海洋细菌Cellulophaga sp. QY201的内切葡聚糖酶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是D-葡萄糖以β-1,4-糖苷键组成的线性大分子,它是植物细胞壁的主要组成成分并且是自然界中含量最高的多糖类物质。纤维素应用广泛,特别是作为可再生的碳源和能源,已成为基础和应用研究的热点。纤维素酶是一类能够将纤维素降解为葡萄糖的多组分酶系的总称,属于糖苷水解酶,传统上被分为3类组分:内切葡聚糖酶(endo-1,4-β-D-glucanase, EG, EC 3.2.1.4)、外切葡聚糖酶(exo-l,4 -β- D- glucanase, EC 3.2.1.91)、β-葡萄糖苷酶(β-l,4-D -glucosidase,EC 3.2.1.21)。这三种酶协同作用,分解纤维素产生寡糖和纤维二糖,最终水解产物为葡萄糖。纤维素酶的研究不仅在糖生物学领域具有重要理论意义,而且纤维素酶降解纤维素较传统的理化方法经济、有效,在纺织、日用化工、食品发酵、畜牧饲料等领域都有广泛的应用。
     本文利用硫酸铵沉淀、离子交换层析、凝胶过滤层析技术,从海洋细菌Cellulophaga sp. QY201发酵液上清中分离纯化到一种内切葡聚糖酶,命名为CelA。其比活力为59.8 U/mg,纯化倍数为33.2倍,回收率为3.2%,SDS-PAGE显示为单一条带,分子量为35.0 kDa。酶学性质研究表明,其最适反应温度和pH分别为50℃和pH6.0;该酶在0-40℃之间和pH4.0-6.6范围内稳定;在0℃,CelA仍保持最大酶活的50%-55%;将其在40℃保存3小时后,活力几乎没有丧失,24小时后仍保持酶活的88%; Na+、K+、Ni2+能促进酶活性, Cu2+、Mg2+、Fe2+、Ba2+、Zn2+、Ca2+、Fe3+、SDS能抑制酶的活性,但很多离子对其作用并不明显;将CelA在蛋白酶K终浓度为0.1mg/mL的体系中于37℃温浴30min,仍保存酶活的95%。底物特异性分析结果表明,该酶主要降解CMCNa,对whatman滤纸、木聚糖、微晶纤维素有微弱的降解作用,对CMC、水杨素、淀粉无降解作用;TLC分析其最小降解底物为纤维四糖,降解纤维寡糖的产物主要为纤维二糖和纤维三糖,还伴有少量的葡萄糖产生。
     为了克隆celA基因,我们对纯化的野生酶进行了氨基酸测序,根据其N-端和中间3段肽段的氨基酸序列设计简并引物,利用简并PCR和反向PCR从海洋细菌Cellulophaga sp.QY201的基因组DNA中克隆到CelA的编码基因celA。分析表明其开放阅读框为1080bp,编码359个氨基酸,理论分子量为40.799 kDa, N-端存在一个51个氨基酸组成的信号肽序列;推测其成熟蛋白由308个氨基酸组成,理论分子量和等电点分别为35.08kDa和5.0,其理论分子量与野生酶的SDS-PAGE结果完全一致;氨基酸序列分析发现其属于糖苷水解酶家族5。将celA基因连入pET24a (+)表达载体,并在E.coli BL21 (DE3)表达菌株中进行了表达。将菌体离心后溶于20mmolpH=4.6的Na2HPO4-柠檬酸缓冲液,超声破碎后,Ni离子亲和层析分离纯化重组酶。SDS-PAGE分析结果表明,纯化后的酶为单一条带,达到电泳纯,其分子量约为36kDa,与理论分子量一致。重组酶的酶学性质与野生酶基本一致。
     综上所述,本论文从海洋细菌Cellulophaga sp. QY201的发酵液上清中分离到一种中性内切葡聚糖酶CelA,该酶在0℃仍具有活性,且温度稳定性好;利用多种PCR技术克隆了其编码基因,并在大肠杆菌中实现了高效表达。该酶的发现不仅丰富了纤维素酶的多样性,而且有望用于纺织行业和日用化工行业,具有重要的理论意义和广泛应用前景。
Cellulose is composed of D-glucose residues linked together to form linear chains viaβ-1,4-glycosidic linkages. It is the major polymeric component of plant cell wall and also the most abundant polysaccharide in nature. The value of cellulose as a renewable source of carbon and energy has made cellulose hydrolysis the subject of scientific research and industrial interest. Cellulase is a generic term of enzymes that can hydrolyze cellulose into glucose.Traditionally it has been classified into three categories, namely, endoglucanase, exoglucanase andβ-glucosidase. These enzymes can cooperate to degrade cellulose to cellooligosaccharide and cellobiose, and eventually to glucose. Degradation of cellulose by cellulase is more economical and effective than the traditionally physical and chemical methods, so it has a wide-range application in areas such as textile industry, commodity industry, food fermentation, laundry detergent and livestock feeding.
     An endoglucanase was purified 33.2-fold with a recovery yield of 3.2% from culture supernatants of Cellulophaga sp. QY201 to homogeneity using a combination of ammonium sulfate precipitation, DEAE-Sepharose FF anion-exchange chromatography and Superdex 75 gel filtration chromatography. The purified enzyme, which was named CelA, gave a specific activity of 59.8U/mg and a single band on SDS-PAGE with a molecular mass of 35.0 kDa.
     CelA was most active at 50℃and pH6.0, and stable below 40℃and over a range of pH4.0-6.6. The enzyme retained 50-55% of its maximum activity at 0℃. CelA could withstand 3 h at 40℃without irreversible loss of enzymatic activity and retain 88% of its activity at 40℃for 24h. The activity of the enzyme was enhanced in the presence of Na+、K+、Ni2+. Other compounds (Cu2+、Mg2+、Fe2+、Ba2+、Zn2+、Ca2+、 Fe3+、SDS) inhibited the activity of the enzyme,but the inhibition is not significant. Analysis also showed that CelA could retain 95% of its activity after incubated with Proteinase K (0.1mg/mL) at 37℃for 30 min. Analysis of the substrate specificity showed that CelA exhibited high activity on CMCNa, but limited activity on whatman filter paper, xylan, microcrystalline cellulose and no activity on CMC, salicin and starch. The digestion products of various cellooligosaccharides by CelA were submitted to thin-layer chromatography (TLC), which indicated that CelA produced mainly cellobiose and cellotriose along with glucose as a minor product, and the minimal hydrolysis substrate of CelA was cellotetraose.
     To clone the celA gene, the purified CelA protein was sequenced, and ten N- terminal amino acids and 3 internal peptides were obtained. The gene encoding CelA was cloned using a strategy combining degenerate PCR and inverse PCR. Analysis showed that gene celA contained an open reading frame of 1080bp. The predicted product was a protein of 359 amino acids with a theoretical molecular mass of 40.799 kDa. And there was a signal peptide of 51 amino acids at the N-terminal of the precursor of CelA. The deduced molecular weight and isoelectric point of mature protein were 35.08 kDa and 5.0, respectively, which was consistent with SDS-PAGE result of the native enzyme. Amino acid sequence-based classification revealed that it belonged to glycosyl hydrolase family 5. In order to obtain sufficient amount of the enzyme, the celA gene was subcloned into pET24a (+)/E.coli BL21 (DE3) expression system. The recombinant enzyme was purified by Ni-affinity chromatography after ultrasonic cell crasher in 20 mmol Na2HPO4-citric acid buffer (pH4.6). SDS-PAGE analysis yielded a single band with an apparent molecular mass of 36 kDa, which was close to the predicted molecular mass. And the recombinant enzyme shared uniform enzymatic characteristics with the native enzyme.
     In conclusion, an neutral endoglucanase possessing activity at 0℃and high thermal stability, was purified from the culture supernatants of marine bacterium Cellulophaga sp. QY201. Its gene was cloned and expressed in pET24a (+)/E.coli BL21 (DE3) system. The discovery of CelA not only enriches the diversity of endoglucanases but also has great practical significance in industrial application areas such as textile industry and commodity industry.
引文
[1]陈国符,邬义明.植物纤维化学.北京:北京轻工业出版社, 1980
    [2] Christian P.The Trichoderma cellulase regulator puzzle:From the interior life of a secretory fungus,. Enzyme Microb Technol,1993, 15(2):90-99
    [3] Muniswaran P.K.A, Charyulu N. C. L. N. Solid subsrtate fermentation of coconut coirpith of cellulase Production. Enzyme Microb Technol, 1994, 169(5): 436-440
    [4]闰绍鹏,王秋玉,杨传平.植物纤维素生物合成研究进展.安徽农业科学, 2008, 36 : 9049-9051
    [5] D. Fengel, G.W.. Wood - chemistry, ultrastructure, reactions. Berlin and New York: Walter de Gruyter, 1984
    [6] Cowling E B. Structural features of cellulose that influence its susceptibility to enzymatic hydrolysis. In: Reese E T. Symposium on Advances in Enzymic Hydrolysis of Cellulose and Related Materials Pergamon Press .New York:1963,1-32
    [7] Jurasek L., Colvin J.R., Whitaker D.R.. Microbiological aspects of the formation and degradation of cellulosic fibers. Adv Appl Microbiol, 1967, 9 :131-170.
    [8]王镜岩,朱圣庚,徐长法.生物化学.北京:高等教育出版社, 2002.45-46.
    [9] Mendes P.N., Rahal S.C., Pereira-Junior O.C., et al. In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair. Acta Vet Scand, 2009,51(1):12
    [10] Czaja W.K., Young D.J., Kawecki M.,et al.The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 2007, 8(1):1-12
    [11] Mello L.R., Feltrin L.T., Fontes Neto P.T.,et al. Duraplasty with biosynthetic cellulose: an experimental study.J Neurosurg, 1997, 86(1):143-150
    [12] Nishida Y., Suzuki K., Kumagai Y.,et al.Isolation and primary structure of a cellulase from the Japanese sea urchin Strongylocentrotus nudus. Biochimie, 2007, 89(8):1002-1011
    [13]顾方媛,陈朝银.纤维素酶的研究进展与发展趋势,微生物学杂志, 2008,28(1) :83-87
    [14]曾青蓝.纤维素酶研究进展.湖北林业科技, 2008,149:42-44,52
    [15] Zeng R., Xiong P., Wen J.. Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles, 2006, 10(1): 79-82
    [16] Rastogi G., Muppidi G.L., Gurram R.N.,et al. Isolation and characterization of cellulose- degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J Ind Microbiol Biotechnol , 2009, 36(4):585-98
    [17] Ariffin H., Hassan M.A., Shah U.K., et al. Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by bacillus pumilus EB3. J Biosci Bioeng , 2008,106(3): 231-236.
    [18] Yao Q., Sun T.T., Liu W.F., et al. Gene cloning and heterologous expression of a novel endoglucanase, swollenin, from Trichoderma pseudokoningii S38. Biosci Biotechnol Biochem, 2008,72(11):2799-2805
    [19] Saloheimo A., Henrissat B., Hoffren A.M., et al. A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Mol Microbiol, 1994,13(2):219-228
    [20] Thongekkaew J., Ikeda H., Masaki K., et al. An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris.Protein Expr Purif , 2008, 60(2) :140-146
    [21] Yoon J.J., Cha C.J., Kim Y.S., et al. Degradation of cellulose by the major endoglucanase produced from the brown-rot fungus Fomitopsis pinicola. Biotechnol Lett, 2008,30(8): 1373-1378
    [22] Tomme P., Warren R.A., Gilkes N.R.. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol, 1995, 37:1-81
    [23] D.A. Brummell, C.C.Lashbrook, A.B. Bennett. Plant endo-β-1,4-D-glucanases.ACS Symp. Ser , 1994,566 :100-129
    [24] Sugimura M., Watanabe H., Lo N., et al. Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur J Biochem, 2003, 270(16):3455-3460
    [25] Smant G., Stokkermans J.P., Yan Y., et al. Endogenous cellulases in animals: isolation of beta-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes.Proc Natl Acad Sci U S A , 1998, 95(9): 4906-4911
    [26] J.Wang, M.Ding, Y. Li, et al. Isolation of a multifunctional endogeneous cellulase gene from mollusk, Ampullaria crossean. Acta Biochim. Biophys. Sin.,2003, 35:941-946
    [27]陈春岚,李楠.细菌纤维素酶研究进展.广西轻工业, 2007,1: 18-20
    [28]陈兵,林开江.一株芽抱杆菌产生的碱性纤维素酶的研究.浙江农业学报, 1994, 69(1):37-40
    [29]沈雪亮,夏黎明,刘景晶.纤维素酶E5基因在E.coli中的克隆与表达.浙江大学学报, 2001, 35(6) :640-644
    [30] L.R.Lynd P.J.W., I.S.Pretorius, et al. Microbial Cellulose Utilization Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews, 2002: 509一511
    [31] K.P.Fuchs, V.V.Zverior, G.A.Velikodvorskyaa,et al. Lic 16A of Chlosritidium thermocellm,a Non-cellulosomal,Highly Complex endo-β-1,3-glucanase Bound to the outer cell surface. Microbiology,2003,149:1021-1031
    [32] T.Arai, R.Arki, A.Tanaka. Characterization of a Cellulase Containing a Family 30 Carbonhydrate -Binding Module(CBM)Derived from Colsrtidium thermocellum CelJ:Importance of the CBM to Cellulose Hydrolysis.J Bacteriol,2003, 185: 504-512
    [33] T.T.Teeri, A.Koivula, M.Linder,G.et al. Trichoderma reesei Cellobiohydrolases: Why so efficient on Crystalline Cellulose? Biochem.Soc.Tran., 1998, 26:173-178
    [34] E.T.Reese , R.G.H.Sui , H.S.Levinson. The Biological Degradation of Soluble Cellulose Derivatives and its Relationship to the Mechanism of Cellulose Hyroysis.J Bacteriol ,1950,59:485-497
    [35] Din N, Gilkes NR, Kilburn, et al. Cl-Cx revisited: intramolecular synergism in a cellulase. Proc.Natl.Acad.Sci.USA ,1994,91:11383-11387
    [36] Levinson H.S., Reese E.T.. Enzymatic hydrolysis of soluble cellulose derivatives as measured by changes in viscosity. J Gen Physiol, 1950,33 (5):601-628
    [37] Cooper, R.M., Wood,et al. Induction of synthesis of extracellular cell wall degrading enzyme in vascular wilt fungi. Nature,1973, 246 :309-311
    [38] McCarter JD, Whithers SG. Mechanisms of enzymatic glycoside hydrolysis.Curr.OP.Struct.Biol, 1994,4: 885-892
    [39] Giligan W, Reese E.T.. Evidence for multiple components in microbial cellulases. Can. J.Microbiol., 1954, 1954(1):90-107
    [40] Teeri T.T..Crystalline cellulose degradation:new insight into the function of cellubiohydrolases. Trends Biotechnol ,1997,15: 160-167
    [41] Coughlan M.P.. The properties of fungal and bacterial cellulases with comment on their production and application. Newcastle-upon-Tyne:1985, 3: 39-109
    [42]张志炎,杜军华,李军训,等. CMC糖化力法测定纤维素酶活性条件的研究.饲料工业,2006, 27 (24) :49-52
    [43] Bhat M.K., Bhat S.. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv,1997, 15(3): 583-620
    [44] Xiaohong Zhou, Hongzhang Chen, Zuohu Li. CMCase avtivity assay as a method for cellulase absorption analysis.Enzyme and Microbial Technology,2004, 27: 455-459
    [45] Koivula A., Lappalainen A., Virtanen S.,et al. Immunoaffinity chromatographic purification of cellobiohydrolase II mutants from recombinant trichoderma reesei strains devoid of major endoglucanase genes. Protein Expr Purif,1996, 8(4) :399-400
    [46]俞莲君,张曼夫,陈红英.等电聚焦电泳制备绿色木霉纤维素酶.河南科学,1994, 12(3):228-231
    [47] Shimokawa T., Shibuya H., Nojiri M., et al. Purification, molecular cloning, and enzymatic properties of a family 12 endoglucanase (EG-II) from fomitopsis palustris: role of EG-II in larch holocellulose hydrolysis. Appl Environ Microbiol,2008, 74: 5857-5861
    [48] Whittle D.J., Kilburn D.G., Warren R.A., et al. Molecular cloning of a Cellulomonas fimi cellulose gene in Escherichia coli. Gene,1982, 17(2):139-145
    [49] Knowles J., Lehtovaara P., Penttila M.,et al. The cellulase genes of Trichoderma. Antonie Van Leeuwenhoek ,1987,53(5):335-341
    [50] Koga J., Baba Y., Shimonaka A.,et al. Purification and characterization of a new family 45 endoglucanase, STCE1, from Staphylotrichum coccosporum and its overproduction in Humicola insolens. Appl Environ Microbiol,2008, 74 (13): 4210-4217
    [51]刘燕,张宏福,孙哲.纤维素酶的分子生物学与基因工程研究进展.饲料工业,2007, 28(18):11-14
    [52] Davne C, Stahlberg J, Teeri T. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 long turnnel of cellubiohydrolaseⅠfrom Trichoderma reesei. J. Mol. Biol,1998, 275:309-325
    [53] Damude H G, Withers SG, Kilburn D G. Site - directed mutation of the putative catalytic residues of endoglucanase of CenA from Cellulomonas funi. Biochemistry,1995, 34:2220-2224
    [54] Wolfgang D.E., Wilson D.B.. Mechanistic studies of active site mutants of Thermomonospora fusca endocellulase E2. Biochemistry,1999, 38(30):9746-9751
    [55]胡利勇,钟卫鸬,纤维素酶基因克隆及其功能性氨基酸的研究进展.生物技术,2003, 13 (2): 43-45
    [56]纪明侯.海藻化学.北京:科学出版社,2004.341-342
    [57] Kim J.O., Park S.R., Lim W.J.,et al. Cloning and characterization of thermostable endoglucanase (Cel8Y) from the hyperthermophilic Aquifex aeolicus VF5. Biochem Biophys Res Commun,2000, 279 (2): 420-426
    [58] Xu B., Gottschalk W., Chow A., et al. The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB.J Neurosci ,2000,20 (18) :6888-6897
    [59]游银伟,汪天虹.适冷海洋细菌交替假单胞菌(Pseudoalteromonas sp.)MB.1内切葡聚糖酶基因的克隆和表达.微生物学报,2005, 45:142-144
    [60] Griffin H.L., Freer S.N., Greene R.V.. Extracellular endoglucanase activity by a novel bacterium isolated from marine shipworm. Biochem Biophys Res Commun ,1987,144 (1):143-151
    [61] Ekborg N.A., Morrill W., Burgoyne A.M.. CelAB, a multifunctional cellulase encoded by Teredinibacter turnerae T7902T, a culturable symbiont isolated from the wood-boring marine bivalve Lyrodus pedicellatus.Appl Environ Microbiol,2007, 73 (23): 7785-7788
    [62] Fleurence J, Massiani L, Guyader O. Use of enzymatic cell wall degradation for improvement of protein extraction from Chondrus crispus,Gracilaria. Journal of Applied Phsychology,195,7:395-397
    [63] Le Gall Y, BrownS, Marie D.Production of protoplasts from the red alga Chondrus crispus Application to the quantification of nuclear DNA and to the evaluation of GC%. Oceanis.Serie de documents Oceanographiques,1991,18(1):11-17
    [64] Gross W.Preparation of protoplasts from the carrageenophyte Gigartina corymbifera Kuetz.)J.Ag.(Rhodophyta).Microbiol Methods,1990,12: 217-233.
    [65]李振华,康相涛,刘季强,等.饲用纤维素酶的研究进展和应用现状.河南畜牧兽医, 2008,29(5):10-11
    [66]吴大付,任秀娟,李东方,等.纤维素酶的应用现状与前景.广西轻工业,2007,12:1-2
    [67] Mandels M. Applications of cellulases.Biochem Soc Trans, 1985,13(2):414-416
    [68]敖维平,杨正德.饲料纤维素酶的研究进展与应用现状.贵州农业科学, 2004,32(4):77-78
    [69]杨玉华,刘德海.复合酶在北京肉鸭日粮中的应用效果.饲料工业,2000,21(1):20-21
    [70] Autunovic Z. Influence of addition of polyenzyme preparations feed mixtures on fattening and slaughtering properties of lambs. Czech J Anim Sci,43(7):319-326
    [71] Grujic R,S.N., Sinovec Z.Use of enzymes in feed mixes for piglet,Koruscenja enzima usmesama Zaishranv prasad.Veterinarski Glasni, 2000,54:145-152
    [72] Eom T,OW S.Enzymatic deinking method of old news paper.Japan Tappi, 1991,45(12):81-86
    [73] Franks N.E., H.C.,Munk N. Enzymatic facilitated deinking of mixed office waste: the use of alkaline cellulase.Novo Nordisk A-6360, the paper presented at the Paper Recycling 94 conference London,UK, 1994.
    [74]王高升,谢来苏,隆言泉.非接触印刷废纸酶促脱墨的研究.中国造纸,1999,4:10-14
    [75]郝军芳,王高升,谢来苏,等.旧报纸的酸性生物酶法脱墨.天津轻工业学院学报,1997,2: 10-14.
    [76] Cavaco-Paulo A. Mechanism of cellulase action in textile processes.Carbohydrate Polymers, 1998,37:273-277
    [77]杨新莉.纤维素酶在纺织中的应用.甘肃轻纺科技,1994,1: 18-19
    [78]乞永立,耿月霞,等.纤维素酶的生产及应用.河北化工, 2001, 1: 25-26
    [79] F.C. Domingues, J.A.Q., J.M.S. Cabral, et al. Influence Of Culture Conditions On Mycelial Structure And Cellulase Production By Trichoderma reesei Rut C-30. Enzyme and Microbial Technology,2000, 26 :394-401
    [80]傅博强,谢明勇,周鹏.纤维素酶法提取茶多糖.无锡轻工大学学报,2002, 21 : 362-364
    [81]梁靖,须海荣,蒋文莉,等.纤维素酶在速溶茶中的应用研究.茶叶,2002,28(1): 25-26
    [82]包先进,唐晓峰,等.纤维素酶提高砖茶品质的研究.西南农业大学学报,1995,17(6): 541-544
    [83]闰训友,史振霞,等.纤维素酶在食品工业中的应用进展.食品工业科技,2004,10: 140一142
    [84] Beguin P., Aubert,J.P.. The biological degradation of cellulose. FEMS Microbiol.Rev,1993,13: 25-58
    [85]陈力宏.纤维素酶在食品发酵中的应用.中国酿造,1990, 5 :2-5
    [86]周春晖,孙家龙.纤维素酶及其研究.中国商办工业,2002, 2 :43-44
    [87]王菁莎,王颉,刘景彬.纤维素酶的应用现状.中国食品添加剂,2005, 5 :107-110
    [88]拜晶晶.海洋细菌Cellulophaga sp.QY201ι-卡拉胶酶的研究: [硕士学位论文].青岛:中国海洋大学, 2006
    [89]倪敏.海洋细菌Cellulophaga sp.QY201的λ-卡拉胶酶研究:[硕士学位论文].青岛:中国海洋大学, 2008
    [90]马歇克D.R.,布鲁斯R.R.,布伦南W.A.,等.蛋白质纯化与鉴定试验指南第1版.北京:科学出版社, 1999. 141-189
    [91] M.K.BHAT, S.BHAT. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances,1997, 15 : 583-620
    [92] Zhang Y.H., Lynd L.R.. Cellodextrin preparation by mixed-acid hydrolysis and chromatographic separation. Anal Biochem,2003,322(2): 225-232
    [93] Xu B., Hellman U., Ersson B., et al. Purification, characterization and amino-acid sequence analysis of a thermostable, low molecular mass endo-beta-1,4-glucanase from blue mussel, Mytilus edulis. Eur J Biochem, 2000,267(16): 4970-4977
    [94]孙谧,洪义国,李勃生.海洋微生物低温酶特性及其在工业中的潜在用途.海洋水产研究,2002, 23 (3):44-49
    [95] Oikawa T., Tsukagawa Y., Soda K.. Endo-beta-glucanase secreted by a psychrotrophic yeast: purification and characterization. Biosci Biotechnol Biochem,1998, 62 :1751-1756
    [96] Iyo A.H., Forsberg C.W.. A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85. Appl Environ Microbiol ,1999,65(3): 995-998
    [97] Violot S., Haser R., Sonan G., et al. Expression, purification, crystallization and preliminary X-ray crystallographic studies of a psychrophilic cellulase from Pseudoalteromonas haloplanktis. Acta Crystallogr D Biol Crystallogr,2003,59(7): 1256-1258
    [98] Yoda K., Toyoda A., Mukoyama Y.,et al. Cloning, sequencing, and expression of a Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) with novel carbohydrate-binding modules, and properties of Cel5A. Appl Environ Microbiol ,2005,71(10):5787-5793
    [99] Sambrook J., Fritsch E.F., Maniatis T.. Molecular cloning: a laboratory manual, 2nd ed. New York: Cold spring Harbor, 1989.55-56
    [100] Studier F.W., Moffatt B.A.. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol,1986,189 (1): 113-130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700