青藏铁路冻土地温的自动检测系统与建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对高海拔低纬度青藏冻土状态的变化对铁路安全行车的影响问题,为了确保我国铁路建设的实施,其地温状态测试研究成为目前重点课题之一。本文分析国内外的冻土各种测试方法,通过上位机系统和下位机系统设计,进行青藏铁路冻土地温自动检测系统的研究,具体内容如下:
     (1)以热敏电阻为温度传感器,设计与布置测试点的深度和间隔,通过包含MCU模块、时间系统、AD采集模块、存储系统、选通模块、通信系统、电源管理和湿度与电量检测等八个部分的下位机系统的定时地温数据测试、保存与发送,实现地温数据的采集;并通过涉及ADO数据库、网络通信等技术的上位机系统对数据的接收、处理与分析,可完成地温参数变化的描述与分析。
     (2)设计的冻土地温采集系统应用于青藏铁路,借助C++Builder与数据库的软件编程,实现了对地温数据的计算、管理与分析的目的。同时以某些个断面采集数据为实例,分析了青藏铁路多个断面的属性孔的地温变化特征规律。
     (3)通过采集的冻土地温数据,应用人工神经网络,建立了基于BP网络模型的数学模型,实现冻土地温预测,可为青藏铁路的安全运营提供数据依据。同时以DK1278断面为建模实例,通过BP网络参数的选择,网络模型的预测地温值可满足工程测试的精度要求。
Aimed at the influence of variable state of the high-altitude and low-latitude permafrost on the safety of the Qinghai-Tibet Railway, in order to ensure the realization of railway engineering, testing of permafrost temperature becomes a key subject presently. After examining the achievement of permafrost study nationwide and worldwide, an automatic testing system of permafrost temperature has been designed, containing a master computer and some slave computers as follows.
     Firstly, thermistors are used as temperature transducers and are arranged at testing points along vertical direction of the test location. The slave computer consists of an MCU module, a time system, an AD module, a memory system, a gating module, a communication system, a power managing system, a humidity testing system and a source testing system, thus, acquiring the timely collected permafrost temperature data. Meanwhile, using the ADO database, communications and other technology, the master computer can analyse the variable parameters of the permafrost temperature.
     Secondly, applied to Qinghai-Tibet Railway, the automatic testing system of permafrost temperature has realized kinds of data processing such as the computation, management and analysis with the help of C++ Builder and database. Taking some locations for examples of testing permafrost temperature, the various characteristics of permafrost temperature in testing holes are analyzed.
     Finally, using the collected data, a BP model has been determined to predict permafrost characteristics, and support the operation safety of the Qinghai-Tibet Railway. Taking the permafrost temperature of the cross section of DK1278 for an example, the prediction model of temperature satisfies the requirements of engineering accuracy.
引文
[1]刘永智,吴青柏,张建明,等.青藏高原多年冻土地区公路路基变形[J].冰川冻土,2002,24(1):10-15
    [2]周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000
    [3]张钊,楚涌池.跨越高原冻土的铁路-青藏铁路[J].铁道工程学报,2005,zl,177-184
    [4]闵冬丽.青藏铁路多年冻土区站场路基温度场模拟与沉降变形预测研究[D].北京:北京交通大学,2004
    [5]邹泽雄.青藏铁路多年冻土区站场路基沉降变形分析研究[D].北京:北京交通大学,2005
    [6]李永春,鱼海膦,解宏伟.青藏铁路多年冻土地段的地质环境和工程地质问题[J].水文地质工程地质,2002,29(1):45-4
    [7]铁道部科技教育司,铁道部科学技术信息研究所,中铁西北科学研究院.国外铁路冻土技术文献汇编[M],2001
    [8]S.S.Marchenko,A.P.Gorbunov,V.E.Romanovsky.Permafrost wanning in the Tien Shah Mountains,Central Asia[J].Global and Planetary Change,2007,56(3-4):311-327
    [9]V.E.Romanovsky,T.S.Sazonova,V.T.Balobaev,et al.Past and recent changes in air and permafrost temperatures in eastern Siberia[J].Global and Planetary Change,2007,56(3-4):399-413
    [10]Kotaro Fukui,Yoshiyuki Fujii,Yutaka Ageta,et al.Changes in the lower limit of mountain permafrost between 1973 and 2004 in the Khumbu Himal,the Nepal Himalayas[J].Global and Planetary Change,2007,55(4):251-256
    [11]C.Waelbroeck.Climate-soil processes in the presence of permafrost:a systems modelling approach[J].Ecological Modelling,1993,69(3-4):185-225
    [12]P.P.Overduina,D.L.Kane,W.K.P.van Loon.Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating[J].Cold Regions Science and Technology,2005,45(1):8-22
    [13]T.Zhang,T.E.Osterkamp.Considerations in determining thermal diffusivity from temperature time series using finite difference methods[J].Cold Regions Science and Technology,1995,23(4):333-341
    [14]O.A.Anisimov,N.I.Shiklomanov,F.E.Nelson.Variability of seasonal thaw depth in permafrost regions:a stochastic modeling approach[J].Ecological Modelling,2002,153(3):217-227
    [15]E.Borzotta,D.Trombotto.Correlation between frozen ground thickness measured in Antarctica and permafrost thickness estimated on the basis of the heat flow obtained from magnetotelluric soundings[J].Cold Regions Science and Technology,2004,40(1-2):81-96
    [16]M.L.Lopez C,H.Nakayama,F.Takakai,et al.Forest fires,a permanent or a temporal disturbance in Permafrost Regions:Central Yakutia,Eastern Siberia[J].Forest Ecology and Management,2006,234(sup 1):178
    [17]Re.k M.Bayasan,Anatoly G.Korotchenko,Nikolay G.Volkov,et al.Use of two-phase heat pipes with the enlarged heat-exchange surface for thermal stabilization of permafrost soils at the bases of structures[J].Applied Thermal Engineering,2008,28(4):274-277
    [18]Mingyi Zhang,Yuanming Lai,Shuangyang Li,et al.Laboratory investigation on cooling effect of sloped crushed-rock revetment in permafrost regions[J].Cold Regions Science and Technology,2006,46(1):27-35
    [19]李忠,汪琦,司剑峰.青藏铁路清水河地区路基下伏多年冻土地温变化特征研究[J].工程地质学报,2006,14(1):90-95
    [20]张淑娟,赖远明,张明义,等.动荷载作用下冻土温度变化及强度损失探讨[J].冰川冻土,2006,28(1):131-135
    [21]黄弟福,赵世运,张鲁新.青藏铁路建设和冻土技术问题[J].冰川冻土,2005,27(1):41-45
    [22]张鲁新.青藏铁路高原冻土区地温变化规律及其对路基稳定性影响[J].中国铁道科学,2000,21(1):37-47
    [23]马巍,余邵水,吴青柏,等.青藏高原多年冻土区冷却路基技术现场实效监测研究[J].岩石力学与工程学报,2006,25(3):563-571
    [24]喻文兵,赖远明,牛富俊,等.多年冻土区铁路通风路基室内模型试验的温度场特征[J].冰川冻土,2002,24(5):601-607
    [25]程国栋.用冷却路基的方法修建青藏铁路[J].中国铁道科学,2003,24(3):1-4
    [26]Kondratjav V GStrengthening railroad roadbed bases constructed on icy permafrost soils[A].In:Proceedings of the 8th International Conference on Cold Regions Engineering[C].Fairbanks:[s.n.],1996:688.-699
    [27]陈光禹,王厚军.现代测试导论[M].成都:电子科技大学出版社,2001
    [28]Hartogah.Distributed temperature sensor in solid-core fiber[J].Electron Lett,1985,21(23):1061-1062
    [29]时斌.光纤传感器在高压设备在线测温系统中的应用[J].高电压技术,2007,33(8):169-173
    [30]王魁汉,李友,王柏忠.温度测量技术的最新动态及特殊与实用测温技术[J].自动化仪表,2001,22(8):1-7
    [31]沙占友.智能化集成温度传感器原理与应用[M].北京:机械工业出版社,2002
    [32]铁道科学研究院电子计算技术研究所.青藏线冻土地温自动检测系统研制报告[R].北京.2006
    [33]PHILIPS Semiconductors.PCF8563 Product specification[Z].1999
    [34]Atmel Corporation.ATmemal6 Product specification[Z].2003
    [35]Analog Devices.AD7783 Data Sheet[Z].2003
    [36]Atmel Corporation.AT45DB161B Data Sheet[Z].2002
    [37]梁明,竺菊梅,陈敬谦,等.嵌入式可充电电池性能检测系统的研制[J].航空计算技术,2007,37(2):60-63
    [38]岳静,黄文轩.太阳能电源的应用和展望[J].通讯世界,2002,8(2):23
    [39]张文纲,李述训,吴通华,等.青藏高原地气温差变化分析[J].地理学报,2006,61(9):899-910
    [40]李冬,王宏.Borland C++Builder 5高级开发技术[M].北京:中国水利水电出版社,2000
    [41]张捍卫,韦鹏宽.C++ Builder中串口通信的实现[J].电脑知识与技术,2007,3(14):432-133
    [42]Bettstetter C.GSM Phase 2+ general packet radio service GPRS:architecture,protocols,and air interface[J].IEEE Communications Surveys,1999,2(3):2-14
    [43]Brahim Ghribi,Luigi Logrippo.Understanding GPRS:the GSM packet radio service[J].Computer Networks,2000,34(5):763-779
    [44]于强,冯静亚.GSM与GPRS在远程数据采集中的比较[J].测控技术,2007,26(7):17-19
    [45]朱惠忠,张亚平,蒋笑冰,等.GSM-R通信技术及应用[M].北京:中国铁道出版社,2005
    [46]赵晖.从GSM-R的应用看铁路通信系统的发展[J].电脑知识与技术,2007,3(15),663-664
    [47]陈战林,张万里,耿宏运.C++Builder组件大全[M].北京:北京工业出版社,2002
    [48]Mohammad S.Obaidat.Artificial neural networks to system,man and cybernetics:characteristics,structures and applications[J].IEEE Transactions on System,Man and Cybernetics.1998,28(4):489-495
    [49]路志英,赵智超,郝为,等.基于人工神经网络的多模型综合预报方法[J].计算机应用,2004,24(4):50-51
    [50]蒋宗礼.人工神经网络导论[M].北京:高等教育出版社,2001
    [51]王涛.基于人工神经网络的自动车型分类研究[D].北京:北京交通大学,2007
    [52]陈明.神经网络模型[M].大连:大连理工大学出版社,1995
    [53]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2005
    [54]飞思科技产品研发中心.神经网络理论与MATLAB 7实现[M].北京:电子工业出版社,2005
    [55]孙丽萍.基于多变量模型和组合模型的变压器油中气体分析预测[D].北京:北京交通大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700