T.H.,1979: Covariance Analyses of Satellite-Derived Mesoscale Wind Fields, Journal of Applied Meteorology,18,1327-1334
    [92]Doswell,C.A.,III,1977: Obtaining meteorologically significant surface divergence fields through the filtering property of objective analysis. Mon. Wea. Rev., 105, 885-892
    [93]Maddox,R.A., 1980: An Objective technique for separating macroscale and mesoscale features in meteorological data. Mon. Wea. Rev., 108:1108-1121
    [94]丁一汇,天气动力学中的诊断分析方法,北京,气象出版社,1989年,72-86pp
    [95]Maddox, R.A., et al. Evolution of upper tropospheric features during the development of a MCC. J Atm Sci, 1981,38:1664-1674
    [96]党人庆. 中尺度滤波方法对中间尺度云团分析的初步应用. 气象科学,1984,9-14
    [97]蔡则怡,于波.带通滤波在华北飑线预报中的应用.气象,1988,14(1):23-27
    [98]何溪澄,万齐林.二维场的高斯权重带通滤波分析.气象学报,1995,53(1): 122-128
    [99]GRAPES项目办公室,新一代数值预报系统(GRAPES)研究与应用
    [100]宗志平,刘文明. 2003 年华北初雪的数值模拟和诊断分析.气象,30(11),3-8
    [101]李耀辉 ,赵建华,等. 基于 GRAPES 的西北地区沙尘暴数值预报模式及其应用研究,2005,20(9)
    [102]万齐林,等. 多普勒雷达风场信息变分同化的试验研究,气象学报,2005,63(2),129-145
    [103]王春红,等. 一次华南低空急流暴雨的数值模拟.热带气象学报,1997,13(2)
    [104]隆霄,程麟生. “99·6”梅雨锋暴雨低涡切变线的数值模拟和分析,大气科学,2004,28(3),342-356
    [105]孙建华, 赵思雄. 一次罕见的华南大暴雨过程的诊断与数值模拟研究.大气科学,2000,24(3),381-392
    [106]冯业荣. 两类滤波器在中尺度分析中的运用,广东气象,(4):8-10
    [107]张红,杨福全. 暴雨中不同尺度天气系统的分离及其相互作用,北京大学学报,1997,33(1):77-84
    [108]陈敏,等. 一次强降水过程的中尺度对流系统模拟研究,气象学报,2005,63(3),313-324
    [109]林爱兰,万齐林,等.热带西南季风对 0214 号热带气旋“黄蜂”的影响,气象学报,2004,62(6),841-850

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700