内切型-β-葡聚糖酶基因的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内切型-β-葡聚糖酶(CMC酶)是纤维素酶的重要组分之一,在纤维素水解糖化、食品、饲料、织物水洗等领域中应用广泛。本文采用基因工程技术,在内切型-p-葡聚糖酶基因重组菌株的构建、筛选及产酶等方面进行了研究。
     首先,以实验室前期克隆得到的厌氧真菌内切型-p-葡聚糖酶基因afl为研究对象,将目的基因与大肠杆菌表达载体pET-28a(+)连接,转入大肠杆菌表达菌株BL21(DE3),获得重组大肠杆菌BL21 (DE3)/pET-28a(+)-αf1。重组菌的适宜培养条件为:菌体浓度OD600为0.8时加入IPTG至终浓度为0.1 mM,31℃诱导培养。采用SDS-PAGE蛋白电泳对其表达产物进行分析,在40 kDa附近得到与目的基因afl表达蛋白理论值相当的明显条带。酶学性质研究表明,酶蛋白的最适作用条件为pH 6.0,45℃,属于中性纤维素酶。试验结果证明af1基因具有适于表达的完整序列。
     进一步将af1基因与毕赤酵母表达载体pPIC9K连接,经限制性内切酶BglⅡ线性化后,采用基因导入仪将重组DNA转入毕赤酵母GS115。在选择性培养平板上进行筛选,挑出六个高抗阳性转化子。提取基因组进行PCR鉴定,均获得与目的基因相关的条带,证明af1基因已整合入GS115基因组,有利于稳定遗传。afl基因在甲醇诱导下可在毕赤酵母中表达,取上清液进行SDS-PAGE蛋白电泳分析,在52 kDa附近出现明显条带。分别诱导培养筛选到的六个高抗阳性转化子,发现其产酶性能基本一致。采用重组毕赤酵母在摇瓶条件下分批发酵,结果显示其产酶性能稳定。在pH 6.0,50℃条件下检测CMC酶活力,发酵液中酶活在诱导培养96 h左右可达到600 U/mL以上。该试验结果为进一步利用重组毕赤酵母生产中性纤维素酶奠定了基础。
     通过试管初筛、摇瓶复筛,从各约300个里氏木霉转化子T/af1(含有厌氧真菌内切型-p-葡聚糖酶基因afl)和T/egll(含有里氏木霉内切型-p-葡聚糖酶基因egⅡ)中获得了T/αf1-3和T/egⅡ-5两个优良转化子。对重组里氏木霉T/af1-3进行摇瓶产酶研究,在pH 6.0,50℃条件下测得发酵液中的中性CMC酶活力可达1280 U/mL,提高到同期原始菌的3.9倍;而对重组里氏木霉T/egⅡ-5进行摇瓶产酶研究,在pH 4.8,50℃条件下测得发酵液中的酸性CMC酶活力可达到3500 U/mL,约是同期原始菌的4.9倍。采用里氏木霉作为基因工程宿主菌具有外源基因表达水平高,产物易于分离提取等优点,本文的研究成果在纤维素酶的定向进化及纤维素酶高产菌株的构建方面具有重要的指导意义。
Endo-β-glucanase (CMCase) is one of the most important parts of cellulase, and has great value in cellulose degrading, food, feedstuff production and fabric washing fields. This paper focused on construction, screening and CMCase production of high endo-p-glucanase producing strains based on gene engineering technology.
     An endo-β-glucanase gene afl from anaerobic fungus was inserted into Escherichia coli expression vector pET-28a(+). Then the recombinant plasmid pET-28a(+)-af1 was transformed into Escherichia coli BL21(DE3) to obtain recombinant strain BL21(DE3)/pET-28a(+)-af1. The appropriate conditions to cultivate recombinant Escherichia coli were:added IPTG to 0.1 mM when the cell concentration reached OD600=0.8, then cultivated at 31℃. SDS-PAGE analysis of its expression product showed a clear protein band near 40 kDa, which accorded with that of AF1 protein theoretic size. The enzyme exhibited maximum CMCase activity at pH 6.0,45℃, which belonged to the neutral cellulase. It had been proved that gene afl had a complete sequence ready to express product.
     Furthermore, afl was inserted into Pichia pastoris expression vector pPIC9K, digested by enzyme Bglll, and then transformed into Pichia pastoris GS115 using Gene Delivery Instrument. Transformants were screened by selective plates, and 6 positive transformants with high G418 resistance were obtained. PCR analysis of their genome showed clear bands relative to the size of gene afl, which demonstrated that afl was successfully integrated into GS115 genome and contributed to stable inheritance.The expression product was analyzed by SDS-PAGE, and a clear protein band was found near 52 kDa. The 6 positive transformants selected were cultivated respectively and showed similar and stable enzyme producing performance.Moreover, in shaking flask experiments with methonal induction, the CMCase activity of the supernatant could reach 600 U/mL at 96 h. This result laid good foundation for neutral cellulase production using recombinant Pichia pastoris strains.
     Through secreening processes, T/afl-3 and T/egⅡ-5 with good endo-β-glucanase producing performance were respectively obtained from recombinant Trichoderma reesei T/af1 and T/egⅡ, which included about 300 strains respectively. Shaking flask experiments demonstrated that, T/af1-3 contained endo-β-glucanase gene af1 from anaerobic fungus, and the neutral CMCase activity in the supernatant could reach 1280 U/mL measured at pH 6.0,50℃, which was 3.9-fold compared with that of original strain; T/egⅡ-5 contained endo-β-glucanase gene egⅡfrom Trichoderma reesei, and the acid CMCase activity in the supernatant could reach 3500 U/mL measured at pH 4.8,50℃, which was 4.9 times that of original strain. As a genetic engineering host, Trichoderma reesei system has plentiful advantages, such as high expression level of foreign gene, simple procedures for product separation, etc. This paper is useful for cellulase directed evolution and construction of industrial strains with high cellulase activity.
引文
[1]顾方媛,陈朝银,石家骥等。纤维素酶的研究进展与发展趋势。微生物学杂志,2008,28(1):83-87
    [2]杨智源,陈荣忠,杨丰等。短小芽孢杆菌葡聚糖内切酶基因的克隆及序列测定。微生物学报,2001,41(1):76-81
    [3]刘永生,冯家勋,段承杰等。能降解天然纤维素的地衣芽孢杆菌GXN151的分离鉴定及其一个纤维素酶基因(cel5A)的克隆和测序分析。广西农业生物科学,2003,22(2):132-138
    [4]洪芳,田宇,徐恒等。极端嗜热厌氧纤维素分解菌基因文库的构建及其内切葡聚糖酶基因片段的克隆。四川大学学报,2003,40(6):1179-1182
    [5]熊鹏钧,文建军。交替假单胞菌(Pseudoalteromonas sp.) DY3菌株产内切葡聚糖酶的性质研究及基因克隆。生物工程学报,2004,20(2):233-237
    [6]黄玉杰,杨合同,丁爱云等。巨大芽孢杆菌内切葡聚糖酶编码基因的克隆及序列分析。中国生物防治,2004,20(4):256-259
    [7]张志荣,廖金铃,崔汝强。爪哇根结线虫β-1,4-内切葡聚糖酶基因cDNA全长克隆和序列分析。植物病理学报,2006,36(6):517-522
    [8]刘淑艳,段新源,卢雪梅等。中温纤维分解真菌尖镰孢Fusarium oxysporum中一种新的耐热内切葡聚糖酶。科学通报,225,50(23):2626-2631
    [9]Junli Dong, Yuzhi Hong, Zongze Shao, et al. Molecular Cloning, Purification, and Characterization of a Novel, Acidic, pH-Stable Endoglucanase from Martelella mediterranea. The Journal of Microbiology,2010,48 (3):393-398
    [10]游银伟,汪天虹。适冷海洋细菌交替假单胞菌{Pseudoalteromonas sp.) MB-1内切葡聚糖酶基因的克隆和表达。微生物学报,2005,45(1):142-144
    [11]黄艳,凌敏,覃拥灵等。康氏木霉内切葡聚糖酶(EG Ⅰ)基因的克隆及表达。生物技术,2008,18(2):10-13
    [12]谭婉新,刘利,胡亚林等。一个新的内切葡聚糖酶基因umcel5K的克隆、表达及其表达产物的酶学特性。广西农业生物科学,2008,27(1):7-13
    [13]Bin Tang, Haibo Pan, Qingqing Zhang, et al. Cloning and expression of cellulase gene EGl from Rhizopus stolonifer var. reflexus TP-02 in Escherichia coli. Bioresource Technology,2009, 100:6129-6132
    [14]Xiaoluo Huang, Zongze Shao, Yuzhi Hong, et al. Ce18H, a Novel Endoglucanase from the Halophilic Bacterium Halomonas sp. S66-4:Molecular Cloning, Heterogonous Expression, and Biochemical Characterization. The Journal of Microbiology,2010,48 (3):318-324
    [15]李春华,廖贵芹,张桂敏等。β-1,4-内切葡聚糖酶基因的克隆及其在大肠杆菌中的表达。湖北大学学报,2005,27(3):275-279
    [16]李相前,邵蔚蓝。极耐热内切葡聚糖酶Ce112B的基因克隆、表达和酶学性质的研究。食品与发酵工业,2006,32(2):1-3
    [17]蔡勇,阿依木古丽,臧荣鑫等。芽孢杆菌CY123株碱性纤维素酶基因ce1C的克隆及其在大肠杆菌中的表达。中国兽医科学,2006,36(12):961-966
    [18]陈惠,胥兵,廖俊华等。内切葡聚糖酶基因在巨大芽孢杆菌中的表达及其酶学性质研究。遗传,2008,30(5):649-654
    [19]肖志壮,王婷,汪天虹等。瑞氏木霉内切葡聚糖酶Ⅲ基因的克隆及在酿酒酵母中的表达。微生物学报,2001,41(4):391-396
    [20]汤晓颖,秦俊川,唐国敏。瑞氏木霉内切葡聚糖酶基因在工业啤酒酵母中的整合和表达。微生物学报,2004,43(5):586-591
    [21]刘北东,杨谦,周麒等。绿色木霉AS3.3711的葡聚糖内切酶Ⅰ基因的克隆与表达。环境科学,2004,23(5):127-132
    [22]刘北东,杨谦,周麒等。绿色木霉AS3.3711的葡聚糖内切酶Ⅲ基因的克隆与表达。北京林业大学学报,2004,26(6):71-75
    [23]刘北东,杨谦,周麒等。绿色木霉AS3.3711的葡聚糖内切酶Ⅴ基因的克隆与表达。2004,14(8):28-32
    [24]乔宇,毛爱军,何永志等。里氏木霉内切-β-葡聚糖酶Ⅱ基因在毕赤酵母中的表达及酶学性质研究。菌物学报,2004,23(3):388-396
    [25]廖贵芹,汪娜,马立新。β-1,4-内切葡聚糖酶基因在毕赤酵母中的表达研究。湖北大学学报,2007,29(2):186-188
    [26]吴振芳,陈惠,曾民等。内切葡聚糖酶基因在毕赤酵母中高效表达研究。农业生物技术学报,2009,17(3):529-535
    [27]汤新,刘刚,田生礼等。里氏木霉内切葡萄糖苷酶Ⅳ在毕赤酵母中的表达。微生物学通报,2005,32(6):47-51
    [28]谭慧芳,张国青,郑光宇等。特异腐质霉中性内切葡聚糖酶Ⅱ基因的克隆及表达。微 生物学通报,2006,33(6):68-73
    [29]丁新丽,黄晶,汪天虹。瑞氏木霉内切葡聚糖酶基因在酿酒酵母中的表达研究。食品与发酵工业,2004,30(11):18-22
    [30]肖志壮,王婷,汪天虹等。瑞氏木霉内切葡聚糖酶Ⅲ基因的克隆及在酿酒酵母中的表达。微生物学报,2001,41(4):391-396
    [31]黄琰,张曦,马安周。瑞氏木霉内切葡聚糖酶Ⅰ及其CBD的噬菌体表面展示系统的构建。生物加工过程,2006,4(1):21-26
    [32]Huiying Luo, Jun Yang, Peilong Yang, et al. Gene cloning and expression of a new acidic family 7 endo-β-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1. Appl Microbiol Biotechnol,2010,85:1015-1023
    [33]Lie Zhou, Xiaofeng Wu, Lipan Lan. Expression of Trichoderma reesei endo-β-glucanase II in silkworm, Bombyx mori L. by using BmNPV/Bac-to-Bac expression system and its bioactivity assay. Biotechnol Lett,2010,32:67-72
    [34]Bingze Xu, Jan-Christer Janson and Daniel Sellos. Cloning and sequencing of a molluscan endo-β-1,4-glucanase gene from the blue mussel, Mytilus edulis. Eur. J. Biochem.,2001,268: 3718-3727
    [35]Sung Ok Han, Hideaki Yukawa, Masayuki Inui, et al. Molecular Cloning and Transcriptional and Expression Analysis of engO, Encoding a New "Noncellulosomal Family 9 Enzyme, from Clostridium cellulovorans. Journal of Bacteriology,2005,187(14):4884-4889
    [36]Kazutoyo Yoda, Atsushi Toyoda, Yoshihiro Mukoyama, et al. Cloning, Sequencing, and Expression of a Eubacterium cellulosolvens 5 Gene Encoding an Endoglucanase (Cel5A) with Novel Carbohydrate-Binding Modules, and Properties of Ce15A. Applied and Environmental Microbiology,2005,71(10):5787-5793
    [37]Xiao-Zhou Zhang, Noppadon Sathitsuksanoh, Y.-H.P. Zhang, et al. Glycoside hydrolase family 9 processive endoglucanase from Clostridium phytofermentans:Heterologous expression, characterization, and synergy with family 48 cellobiohydrolase. Bioresource Technology,2010, 101:5534-553
    [38]Jaie-Soon Cho, Yun-Jaie Choi and Dae-Kyun Chung. Expression of Clostridium thermocellum Endoglucanase Gene in Lactobacillus gasseri and Lactobacillus johnsonii and Characterization of the Genetically Modified Probiotic Lactobacilli. Current Microbiology,2000, 40:257-263
    [49]Xuguo Zhou, Elena S. Kovaleva, Dancia Wu-Scharf, et al. Production and Characterization of A Recombinant β-1,4-endoglucanase (Glycohydrolase Family 9) from the Termite Reticulitermes flavipes. Archives of Insect Biochemistry and Physiology,2010,74(3):147-162
    [40]Benjamaporn Wonganu, Kusol Pootanakit, Katewadee Boonyapakron, et al. Cloning, expression and characterization of a thermotolerant endoglucanase from Syncephalastrum racemosum (BCC18080) in Pichia pastoris. Protein Expression and Purification,2008,58:78-86
    [41]M.R. Rubini, A.J.P. Dillon, C.M. Kyaw1, et al. Cloning, characterization and heterologous expression of the first Penicillium echinulatum cellulase gene. Journal of Applied Microbiology, 2010:1187-1198
    [42]Lisa du Plessis, Shaunita H. Rose and Willem H. van Zyl. Exploring improved endoglucanase expression in Saccharomyces cerevisiae strains. Appl Microbiol Biotechnol,2010,86:1503-1511
    [43]Niel van Wyk, Riaan den Haan and Willem H. van. ZylHeterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae. Appl Microbiol Biotechnol,2010,87:1813-1820
    [44]Mala C. Ganiger, Dr. Sumangala Bhat, Pranav Chettri, et al. Cloning and Expression of Endoglucanase genes from Trichoderma species in Saccharomyces cerevisiae. Journal of Applied Sciences Research,2008,4(11):1546-1556
    [45]Do'ra Dienes, Johan Borjesson, Henrik Stalbrand, et al. Production of Trichoderma reesei Cel7B and its catalytic core on glucose medium and its application for the treatment of secondary fibers. Process Biochemistry,2006,41:2092-2096
    [46]Johan Karlsson, Markku Saloheimo, Matti Siika-aho, et al. Homologous expression and characterization of Cel61A (EG Ⅳ) of Trichoderma reesei. European Journal of Biochemistry, 2001,268(24):6498-6507.
    [47]Arja Miettinen-Oinonen, Pirkko Suominen. Enhanced Production of Trichoderma reesei Endoglucanases and Use of the New Cellulase Preparations in Producing the Stonewashed Effect on Denim Fabric. Applied and Environmental Microbiology,2002,68(8):3956-3964
    [48]Arja, Miettinen-Oinonen, Marja Paloheimo, et al. Enhanced production of cellobiohydrolase in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. Journal of Biotechnology,2005,116(3):305-317
    [49]Tian-Hong WANG, Ti LIU, Zhi-Hong WU, et al. Novel Cellulase Profile of Trichoderma reesei Strains Constructed by cbh1 Gene Replacement with eg3 Gene Expression Cassette. Acta Biochim Biophys Sin,2004,36 (10):667-672
    [50]Heli Haakana, Arja Miettinen-Oinonen, Vesa Joutsjoki, et al. Cloning of cellulase genes from Melanocarpus albomyces and their efficient expression in Trichoderma reesei. Enzyme and Microbial Technology,2004,34(2):159-167
    [51]Orquidea Ribeiro, Marilyn Wiebe, Marja Ilmen, et al. Expression of Trichoderma reesei cellulases CBHI and EGI in Ashbya gossypii. Applied Microbiology and Biotechnology,2010, 87(4):1437-1446
    [52]Jianping Sun, Christopher M. Phillips, Charles T. Anderson, et al. Expression and characterization of the Neurospora crassa endoglucanase GH5-1. Protein Expression and Purification,2011,75:147-154
    [53]Ye Sun, Jay J. Cheng, Michael E. Himmel, et al. Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627. Bioresource Technology,2007:2866-2872
    [54]Thomas Ziegelhoffer, John A. Raasch and Sandra Austin-Phillips. Expression of Acidothermus cellulolyticus El endo-β-1,4-glucanase catalytic domain in transplastomic tobacco. Plant Biotechnology Journal,2009,7:527-536
    [55]Jonathan D. Willis, Brenda Oppert, Cris Oppert, et al. Identification, cloning, and expression of a GHF9 cellulase from Tribolium castaneum (Coleoptera:Tenebrionidae). Journal of Insect Physiology,2010
    [56]Zita Sasvari, Katalin Posta and L. Hornok. Expression patterns of Cel5A-Cel5B, two encoding genes of Thermobifida fusca. Acta Microbiologica et Immunologica Hungarica,2008,55 (4):437-446
    [57]AsiyaNazir, Rohit Soni, H. S. Saini, et al. Profiling Differential Expression of Cellulases and Metabolite Footprints in Aspergillus terreus. Applied Biochemistry and Biotechnology,162(2):538-547
    [58]张洁,蔡敬民,吴克等。β-葡聚糖酶的研究与应用前景。安徽农业科学,2003,31(5):895-896
    [59]邹东恢,江洁。β-葡聚糖酶的开发与应用研究。农产品加工,2005,8:7-9
    [60]房宽峻,蔡玉青,李伟。生物酶在染整工业中的应用与进展。纺织导报,2001(1):24-29
    [61]郑元平,袁康培等。啤酒用β-葡聚糖酶高产菌株的选育及发酵条件优化。农业生物技术学报,2004,12(3):316-321
    [62]余东游。大麦型饲粮添加β-葡聚糖酶对猪生长性能的影响。黑龙江畜牧兽医,2001,1:19-20
    [63]吕玉丽,邓波等。添加于大麦型蛋鸡饲粮的效果。中国饲料,1999,17(17):16-17
    [64]张满隆,邓理。草鱼饲料中添加酶制剂的效果试验。粮食与饲料工业,2002(5):22-24
    [65]Lee G.Snvder. Textile Chemist and Colorist,1997,29(6):27-31
    [66]Borneman W S, Akin D E and Ljungdahl L G. Fermentation Products and Plant Cell Wall-degrading Enzymes Produced by Monocentric and Polycentric Anaerobic Ruminal Fungi [J]. Applied and Environmental Microbiology,1989,55(5):1066-1073
    [67]Li X L, Calza R E. Fractionation of Cellulases from the Ruminal Fungus Neocallimastix frontalis EB188. Applied and Environmental Microbiology,1991,57(11):3331-3336
    [68]Li X L, Chen H and Ljungdahl L G. Monocentric and Polycentric Anaerobic Fungi Produce Structurally Related Cellulases and Xylanases. Applied and Environmental Microbiology,1997, 63(2):628-635
    [69]Lowe S E, Theodorou M K and Trinci A P J. Cellulases and Xylanase of an Anaerobic Rumen Fungus Grown on Wheat Straw, Wheat Straw Holocellulose, Cellulose and Xylan. Applied and Environmental Microbiology,1987,53(6):1216-1223
    [70]Wood T M, Wilson C A, McCrae S I, et al. A Highly Active Extracellular Cellulase from the Anaerobic Rumen Fungus Neocallimas-tix frontalis. FEMS Microbiology Letters,1986,34:37-40
    [71]Gilbert H J, Hazelwood G P, Laurie J J, et al. Homologous Catalytic Domain in a Rumen Fungal Xylanase:Evidence for Gene Duplication and Prokaryotic Origin. Molecular Microbiology, 1992,6(15):2065-2072
    [72]Zhou L, Xue G P, Orpin C G, et al. Intronless celB from the Anaerobic Fungus Neocallimastix patriciarum Encodes a Modular Family A Endoglucanase. Biochemistry Journal, 1994,297:359-364
    [73]Black G W, Hazlewood G P, Xue G P, et al. Xylanase B from Neocallimastix patriciarum Contains a Non-catalytic 455-Residue Linker Sequence Comprised of 57 Repeats of an Octapeptide. Biochemistry Journal,1994,299:381-387
    [74]Denman S, Xue G P and Patel B. Characterization of a Neocallimastix patriciarum Cellulase cDNA (celA) Homologous to Trichoderma reesei Cellobiohydrolase Ⅱ. Applied and Environmental Microbiology,1996,62(6):1889-1896
    [75]Dalrymple B P, Cybinski D H, Layton I, et al. Three Neocallimastix patriciarum Esterases Associated with the Degradation of Complex Polysaccharides Are Members of a New Family of Hydrolases. Microbiology,1997,143:2605-2614
    [76]Reymond P, Durand R, Hebraud M, et al. Molecular Cloning of Genes from the Rumen Anaerobic Fungus Neocallimastix frontalis:Expression During Hydrolase Induction. FEMS Microbiology Letters,1991,77(1):107-112
    [77]Durand R, Rascle C and Fevre M. Molecular Characterization of xyn3, a Member of the Endoxylanase Multigene Family of the Anaerobic Fungus Neocallimastix frontalis. Current Genetics,1996,30(6):531-540
    [78]Fanutti C, Ponyi T, Black G W, et al. The Conserved Noncatalytic 40-Residue Sequence in Cellulases and Hemicellulases from Anaerobic Fungi Functions as a Protein Docking Domain. The Journal of Biological Chemistry,1995,270:29314-29322
    [79]Li X L, Chen H and Ljungdahl L G. Monocentric and Polycentric Anaerobic Fungi Produce Structurally Related Cellulases and Xylanases. Applied and Environmental Microbiology,1997, 63(2):628-635
    [80]Chen H, Li X L and Ljungdahl L G. Sequencing of a 1,3-1,4-L-D-Glucanase (Lichenase) from the Anaerobic Fungus Orpinomyces Strain PC-2:Properties of the Enzyme Expressed in Escherichia coli and Evidence that the Gene Has a Bacterial Origin. The Journal of Bacteriology, 1997,179(19):6028-6034
    [81]Liu J H, Selinger L B, Hu Y J, et al. An Endoglucanase from the Anaerobic Fungus Orpinomyces Joyonii:Characterization of the Gene and Its Product. Canadian Journal of Microbiology,1997,43(5):477-485
    [82]Joseph S, David W R. Condensed Protocols from Molecular Cloning:A Laboratory Manual. Beijing:Chemical Industry Press,2008
    [83]汪家政,范明。蛋白质技术手册。北京:科学出版社,2000,77-90
    [84]Ghose T K. Measurement of Cellulase Activities. Pure and Applied Chemistry,1987,59(2): 257-268
    [85]常巧玲,孙建义,许英等。热纤梭菌内切-p-葡聚糖酶基因celD在大肠杆菌中的表达及酶学特性分析。农业生物技术学报,2006,14(6):1000-1001
    [86]官兴颖,吴振芳,吴琦等。枯草芽孢杆菌C-36内切葡聚糖酶基因的克隆及其在大肠杆菌中融合表达。生物加工过程,2009,7(3):68-72
    [87]王海青,孟欣,洪玉枝等。费氏弧菌p-内切葡聚糖酶基因在大肠杆菌中的表达及酶学分析。农业生物技术学报,2007,15(6):1029-1033
    [88]James M. Cregg, Joan Lin Cereghino, Jianying Shi, et al. Recombinant protein expression in Pichia pastoris. Molecular biotechnology,2000,16 (1):23-52
    [89]王超凯,李剑芳,周晨妍等。编码草菇中性内切葡聚糖酶Ⅰ的基因克隆与表达研究。食品与发酵工业,2008,34(7):7-12
    [90]张亚波,刘连盟,徐荣燕。嗜热子囊菌光孢变种内切葡聚糖酶Ⅰ基因在毕赤酵母中的表达及部分酶学性质。应用与环境生物学报,2009,15(3):419-422
    [91]丁少军,宋美静,杨红军等。中性内切型纤维素酶在毕赤酵母中高水平表达的研究。生物工程学报,2006,22(1):71-76
    [92]Ogata, Nishikawa H, Ohsugi M. A yeast capable of utilizing methanol. Agric Biol Chem, 1969,33:1519-1520
    [93]Arja Miettinen-Oinonen, Pirkko Suominen. Enhanced Production of Trichoderma reesei Endoglucanases and Use of the New Cellulase Preparations in Producing the Stonewashed Effect on Denim Fabric. Applied and Environmental Microbiology,2002,68(8):3956-3964

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700