基于变形控制的复合地基变刚度概念设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,复合地基基于变形控制设计原则的理念越来越被土木工程界人士重视。复合地基的变形控制研究中,基础的沉降变形是关键点,沉降变形计算中应充分考虑各种因素对基础沉降的影响。本文总结了影响基础筏板沉降的各种因素,重点研究了支护结构的存在对筏板沉降的影响规律。并基于减小筏板沉降差的原则,研究了复合地基变刚度概念设计的方法。
     本文采用数值模拟方法,把单桩的现场载荷试验结果Q-S曲线应用到筏板的沉降分析中,同时考虑支护结构及基础埋深的影响,建立复合地基基础的三维有限元模型。在上部结构采用框剪结构而使筏板表面荷载分布呈中心大边缘小的情况下,对等间距长短桩、同一桩距中心长桩边缘短桩、同一桩型中心桩距小边缘桩距大、基于等刚度布桩时抽桩等各种复合地基变刚度方案进行沉降分析。本文得出的主要结论如下:
     (1)支护结构的存在对筏板下有增强体的复合地基影响不明显,但是对筏板下是天然地基的筏板沉降有显著影响。
     (2)采用增加桩长的方法可以减少筏板的沉降。但是在等刚度布桩时采用增加桩长的方法解决不了筏板差异沉降大的问题。
     (3)在上部结构采用框剪结构而使筏板表面荷载分布呈中心大边缘小的情况下,为了减少筏板的差异沉降,根据中心区域支承刚度大,边缘区域支承刚度小的原则布桩时,筏板下支承刚度大的范围要稍大于上部核心区荷载分布范围。基于本文的计算分析,采用中心长桩边缘短桩且中心长桩布置面积占核心筒荷载分布面积的130%左右的变刚度方案为最佳方案,此时桩体荷载分担均匀,沉降曲线平缓。但是这一范围是与支承刚度的相对比值有关的。
     (4)减少筏板边缘部分的支承刚度,筏板边缘的沉降值增加,中心部位的沉降值变化很小,以使筏板的沉降曲线变缓,差异沉降减少,筏板下桩体荷载分担更趋均匀。但是筏板边缘的支承刚度削弱太严重,会使筏板的沉降曲线呈中心小、两边大的上凸状,达不到沉降控制的效果。
     (5)减少筏板差异沉降的关键在于选择合适的筏板中心区域的支承刚度与边缘区域的支承刚度比值及刚度布置范围。
In recent years, the concept of design methods of composite foundation based on the controlling settlement principle attracts more and more attention of the civil engineering professions. With regard to the research about composite foundation according to the controlling settlement, foundation's settlement is a critical point. And the design methods of composite foundation according to the controlling settlement should consider various factors sufficiently. This paper summarizes various factors on the settlement of the raft foundation, and focus on the impact of the supporting structure. Based on the principle of reducing the raft foundation differential settlement, this paper also studies the conceptual design method of variable stiffness composite foundation.
     The Q-S curve will be used to calculate the settlement of composite foundation. Using the numerical simulation method and considering of the supporting structure and the depth of foundation, a three-dimensional finite element model of composite foundation is established. The loads distribution of frame-shearwall structure is large in the center and small on the edge of raft. Under the circumstances, this paper analyses the settlement of variable rigidity composite foundation with long-short-pile of the same pile spacing, with long piles in the center and short piles on the edge of raft, with a small pile spacing in the center and a large pile spacing on the edge of raft, with reducing the equal rigidity composite foundation edge piles. The main conclusions are as followed:
     (1) The presence of supporting structure affects the settlement of raft. However, the influence on the foundation that has reinforced body(piles) is not distinct. But the presence of supporting structure affects the settlement of natural foundation significantly.
     (2) To increase the length of pile can reduce the settlement of the raft. But that can not solve the problem of differential settlement of raft in the equal rigidity
     (3) The loads distribution of frame-shearwall structure is large in the center and small on the edge of raft. Under the circumstances, to reduce the differential settlement, and basing on the principle that high bearing stiffness in the center regional and low bearing stiffness on the edge regional, the area of high bearing stiffness must be larger than the core area of upper structure. According to the analysis, the variable rigidity composite foundation with long piles in the center and short piles on the edge of raft is the best method. And the settlement control is very good when center area of long piles occupies about 130% of the core-tube load distribution area. In this case, different positions of the pile share load evenly. But this range is concerned with the ratio of the bearing stiffness.
     (4) The purpose of reducing the bearing stiffness on the edge of raft is mainly to increase the settlement on the edge of raft, while the settlement in the central part varies slightly, so that the settlement curve is smooth and the differential settlement decreases markedly. However, if the bearing stiffness on the edge regional is reduced severely, the settlement value will be very small in the center but large on the edge of raft. That fails to control the settlement.
     (5) The key point of reducing the differential settlement is to choose the right ratio of the center and the edge regional bearing stiffness and the corresponding arrangement region of bearing stiffness.
引文
[1]中华人民共和国国家标准(GB 50007-2002).建筑地基基础设计规范[S].北京:中国建筑工业出版社,2002
    [2]龚晓南.复合地基理论及工程应用[M].北京:中国建筑工业出版社,2007
    [3]刘金砺.高层建筑地基基础概念设计的思考[J].土木工程学报,2006,39(6):100-105
    [4]宰金珉.地基刚度的人为调整及其工程应用[A].中国土木工程学会第八届土力学及岩土工程学术会议论文集[C].北京:万国学术出版社,1999:235-238
    [5]刘金砺,迟铃泉.桩土变形计算模型和变刚度调平设计[J].岩土工程学报,2000,22(2):]51-157
    [6]Burland JB, Broms BB. Behavior of foundations and structures[C]. Proceeding 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo,1977:495-546
    [7]Padfield CJ, Sharrock MJ. Settlement of structures on clay soil[J]. Construction Industry Research and Information Association, Special Publication,1983
    [8]Horikoshi K, RandolPh MF. Centrifuge modelling of Piled raft foundation on clay[J]. Geotechnique,1996,46 (4):741-752
    [9]Ahner C, Sukhov D. Combined piled raft foundation-safety concept[J]. In:Leipzig annual civil engineering report-LASER. No.1. Leipzig:University of Leipzig,1996:333-345
    [10]Liew SS, Gue SS, Tan YC. Design and instrumentation results of a reinforcement concrete piled raft supporting 2500-ton oil storage tank on very soft alluvium deposits[C]. The 9th international conference on piling and deep foundations, Nice(France),2002
    [11]Katzenbach R, Arslan U, Moormann C. Piled raft foundation projects in Germany. In: Hemsley JA, editor. Design applications of raft foundations[M]. London, UK:Thomas Telford,2000:323-391
    [12]Reul O, Randolph MF. Design strategies for piled rafts subjected to non-uniform vertical loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2004,130 (1):1-13
    [13]Chow HSW, Small JC. Behaviour of piled rafts with piles of different lengths and diameters under vertical loading[J]. Geotechnical special publications.2005:841-855
    [14]Hain S J, Lee I K. Analysis of flexible raft-pile systems [J]. Geotechnique,1978,28 (1): 65-83
    [15]Chow Y K, et al. Pile-cap-pile-group interaction in non-homogeneous soil[J]. Geotech. Eng. ASCE,1991,117 (11):1655-1668
    [16]Clancy P, Randolph MF. Smile design tools for plied raft foundations[J]. Geotechneque, 1996,46 (2):313-328
    [17]Horikoshi K, Randolph MF. A contribution to optimum design of piled rafts[J]. Geotechni-que,1998,48 (3):301-317
    [18]Kim Kyung Nam, Lee Su-Hyung, Kim Ki-Seok, et al. Optimal pile arrangement for minimizing differential settlement in piled raft foundations[J]. Computers and Geotechnics, 2001 (28):235-253
    [19]宰金珉.利用变刚度垫层改善基础工作状态的探讨[A].全国地基基础新技术学术会议论文集[C].南京:中国建筑学会地基基础学术委员会,1989:102-107
    [20]宰金珉,王旭东,凌华,等.基于差异沉降控制的桩基非线性优化设计[A].中国土木工程学会第九届土力学及岩土工程学术会议论文集[C].北京:清华大学出版社,2003:1788-1793
    [21]周正茂,赵福兴,侯学渊.桩筏基础设计方法的改进及其经济价值[J].岩土工程学报,1998,20(6):73-76
    [22]张志刚,赫连志.浅基础下设变刚度垫层地基应力场模型试验[J].山东建筑工程学院学报,1999,14(4):1-4
    [23]张志刚.浅基础下设变刚度垫层地基应力场非线性有限元分析[J].山东建筑工程学院学报,2000,15(2):7-11
    [24]阳吉宝,任臻,周小川.带裙房的高层建筑基础的优化设计[J].土木工程学报,1998,31(5):39-47
    [25]龚晓南,陈明中.桩筏基础设计方案优化若干问题[J].土木工程学报,2001,34(4):107-110
    [26]张建辉,邓安福,周锡礽.基于差异沉降最小的桩筏基础布桩分析[J].天津大学学报,2001, (5):646-650
    [27]王辉,张川,李艳红.复合地基变形控制设计新思想[J].岩土工程技术,2001,(1)11-13
    [28]凌华.考虑筏板刚度的桩筏非线性共同作用分析[D].[硕士学位论文].南京:南京工业大学,2002
    [29]张武.高层建筑桩筏基础模型试验研究[D].[1尊士学位论文].北京:中国建筑科学研究院,2002
    [30]陈龙珠,梁发云,丁屹.变刚度复合地基处理的有限元分析[J].工业建筑,2003,33(11):1-4
    [31]李永刚,李宁.中心布桩复合地基优化设计的数值分析[A].北京:中国土木工程学会第九届土力学及岩土工程学术会议论文集[C].北京:清华大学出版社,2003:854-859
    [32]刘力.桩筏基础沉降性状的研究[D].[硕士学位论文].北京:北京工业大学,2004
    [33]刘开国.不均匀布桩的桩筏基础分析[J].土木工程学报,2004,37(12):67-69
    [34]陈俊.桩筏基础桩顶反力及沉降特性研究与变刚度调平设计[D].[硕士学位论文].长沙:湖南大学,2006
    [35]马骥,张东刚,张震,等.长短桩复合地基设计计算[J].岩土工程技术,2001,(2)86-91
    [36]葛忻声,龚晓南,张先明.长短桩复合地基有限元分析及设计计算方法探讨[J].建筑 结构学报.2003,24(4):91-96
    [37]Liang FY, Chen LZ, Shi XG. Numerical analysis of composite piled raft with cushion subjected to vertical load[J]. Comput Geotech.2003,30 (6):443-453
    [38]杨敏,杨桦,王伟.长短桩组合桩基础设计思想及其变形特性分析[J].土木工程学报,2005,38(12):103-108
    [39]乔志炜,黄广龙.控制差异沉降的复合桩基设计方法及有限元分析[J].苏州科技学院学报(工程技术版),2005,18(4):57-61
    [40]孙林娜.复合地基沉降及按沉降控制的优化设计研究[D].[博士学位论文].杭州:浙江大学,2006
    [41]靳元峻.变刚度桩筏基础与地基土相互作用机理研究[D].[硕士学位论文].保定:河北大学,2006
    [42]靳元峻,张建辉,王维玉,等.变刚度桩筏基础沉降规律研究[J].河北农业大学学报,2007,30(5):119-123
    [43]乔京生,步启军,马卫华,等.变刚度复合地基的可行性研究[J].铁道建筑,2006,(5):49-51
    [44]乔京生,陶龙光,刘大江,等.基于差异沉降的变刚度复合地基方案研究[J].湖南科技大学学报(自然科学版),2006,21(2):17-21
    [45]乔京生,周红星,袁则循.变刚度复合地基力学性状的模型试验研究[J].西安建筑科技大学学报(自然科学版),2007,39(4):480-484
    [46]刘冬林,郑刚,刘金砺,等.基于减小筏板差异沉降的刚性桩复合地基试验研究[J].岩土工程学报,2007,29(4):517-523
    [47]闫石.桩筏基础共同作用分析及变刚度调平设计[D].[硕士学位论文].北京:北京交通大学,2007
    [48]钱晓丽,何陶.变刚度群桩基础沉降预测研究[J].四川建筑科学研究,2007,33(2):101-103
    [49]钱晓丽.变刚度群桩基础工作性状数值分析[J].南京工程学院学报(自然科学版),2008,6(2):32-37
    [50]钱晓丽.竖向荷载下变刚度群桩变形性状研究[J].岩土工程学报,2008,30(10):1454-1459
    [51]钱晓丽.变刚度群桩基础沉降计算研究[J].力学与实践,2008,30(6):60-63
    [52]郭院成,王会杰,张四化.复合地基基础空间变刚度调平设计方法的数值模拟[J].郑州大学学报(工学版).2008,29(3):126-128
    [53]顾彦峰.变刚度桩筏基础工作性状和设计方法研究[D].[硕士学位论文].保定:河北农业大学,2008
    [54]王伟.刚性桩复合地基空间变刚度调平设计[D].[硕士学位论文].保定:河北农业大学,2008
    [55]郭院成,赵旭阳,张四化.桩筏基础变刚度设计有限元分析[J].郑州大学学报(工学版),2010,31(1):23-25
    [56]中华人民共和国行业标准(JGJ 94-2008).建筑桩基技术规范[S].北京:中国建筑工 业出版社,2008
    [57]中华人民共和国行业标准(JGJ 79-2002).建筑地基处理技术规范[S].北京:中国建筑工业出版社,2002
    [58]张土乔.水泥土应力-应变关系及搅拌桩破坏特性研究[D].[博士学位论文].杭州:浙江大学,1992
    [59]Geddes J D. Stress in foundation Soils due to vertical subsurface load[J]. Geotechnique,1966 (16):231-255
    [60]黄绍铭,王迪民,裴捷,等.减少沉降量桩基的设计与初步实践[A].中国土木工程学会第六届土力学及基础工程学术会议论文集[C].上海:同济大学出版社.1991
    [61]闫明礼,地基处理技术[M].北京:中国环境科学出版社,1996
    [62]池跃君,沈伟,宋二祥.桩体复合地基桩、土相互作用的解析法[J].岩土力学,2002,23(5):546-550
    [63]沈伟,池跃君,宋二祥.考虑桩、土、垫层协同作用的刚性桩复合地基沉降计算方法[J].工程力学,2003,20(2):36-42
    [64]楼晓明,孙晓锋.大面积带垫层刚性桩复合地基的荷载传递分析方法[J].岩土工程学报,2006,28(11):2027-2030
    [65]粟冰.CFG桩复合地基褥垫层作用机理及按变形控制设计方法的研究[D].[硕士学位论文].上海:同济大学,2007
    [66]董建国,赵锡宏.高层建筑地基基础共同作用的理论与实践[M].上海:同济大学出版社.1997
    [67]杨波.深基坑支护结构对提高高层建筑的稳定性及基础承载力的贡献[D].[硕士学位论文].武汉:武汉水利电力大学,1999
    [68]茜平一,杨波.深基坑支护结构对提高高层建筑稳定性及其地基承载力的作用研究[A].中国土木工程学会第八届土力学及岩土工程学术会议论文集[C].北京:万国学术出版社,1999
    [69]杨波,肖建华.深基坑支护结构与其它结构的共同作用研究[J].人民长江,2002,33(12):16-18
    [70]吴贤国,蔡英群.支护结构与上部结构共同作用的分析研究[J].华中科技大学学报,2003,20(3):19-22
    [71]郭院成,王会杰,陆俊虎.考虑排桩支护影响的高层建筑复合地基沉降分析[J].郑州大学学报(工学版),2009,30(4):35-38
    [72]陈祥福.沉降计算理论及工程实例[M].北京:科学出版社,2005
    [73]宋兴海.支护结构作用下高层建筑筏型基础的沉降分析研究[D].[硕士学位论文].重庆:重庆大学,2009
    [74]ANSYS公司.ANSYS分析指南[R].北京:ANSYS公司北京办事处,1999
    [75]ANSYS操作命令与参数化编程[M].北京:机械工业出版社,2004
    [76]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007
    [77]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997
    [78]李世芸,樊江.有限元方法仿真承载桩对其周围土体的影响[J].昆明理工大学学报,
    2001,26(5):26-29
    [79]汪文彬.基于单桩载荷试验推算群桩基础沉降的研究[D].[博士学位论文].上海:同济大学,2006
    [80]杨敏,王伟.群桩沉降计算的试桩曲线法[J].结构工程师,2008,24(5):77-88
    [81]董光辉,杨敏,卢俊义.基于实测沉降比的群桩分析[J].同济大学学报(自然科学版)2009,37(10):1286-1290
    [82]孙晓立,杨敏.大规模桩筏基础非线性共同作用简化分析方法[J].土木工程学报,2006,39(9):91-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700